1
|
Wu Y, Wei C. A borate-inspired strategy to enhance the sensitivity of fluorescent probe for NTR and hypoxia imaging dynamic in cancer cells. Biosens Bioelectron 2025; 285:117567. [PMID: 40383029 DOI: 10.1016/j.bios.2025.117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/13/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Designing highly sensitive and selective imaging probes for NTR overexpressed in cancer cells remains a great challenge. Herein, an ultra-high sensitive fluorescence probe PNO for imaging NTR in in vitro A549 cells was designed and synthesized. PNO is composed of 4-nitro-1,8-naphthalic anhydride and boronic acid ester groups. For comparison, another probe CNO (unmodified with boronic acid ester) was also synthesized and investigated. UV-visible absorption and fluorescence spectroscopic studies indicated that PNO exhibited an ultra-sensitive (with the detection limit (DL) of 0.543 ng/mL) and selective response to NTR. Compared to CNO, PNO possessed the higher affinity to NTR and faster enzymatic reaction rate, and the Michaelis-Menten constant (Km) and maximum reaction rate (Vmax) values were 6.199 μM and 1.641 μM s-1, respectively. The molecular docking further showed that the binding energy of PNO to NTR was slightly lower than CNO, moreover, the reduced intermediate and product of PNO was easier to release from NTR, enhancing the catalytic reaction rate. Besides, PNO presented the high stability and the low cytotoxicity. Especially, PNO was able to image sensitively the fluctuations of endogenous NTR in various physiological processes. It was found that the intracellular NTR level enhanced in hypoxia, autophagy, early apoptosis, and CoCl2-mediated activation of HIF-1α signaling pathway. On the contrary, the NTR level decreased in the late apoptosis and drug-mediated inhibition of HIF-1α signaling pathway. We anticipated that the novel design strategy of the PNO probe and the findings would provide a promising future for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yingchun Wu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China
| | - Chunying Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
2
|
Gupta A, Gautam A, Patra S, Kunwar A, Sasmal PK. Harnessing the power of iridium AIEgens for NAD(P)H detection in aqueous medium and living cells. Chem Commun (Camb) 2025; 61:7305-7308. [PMID: 40261153 DOI: 10.1039/d5cc01124h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A rationally designed luminescent probe based on cyclometalated iridium(III) AIEgens was developed for the rapid, sensitive, and specific detection of NAD(P)H in aqueous media. This probe was successfully utilized for bioimaging of NADH within the mitochondria of living cancer cells, highlighting its potential as a valuable tool for investigating NADH-associated cellular processes.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Aryan Gautam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Smaranika Patra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Anushaktinagar, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Ma Z, Cai H, Sun J, Du Y, Di J. Photoelectrochemical/fluorescent detection of NAD + based on gold nanoparticles acted as ethanol dehydrogenase. Talanta 2025; 294:128274. [PMID: 40339341 DOI: 10.1016/j.talanta.2025.128274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
A dual-signal photoelectrochemical-fluorescent (PEC-FL) sensing method was developed for the detection of nicotinamide adenine dinucleotide (NAD+), utilizing gold nanoparticles (AuNPs) as nanozymes. Acting as ethanol dehydrogenase mimics, AuNPs catalyzed the reduction of NAD+ to NADH in the presence of ethanol. The generated NADH, serving as an electron donor, was oxidized at the surface of the ITO/BiVO4/AuNPs electrode, leading to changes in the PEC signal. Furthermore, NADH emitted fluorescence at 470 nm, enabling specific detection of NAD+. The method demonstrated excellent linearity for NAD+ concentrations ranging from 0.5 μM to 20 μM (PEC) and 2 μM-20 μM (FL). The detection limits of 0.16 μM (PEC) and 0.38 μM (FL) calculated by using 3σ/s (n = 3). Employing AuNPs as nanozymes not only addressed the challenges in NAD+ determination but also provided a new strategy for developing efficient detection methods applicable to other significant environmental and biological analytes.
Collapse
Affiliation(s)
- Zhichang Ma
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| | - Hemeiling Cai
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Jing Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
4
|
Hu Y, Zhang H, Ding Y, Chen W, Pan C, He L, Cheng D, Yuan L. Tandem reaction-powered near-infrared fluorescent molecular reporter for real-time imaging of lung diseases. Chem Sci 2025:d5sc01488c. [PMID: 40308959 PMCID: PMC12038431 DOI: 10.1039/d5sc01488c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes and its complications have drawn growing research attention due to their detrimental effects on human health. Although optical probes have been used to help understand many aspects of diabetes, the lung diseases caused by diabetes remain unclear and have rarely been explored. Herein, a tandem-reaction (TR) strategy is proposed based on the adjacent diol esterification-crosslinking reaction and the nicotinamide reduction reaction of nicotinamide adenine dinucleotide (NADH) to design a lung-targeting near-infrared (NIR) small molecule probe (NBON) for accurate imaging of diabetic lung diseases. NBON was designed by coupling a phenylboronic acid analog that can form borate ester bonds by reversibly binding with NADH via an esterification-crosslinking reaction. Streptozotocin (STZ)-induced diabetic mice and metformin (MET)/epalrestat (EPS)-repaired model studies demonstrated that NBON allowed the sensitive imaging of NADH for lung disease diagnosis and therapeutic monitoring. The proposed antioxidant mechanism by which EPS alleviates diabetic lung disease was studied for the first time in living cells and in vivo. Furthermore, NBON was successfully applied in the detection of NADH in tumors and lung metastases. Overall, this work provides a general platform for a NIR NADH probe design, and advances the development of NADH probes for mechanistic studies in lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China Hengyang 421002 Hunan China
| | - Hongshuai Zhang
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China Hengyang 421002 Hunan China
| | - Yiteng Ding
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China Hengyang 421002 Hunan China
| | - Weirui Chen
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China Hengyang 421002 Hunan China
| | - Changqie Pan
- Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha 410013 China
| | - Longwei He
- MOE Key Lab of Rare Pediatric Diseases, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China Hengyang China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| | - Dan Cheng
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China Hengyang 421002 Hunan China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
5
|
Arachchige DL, Dwivedi SK, Agyemang P, Lanquaye H, Peters J, Rickauer G, Beatty AC, Plansinis M, Zhang Y, Ata A, Werner T, Liu H. Deep-Red Cyanine-Based Fluorescent Probes with 6-Quinolinium Acceptors for Mitochondrial NAD(P)H Imaging in Live Cells and Human Diseased Kidney Tissues. ACS APPLIED BIO MATERIALS 2025; 8:3205-3217. [PMID: 40193329 DOI: 10.1021/acsabm.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We developed two deep-red cyanine chromophores, probes A and B, for selective mitochondrial NAD(P)H detection in live cells. Probe A features a 1,2,3,3-tetramethyl-3H-indolium core, while probe B incorporates a 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium moiety, both linked to quinolinium via a vinyl bond to enable fluorescence modulation upon NAD(P)H reduction of probes A and B. To explore the role of electron-withdrawing groups in probe sensitivity, we synthesized three additional cyanine dyes (probes C, D, and E) via condensation of 6-quinolinecarboxaldehyde with 2,3-dimethyl-1,3-benzothiazolium acceptor and malononitrile derivatives, followed by methylation. Under NAD(P)H-deficient conditions, probe A showed absorption at 382 nm with weak fluorescence at 636 nm, while probe B absorbed at 443 nm with weak fluorescence at 618 nm. Upon NAD(P)H reduction, probe A exhibited red-shifted absorption at 520 nm with enhanced emission at 589 nm, and probe B at 550 nm with strong emission at 610 nm. Probe C showed absorption at 524 nm with enhanced emission at 586 nm, while probes D and E exhibited no detectable NAD(P)H response, highlighting the critical role of quinolinium acceptors. Probe B demonstrated superior sensitivity, successfully tracking NAD(P)H fluctuations in HeLa cells under glycolysis stimulation (glucose, lactate, pyruvate) and treatments with LPS and methotrexate. It also visualized NAD(P)H in Drosophila larvae, revealing increased levels after drug treatments. Notably, probe B distinguished between healthy and diseased human kidney tissues, detecting significantly elevated NADH levels in autosomal dominant polycystic kidney disease (ADPKD) samples, emphasizing its diagnostic potential. This study introduces probe B as a versatile and reliable NAD(P)H sensor for metabolic research and disease diagnostics, offering valuable insights into redox processes in live cells, organisms, and clinical samples.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashlyn Colleen Beatty
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Matthew Plansinis
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
Dhingra P, Jaswal K, Biswas B, Mondal IC, Mondal P, Ghosh S. Molecular probe to visualize the effect of a glycolytic inhibitor on reducing NADH levels in a cellular system. Org Biomol Chem 2025; 23:3400-3408. [PMID: 40071899 DOI: 10.1039/d4ob01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems. Interestingly, depending on the ratio between the probe and NADH concentration in the solution phase, the probe showed emission at ∼529 nm and ∼656 nm when excited at 475 nm. It should be noted that the probe showed a very large Stokes shift of ∼180 nm with respect to the longer-wavelength emission with a good fluorescence response towards NADH. In general, such a large Stokes shift is highly beneficial for imaging applications, largely due to the better separation between the emission and excitation spectra and reduced spectral overlap. Finally, the probe was utilized to image a glycolysis pathway event by employing 3-bromopyruvic acid (3-BrPA) as a glycolytic inhibitor that significantly inhibits the activity of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is involved in a crucial step of glycolysis. As the depletion of the NADH levels corresponds to the inactivity of GADPH upon treatment with the inhibitor, we attempted to image the modulation of the NADH concentration in the cellular system in the presence of the inhibitor 3-BrPA, indicating the importance of the glycolysis step in elevating NADH levels. Overall, the present study attempts to demonstrate the importance of a molecular probe for fluorescence imaging of intracellular NADH in the presence of a glycolytic inhibitor.
Collapse
Affiliation(s)
- Pooja Dhingra
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Kajal Jaswal
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Bidisha Biswas
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Iswar Chandra Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Prosenjit Mondal
- School of Bioscience and Bioengineering, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur-760010, India
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| |
Collapse
|
7
|
Lanquaye H, Dwivedi SK, Li X, Agyemang P, Rickauer G, Arachchige DL, Wang C, Peters J, Zhen I, Knighton I, Ata A, Werner T, Liu H. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae. ACS APPLIED BIO MATERIALS 2025; 8:1707-1719. [PMID: 39905910 PMCID: PMC12032585 DOI: 10.1021/acsabm.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The detection and dynamic monitoring of intracellular NAD(P)H concentrations are crucial for comprehending cellular metabolism, redox biology, and their roles in various physiological and pathological processes. To address this need, we introduce sensor A, a near-infrared ratiometric fluorescent sensor for real-time, quantitative imaging of NAD(P)H fluctuations in live cells. Sensor A combines a 3-quinolinium electron-deficient acceptor with a near-infrared rhodamine dye, offering high sensitivity and specificity for NAD(P)H with superior photophysical properties. In its unbound state, sensor A emits strongly at 650 nm and weakly at 465 nm upon 400 nm excitation. Upon binding to NAD(P)H, it shows a fluorescence increase at 465 nm and a decrease at 650 nm, enabling accurate ratiometric measurements. Sensor A also exhibits ratiometric upconversion fluorescence when excited at 800 or 810 nm, offering additional flexibility for different experimental setups. The sensor's response relies on the reduction of the 3-quinolinium acceptor by NAD(P)H, forming a 1,4-dihydroquinoline donor that enhances fluorescence at 465 nm and quenches the near-infrared emission at 650 nm through photoinduced electron transfer. This mechanism ensures high sensitivity and reliable quantification of NAD(P)H levels while minimizing interference from sensor concentration, excitation intensity, or environmental factors. Sensor A was validated in HeLa and MD-MB453 cells under various metabolic and pharmacological conditions, including glucose and maltose stimulation and treatments with chemotherapeutic agents. Co-localization with mitochondrial-specific dyes confirmed its mitochondrial targeting, enabling precise tracking of NAD(P)H fluctuations. In vivo imaging of Drosophila larvae under nutrient starvation or chemotherapeutic exposure revealed dose-dependent fluorescence responses, highlighting its potential for tracking NAD(P)H changes in live organisms. Sensor A represents a significant advancement in NAD(P)H imaging, providing a powerful tool for exploring cellular metabolism and redox biology in biomedical research.
Collapse
Affiliation(s)
- Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xinzhu Li
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Crystal Wang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Houghton High School, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ivy Zhen
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Carmel High School, 520 E Main St, Carmel, Indiana 46032, United States
| | - Isabelle Knighton
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
8
|
Khan J. Optical Chemosensors Synthesis and Appplication for Trace Level Metal Ions Detection in Aqueous Media: A Review. J Fluoresc 2025; 35:561-582. [PMID: 38175458 DOI: 10.1007/s10895-023-03559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
In recent years, the development of optical chemosensors for the sensitive and selective detection of trace level metal ions in aqueous media has garnered significant attention within the scientific community. This review article provides a comprehensive overview of the synthesis strategies and applications of optical chemosensors dedicated to the detection of metal ions at low concentrations in water-based environments. The discussion encompasses a wide range of metal ions, including but not limited to heavy metals, transition metals, and rare earth elements, emphasizing their significance in environmental monitoring, industrial processes, and biological systems. The review explores into the synthesis methodologies employed for designing optical chemosensors, discovering diverse materials like organic dyes, nanoparticles, polymers, and hybrid materials. Special attention is given to the design principles that enable the selective recognition of specific metal ions, highlighting the role of ligand chemistry, coordination interactions, and structural modifications. Furthermore, the article thoroughly surveys the analytical performance of optical chemosensors in terms of sensitivity, selectivity, response time, and detection limits. Real-world applications, including water quality assessment, environmental monitoring, and biomedical diagnostics, are extensively covered to underscore the practical relevance of these sensing platforms. Additionally, the review sheds light on emerging trends, challenges, and future prospects in the field, providing insights into potential advancements and innovations. By synthesizing the current state of knowledge on optical chemosensors for trace level metal ions detection. The collective information presented herein not only offers a comprehensive understanding of the existing technologies but also inspires future research endeavors to address the evolving demands in the realm of trace metal ion detection.
Collapse
Affiliation(s)
- Jehangir Khan
- Department of Chemistry, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
9
|
Jaeger S, Lanquaye H, Dwivedi SK, Arachchige DL, Xia J, Waters M, Bigari BL, Olowolagba AM, Agyemang P, Zhang Y, Zhang Y, Ata A, Kathuria I, Luck RL, Werner T, Liu H. Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Drosophila melanogaster Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe. ACS APPLIED BIO MATERIALS 2024; 7:8465-8478. [PMID: 39562316 PMCID: PMC11792162 DOI: 10.1021/acsabm.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A near-infrared fluorescent probe, A, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe AH, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe AH. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved Drosophila melanogaster larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.
Collapse
Affiliation(s)
- Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James Xia
- Woodbury high school, 2665 Woodlane Drive, Woodbury, Minnesota 55125, United States
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bella Lyn Bigari
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ishana Kathuria
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
Chen Y, Tang Z, Liu J, Ren C, Zhang Y, Xu H, Li Q, Zhang Q. A multilocus-dendritic boronic acid functionalized magnetic nanoparticle for capturing circulating tumor cells in the peripheral blood of mice with metastatic breast cancer. Anal Chim Acta 2024; 1297:342381. [PMID: 38438224 DOI: 10.1016/j.aca.2024.342381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Dynamic fluctuation of circulating tumor cells (CTCs) can serve as an indicator of tumor progression. However, the sensitive isolation of CTCs remains extremely challenging due to their rarity and heterogeneity. Against this dilemma, dendritic boronic acid-modified magnetic nanoparticles (MNPs) were prepared in this study, and polyethyleneimine (PEI) was utilized as a scaffold to significantly increase the number of boronic acid moieties. Then the novel developed material was applied to monitor the number of CTCs in mice with metastatic breast cancer to evaluate the therapeutic effects of matrine (Mat), doxorubicin (Dox), and Mat in combination with Dox. RESULTS Compared to the low binding capacity of a single boronic acid ligand, dendritic boronic acid shows enhanced sensitivity in binding to sialic acid (SA), which is overexpressed in CTCs. The results showed that the capture efficiency of this modified material could achieve 94.7% and successfully captured CTCs in blood samples from mice with metastatic breast cancer. The CTC counts were consistent with the results of the pathologic examination, demonstrating the reliability and utility of the method. SIGNIFICANCE The dendritic boronic acid nanomaterials prepared in this study showed high specificity, sensitivity, and accuracy for cancer cell capture. The approach is expected to provide new insights into cancer diagnosis, personalized therapy, and optimization of treatment regimens.
Collapse
Affiliation(s)
- Yue Chen
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengkun Tang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiajia Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuanyang Ren
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
12
|
Xu K, Wang Y, Zhang S, Xiong X, Meng D, Qian W, Dong J. An antioxidation-responsive SERS-active microneedle for detecting the antioxidant capacity in living organisms. Anal Chim Acta 2024; 1287:342138. [PMID: 38182399 DOI: 10.1016/j.aca.2023.342138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
To detect the antioxidant capacity in living organisms, an antioxidation-responsive SERS-active microneedle was fabricated by adsorbing resazurin on miniature SERS substrates, SERS-active microneedles. The SERS intensity ratio of characterized peaks of resazurin and its product, resorufin, was adopted and verified as an indicator of antioxidant capacity. The feasibility of detection of the antioxidant capacity in living organisms was proved by using the fabricated SERS-active microneedles to detect the antioxidant capacity of lipopolysaccharide-induce inflammatory animal models. The fabricated SERS-active microneedles can be inserted into target soft tissues with minimal invasion to detect their antioxidant capacity. The fabricated SERS-active microneedles would be a novel tool to bring the detection of antioxidant capacity from samplings ex vivo and cells to complex tissues to promote the researches on redox biology in living organisms.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yang Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shuyu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiulei Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dianhuai Meng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jian Dong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou, 215123, China.
| |
Collapse
|
13
|
Yang C, Jiang C, Yang M, Bai Q, Zhen Y, Zhang Y, Yin W, Wang J, Zhou X, Li G, Wu M, Qin Y, Wang Q, Ji H, Wu L. NAD(P)H Activated Fluorescent Probe for Rapid Intraoperative Pathological Diagnosis and Tumor Histological Grading. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:738-749. [PMID: 39474306 PMCID: PMC11503956 DOI: 10.1021/cbmi.3c00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/18/2025]
Abstract
Rapid and accurate intraoperative pathological diagnosis (IOPD) is essential for intraoperative decision-making to improve patients' outcomes and avoid reoperations. In this study, using a NAD(P)H-activated fluorescent probe, a multifunctional fluorescent indicator has been developed to selectively identify tumor cells from normal tissue and to achieve cancer grading identification. This rapid response probe, CyQ-1, features unprecedented sensitivity and rapid response toward NADH at low nanomolar levels under physiological conditions. Moreover, this indicator allows both colorimetric and fluorescent NADH detection in HeLa, A549, MDA-MB-231, 4T1, MCF-7, HePG2, HUVEC, and HL-7702 cells. Expanding the use of this indicator to advanced tissue models, its ability to visualize NADH in 120 paraffin-embedded colorectal sections and 20 cases of intraoperative frozen sections of lung cancer was further verified. CyQ-1-based cancer grading identification shows an overall 92.5 and 100% agreement with the "gold standard test" of histologic grading toward paraffin and frozen sections, respectively. The sensitivity and specificity for discriminating poorly, moderately, and well-differentiated tumor sections were all above 90%. In a word, the rapid and accurate NADH detection ability for clinical sections makes this proposed indicator a potential candidate for clinical IOPD quantification and tumor differentiation grade recognition.
Collapse
Affiliation(s)
- Chaojie Yang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Chenxia Jiang
- Department
of Pathology, The Affiliated Hospital of
Nantong University, 226001 Nantong, P. R. China
| | - Majun Yang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Qingqing Bai
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yaya Zhen
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yuxue Zhang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Weiyi Yin
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Jian Wang
- School
of Data Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaobo Zhou
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Guo Li
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Mingmin Wu
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yuling Qin
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Qi Wang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Haiwei Ji
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Li Wu
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
14
|
Arachchige DL, Dwivedi SK, Jaeger S, Olowolagba AM, Mahmoud M, Tucker DR, Fritz DR, Werner T, Tanasova M, Luck RL, Liu H. Highly Sensitive Cyanine Dyes for Rapid Sensing of NAD(P)H in Mitochondria and First-Instar Larvae of Drosophila melanogaster. ACS APPLIED BIO MATERIALS 2023; 6:3199-3212. [PMID: 37556116 PMCID: PMC10584401 DOI: 10.1021/acsabm.3c00320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed two highly sensitive cyanine dyes, which we refer to as probes A and B. These dyes are capable of quick and sensitive sensing of NAD(P)H. The dyes were fabricated by connecting benzothiazolium and 2,3-dimethylnaphtho[1,2-d]thiazol-3-ium units to 3-quinolinium through a vinyl bond. In the absence of NAD(P)H, both probes have low fluorescence and absorption peaks at 370 and 400 nm, correspondingly. This is because of their two electron-withdrawing acceptor systems with high charge densities. However, when NAD(P)H reduces the probes' electron-withdrawing 3-quinolinium units to electron-donating 1,4-dihydroquinoline units, the probes absorb at 533 and 535 nm and fluoresce at 572 and 586 nm for A and B correspondingly. This creates well-defined donor-π-acceptor cyanine dyes. We successfully used probe A to monitor NAD(P)H levels in live cells during glycolysis, under hypoxic conditions induced by CoCl2 treatment and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine. Probe A was also employed to visualize NAD(P)H in Drosophila melanogaster first-instar larvae. We observed an increase in NAD(P)H levels in A549 cancer cells both under hypoxic conditions and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
15
|
Dwivedi SK, Arachchige DL, Olowolagba A, Mahmoud M, Cunnien J, Tucker DR, Fritz D, Werner T, Luck RL, Liu H. Thiophene-based organic dye with large Stokes shift and deep red emission for live cell NAD(P)H detection under varying chemical stimuli. J Mater Chem B 2023; 11:6296-6307. [PMID: 37249441 PMCID: PMC10524713 DOI: 10.1039/d3tb00645j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a novel method for synthesizing red and deep red cyanine dyes with large Stokes shifts, probes A and B, for live cell NAD(P)H detection. The probes were prepared using thiophene-based organic dyes featuring a π-conjugated bridge of thiophene and 3,4-ethylenedioxythiophene units linking the 1-methylquinolinium acceptor and formyl acceptor, respectively. These probes display weak absorption peaks at 315 nm (A) and 334 nm (B) and negligible fluorescence in the absence of NADH. However, upon the presence of NADH, new absorption and fluorescence peaks appear at 477 nm and 619 nm for probe A and at 486 nm and 576 nm for probe B, respectively. This is due to the NADH-facilitated reduction of the 1-methylquinolinium unit into 1-methyl-1,4-dihydroquinoline, which then acts as the electron donor for the probes, leading to the formation of well-defined electron donor-acceptor dye systems. Probe A has a large Stokes shift of 144 nm, which allows for better separation between the excitation and emission spectra, reducing spectral overlap and improving the accuracy of fluorescence measurements. The probes are highly selective for NAD(P)H, water-soluble, biocompatible, and easily permeable to cells. They are also photostable and were successfully used to monitor changes in NADH concentration in live cells during glycolysis in the presence of glucose, lactate, and pyruvate, treatment of FCCP and cancer drug cisplatin, and under hypoxia triggered by CoCl2. Furthermore, the probes were able to image NAD(P)H in Drosophila melanogaster larvae. Notably, cisplatin treatment increased the NAD(P)H concentration in A459 cells over time. Overall, this work presents a significant advancement in the field of live cell imaging by providing a simple and cost-effective method for detecting changes in NAD(P)H concentration under varying chemical stimuli.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Adenike Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jenna Cunnien
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Delaney Fritz
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
16
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
17
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
18
|
Zhao X, Niu R, Fan S, Jing X, Gao R, Yang H, Wang H, Wang D, Yang Z, Xie Y, She J, Chen P, Meng L. A Dual-Mode NADH Biosensor Based on Gold Nanostars Decorated CoFe 2 Metal-Organic Frameworks to Reveal Dynamics of Cell Metabolism. ACS Sens 2022; 7:2671-2679. [PMID: 36001454 DOI: 10.1021/acssensors.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is central to metabolism and implicated in various diseases. Herein, nanohybrids of gold nanostars and metal-organic frameworks are devised and demonstrated as a dual-mode NADH sensor, for which colorimetric detection is enabled by its peroxidase-like nanozyme property and Raman detection is realized by its surface-enhanced Raman scattering property with the detection limit as low as 28 pM. More importantly, this probe enables real-time SERS monitoring in living cells, providing a unique tool to investigate dynamic cellular processes involving NADH. Our experiments reveal that metabolism dynamics is accelerated by glucose and is much higher in cancerous cells. The SERS results can also be verified by the colorimetric detection. This sensor provides a new potential to detect biomarkers and their dynamics in situ.
Collapse
Affiliation(s)
- Xiaoping Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruoxin Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shu Fan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbo Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heng Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunchuan Xie
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junjun She
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.,Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Yao L, Yin C, Huo F. Small-Molecule Fluorescent Probes for Detecting Several Abnormally Expressed Substances in Tumors. MICROMACHINES 2022; 13:1328. [PMID: 36014250 PMCID: PMC9412406 DOI: 10.3390/mi13081328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Malignant tumors have always been the biggest problem facing human survival, and a huge number of people die from cancer every year. Therefore, the identification and detection of malignant tumors have far-reaching significance for human survival and development. Some substances are abnormally expressed in tumors, such as cyclooxygenase-2 (COX-2), nitroreductase (NTR), pH, biothiols (GSH, Cys, Hcy), hydrogen sulfide (H2S), hydrogen sulfide (H2O2), hypochlorous acid (HOCl) and NADH. Consequently, it is of great value to diagnose and treat malignant tumors due to the identification and detection of these substances. Compared with traditional tumor detection methods, fluorescence imaging technology has the advantages of an inexpensive cost, fast detection and high sensitivity. Herein, we mainly introduce the research progress of fluorescent probes for identifying and detecting abnormally expressed substances in several tumors.
Collapse
Affiliation(s)
- Leilei Yao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Zhang Y, Liyana Arachchige D, Olowolagba A, Luck RL, Liu H. Near-infrared Fluorescent Probe Based on Rhodamine Derivative for Detection of NADH in Live Cells. Methods 2022; 204:22-28. [PMID: 35381337 PMCID: PMC9233151 DOI: 10.1016/j.ymeth.2022.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
A near-infrared fluorescent probe was prepared for selective detection of reduced nicotinamide adenine dinucleotide (NADH) in live cells. The probe turns off the fluorescence with a closed spironolactone switch. However, reduction of the probe by NADH turns on fluorescence at 740 nm. Theoretical calculations suggest a more planar arrangement between the rhodamine and quinoline moieties with increased π-delocalization resulting from reduction.
Collapse
|
21
|
Tinikul R, Trisrivirat D, Chinantuya W, Wongnate T, Watthaisong P, Phonbuppha J, Chaiyen P. Detection of cellular metabolites by redox enzymatic cascades. Biotechnol J 2022; 17:e2100466. [PMID: 35192744 DOI: 10.1002/biot.202100466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme-based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human- and microbe-related cellular metabolites including, amino acids, d-glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro- and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.
Collapse
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Duangthip Trisrivirat
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Wachirawit Chinantuya
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pratchaya Watthaisong
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Jittima Phonbuppha
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| |
Collapse
|
22
|
Shamjith S, Joseph MM, Murali VP, Remya GS, Nair JB, Suresh CH, Maiti KK. NADH-depletion triggered energy shutting with cyclometalated iridium (III) complex enabled bimodal Luminescence-SERS sensing and photodynamic therapy. Biosens Bioelectron 2022; 204:114087. [DOI: 10.1016/j.bios.2022.114087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023]
|
23
|
Li M, Liu C, Zhang W, Xu L, Yang M, Chen Z, Wang X, Pu L, Liu W, Zeng X, Wang T. An NADH-selective and sensitive fluorescence probe to evaluate living cell hypoxic stress. J Mater Chem B 2021; 9:9547-9552. [PMID: 34761793 DOI: 10.1039/d1tb01927a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular disease and senescence are often accompanied by an imbalance in the local oxygen supply. Under hypoxia, mitochondrial NADH and FADH2 cannot be oxidized by the mitochondrial electron transport chain, which leads to the accumulation of reducing equivalents and subsequent reduction stress. Detecting changes in intracellular NADH levels is expected to allow an assessment of stress. We synthesized a red fluorescent probe, DPMQL1, with high selectivity and sensitivity for detecting NADH in living cells. The probe DPMQL1 has strong anti-interference abilities toward various potential biological interferences, such as metal ions, anions, redox species, and other biomolecules. In addition, its detection limit can reach the nanomolar level, meaning it can display small changes in NADH levels in living cells, so as to realize the evaluation of cell-based hypoxic stress.
Collapse
Affiliation(s)
- Mingzhe Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chang Liu
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Wenjuan Zhang
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Longfei Xu
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xianshun Zeng
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Tianhui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
24
|
Nakano M, Nakamura R, Sumida Y, Nagao K, Furuyama T, Inagaki F, Ohmiya H. Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chem Pharm Bull (Tokyo) 2021; 69:526-528. [PMID: 34078798 DOI: 10.1248/cpb.c21-00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The optical property of fluorescent unit-conjugated aliphatic oxaboroles has been investigated. The oxaboroles provide good fluorescence quantum yields and selective recognition toward D-ribose and D-ribose containing molecules. The molecular recognition induced significant fluorescence quenching. The property of the boroles showed the possibility of the boron-based nicotinamide adenine dinucleotide (NAD) sensor probe.
Collapse
Affiliation(s)
- Misaki Nakano
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Rikako Nakamura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | | | | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
25
|
Wang K, Zhang R, Yue X, Zhou Z, Bai L, Tong Y, Wang B, Gu D, Wang S, Qiao Y, Liu Q, Xue X, Yin Y, Xi R, Meng M. Synthesis of Diboronic Acid-Based Fluorescent Probes for the Sensitive Detection of Glucose in Aqueous Media and Biological Matrices. ACS Sens 2021; 6:1543-1551. [PMID: 33784069 DOI: 10.1021/acssensors.0c02217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reliable and accurate glucose detection in biological samples is of great importance in clinical diagnosis and medical research. Chemical probes are advantageous in simple operation and flexible design, especially for the development of fluorescent probes. Anthracene-based diboronic acid (P-DBA) has shown potential in glucose probing because of its high sensitivity. However, poor solubility limits its applications in aqueous media. In this work, we systemically modify P-DBA by introducing fluoro (F-), chloro (Cl-), methoxyl (MeO-), or cyano (CN-) substituents. Among these probes, the cyano-substituted probe (CN-DBA) displays the highest glucose-binding constant (6489.5 M-1, 33% MeOH). More importantly, it shows good water solubility in the aqueous solution (0.5% MeOH), with ultrasensitive recognition with glucose (LOD = 1.51 μM) and robust sensing from pH 6.0 to 9.0. Based on these features, the CN-DBA is finally applied to detect glucose in cell lysates and plasma, with satisfactory recovery and precision. These results demonstrate that CN-DBA could serve as an accurate, sensitive fluorescent probe for glucose assays in biological samples.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ruixiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xinmin Yue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Zheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Lihuan Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Bei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Dening Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yanqi Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
26
|
Williams GT, Kedge JL, Fossey JS. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens 2021; 6:1508-1528. [PMID: 33844515 PMCID: PMC8155662 DOI: 10.1021/acssensors.1c00462] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.
Collapse
Affiliation(s)
- George T. Williams
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan L. Kedge
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
27
|
Cuminet F, Caillol S, Dantras É, Leclerc É, Ladmiral V. Neighboring Group Participation and Internal Catalysis Effects on Exchangeable Covalent Bonds: Application to the Thriving Field of Vitrimer Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Éric Dantras
- CIRIMAT Physique des Polymères, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Éric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
28
|
Zhang J, Liu Z, Tian F, Chen Y. A novel ratiometric fluorescent probe from a hemicyanine derivative for detecting NAD(P)H in a cell microenvironment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1681-1686. [PMID: 33861234 DOI: 10.1039/d1ay00002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a fluorescent compound derived from coumarin and hemicyanine was synthesized and characterized. Herein, we present the fluorescence properties of the probe. Fluorescence selectivity experiments revealed that it exhibited higher ratiometric fluorescence response activity toward NAD(P)H than other commonly coexisting compounds in the cell microenvironment, in accord with the fluorescence shift from red to blue. In addition, the fluorescence identification mechanism was deduced to be a redox reaction between the sensor and NAD(P)H according to the fluorescence behavior. The ratiometric fluorescent probe provided an important theoretical basis for sensing NAD(P)H in vitro and in vivo. We also used this phenomenon to build a sensitive detection platform of NAD(P)H-dependent enzyme activity based on the fluorescence method.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Zhengzhou University, Zhoukou 466001, P. R. China
| | | | | | | |
Collapse
|
29
|
Kurnia KA, Setyaningsih W, Darmawan N, Yuliarto B. A comprehensive study on the impact of the substituent on pKa of phenylboronic acid in aqueous and non-aqueous solutions: A computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Tian Y, Jiang WL, Wang WX, Mao GJ, Li Y, Li CY. NAD(P)H-triggered probe for dual-modal imaging during energy metabolism and novel strategy of enhanced photothermal therapy in tumor. Biomaterials 2021; 271:120736. [PMID: 33662745 DOI: 10.1016/j.biomaterials.2021.120736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The reduced coenzymes (NADH and NADPH) are an important product in energy metabolism and closely related to the occurrence and development of cancer. So it is necessary to use a powerful detection tool to visualize NAD(P)H in energy metabolism of tumor cells and find a new strategy to improve cancer treatment based on NAD(P)H. Herein, a novel multifunctional probe (Cy-N) is synthesized with good near-infrared fluorescence (NIRF) response to NAD(P)H and the photoacoustic (PA) and photothermal properties are successfully activated by NAD(P)H. The probe is successfully applied in visualizing NAD(P)H in energy metabolism of tumor cells and imaging NAD(P)H in bacteria. Moreover, the probe can be used to image NAD(P)H in energy metabolism of tumor-bearing mice by dual-modal imaging (NIRF and PA). More importantly, in terms of the role of NAD(P)H in energy metabolism, the photothermal therapy (PTT) is activated by NAD(P)H and a novel strategy of enhanced PTT is proposed by injecting glucose. As far as we know, this is the first probe to detect NAD(P)H in energy metabolism through dual-modal imaging, and also the first probe to activate PTT based on NAD(P)H, which will provide important information of the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
31
|
Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Sun P, Zhang H, Sun Y, Liu J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118919. [PMID: 32977107 DOI: 10.1016/j.saa.2020.118919] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) participate in numerous metabolic processes in living cells as electron carriers. The levels of NADH and NADPH in a cell are closely related to its metabolic and pathological state. It is important to monitor the levels of NADH and NADPH in living cells and in vivo in real-time. This review mainly focuses on fluorescent probes developed for monitoring NADH and NADPH in living cells and in vivo, and classifies them according to the recognition units. These fluorescence probes can rapidly respond to changes in NADH and NADPH levels without interference from other biomolecules, both in cell culture and in vivo. These probes have been employed to monitor NADH and NADPH levels in living cells, tumor spheroids, and in vivo; moreover, some of them can be used to discriminate normal cells from cancer cells, and detect cancer cell death due to reductive stress induced by natural antioxidants. This review is expected to inspire the generation of novel fluorescent probes for the detection of NADH and NADPH, and stimulate more attention in the development of fluorescent probes based on carbon dots and nanoparticles, as well as metal complex-based, time-gated luminescent probes for monitoring NADH and NADPH in both living cells and in vivo.
Collapse
Affiliation(s)
- Pengjuan Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
33
|
Podder A, Murali VP, Deepika S, Dhamija A, Biswas S, Maiti KK, Bhuniya S. NADH-Activated Dual-Channel Fluorescent Probes for Multicolor Labeling of Live Cells and Tumor Mimic Spheroids. Anal Chem 2020; 92:12356-12362. [PMID: 32814423 DOI: 10.1021/acs.analchem.0c02049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 1,4-dihydronicotinamide adenine dinucleotide (NADH) is one of the key coenzymes that participates in various metabolic processes including maintaining the redox balance. Early information on the imbalance of NADH is crucial in the context of diagnosing the pathogenic conditions. Thus, a dual-channel fluorescent probe (MQN) is developed for tracking of NADH/NAD(P)H in live cells. In the presence of NADH, only it showed emission signals at 460 and 550 nm upon excitation at 390 and 450 nm, respectively. The probe could provide accurate information on NADH levels in cancer cells (HeLa) and normal cells (WI-38). We observed that the NADH level in cancer cells (HeLa) is relatively higher than that in normal WI-38 cells. We received similar information on NADH upon calibrating with a commercial NADH kit. Moreover, we evaluated substrate-specific NADH expression in the glycolysis pathway and oxidative phosphorylation process. Also, the dual-channel probe MQN has visualized NADH manipulation in the course of depletion of GSH to maintain cellular redox balance. This dual-channel molecular probe MQN comes out as a new detection tool for NADH levels in live cells and tumor mimic spheroids.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.,Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Selvakumar Deepika
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | | | - Shayeri Biswas
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Kaustabh K Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.,Department of Chemical Engineering & Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
34
|
Ma Z, Li J, Lin K, Ramachandran M, Li M, Li Y. Heterocyclic N-Oxides as Small-Molecule Fluorogenic Scaffolds: Rational Design and Applications of Their "On-Off" Fluorescence. Anal Chem 2020; 92:12282-12289. [PMID: 32790290 DOI: 10.1021/acs.analchem.0c01918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-molecule fluorescent probes are powerful tools in chemical analysis and biological imaging. However, as the foundation of probe design, the meager existing set of core fluorophores have largely limited the diversity of current probes. Consequently, there is a high demand to discover fluorophores with new scaffolds and optimize the existing fluorophores. Here, we put forward a facile strategy of heterocyclic N-oxidation to address these challenges. The introduced N-O bond reconstructs the electron "push-pull" system of heterocyclic scaffolds and dramatically improves their photophysical properties by red-shifting the spectra and increasing the Stokes shift. Meanwhile, the heterocyclic N-O bond also enables a function of the fluorescence switch. It can turn on the fluorescence of pyridine and increase the fluorescence of quinoline and, conversely, decrease the fluorescence of acridines and resorufin. As a further practical application, we successfully utilized the quinoline N-oxide scaffold to design fluorogenic probes for H2S (8) and formaldehyde (FA, 9). Given their ultraviolet-visible spectra, both probes with high selectivity and sensitivity could be conveniently used in the naked eye detection of target analytes under illumination with a portable UV lamp. More interestingly, the probes could be effectively used in the imaging of nuclear and cytoplasmic H2S or nuclear and perinuclear FA. This potentially overcomes the weaknesses of existing H2S or FA probes that can only work in the cytoplasm. These interesting findings demonstrate the ability to rapidly expand and optimize the existing fluorophore library through heterocyclic N-oxidation.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States.,Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Minyong Li
- Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| |
Collapse
|
35
|
One‐pot Electrochemical Synthesis of Ni Nanoparticles‐decorated Electroreduced Graphene Oxide for Improved NADH Sensing. ELECTROANAL 2020. [DOI: 10.1002/elan.202060117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Jiang H, Qi YT, Wu WT, Wen MY, Liu YL, Huang WH. Intracellular monitoring of NADH release from mitochondria using a single functionalized nanowire electrode. Chem Sci 2020; 11:8771-8778. [PMID: 34123129 PMCID: PMC8163350 DOI: 10.1039/d0sc02787a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the powerhouse of cells, and also their suicidal weapon store. Mitochondrial dysfunction can cause the opening of the mitochondrial permeability transition pore (mPTP) and nicotinamide adenine dinucleotide (NADH) release from mitochondria, eventually leading to the disruption of energy metabolism and even cell death. Hence, NADH is often considered a marker of mitochondrial function, but in situ monitoring of NADH release from mitochondria in single living cells remains a great challenge. Herein, we develop a functionalized single nanowire electrode (NWE) for electrochemical detection of NADH release from intracellular mitochondria by modifying conductive polymer (poly(3,4-ethylendioxythiophene), PEDOT)-coated carbon nanotubes (CNTs) on the surface of a SiC@C nanowire. The positively charged PEDOT facilitates the accumulation of negatively charged NADH at the electrode surface and CNTs promote electron transfer, thus endowing the NWE with high sensitivity and selectivity. Further studies show that resveratrol, a natural product, specifically induced NADH release from mitochondria of MCF-7 cancer cells rather than non-cancerous MCF-10 A cells, indicating the potential therapeutic effects of resveratrol in cancer treatment. This work provides an efficient method to monitor mitochondrial function by in situ electrochemical measurement of NADH release, which will be of great benefit for physiological and pathological studies.
Collapse
Affiliation(s)
- Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
37
|
Zhang W, Huo F, Cheng F, Yin C. Employing an ICT-FRET Integration Platform for the Real-Time Tracking of SO 2 Metabolism in Cancer Cells and Tumor Models. J Am Chem Soc 2020; 142:6324-6331. [PMID: 32130860 DOI: 10.1021/jacs.0c00992] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathione (GSH) mediates a wide variety of biological events and human diseases. Although it has been the subject of intense study in recent years, a further understanding of its molecular mechanisms and metabolism routes in living cells has remained limited due to a lack of appropriate analytical tools. Sulfur dioxide (SO2), an important metabolite of GSH, is usually associated with the symptoms of neurological disorders, cardiovascular diseases, and lung cancer. Herein, a novel multisignal fluorescent probe was rationally designed and exploited for the simultaneous detection of GSH and its metabolite SO2 via an ICT-FRET synergetic mechanism. The probe shows completely reversed fluorescence responses toward GSH (enhanced red emission) and SO2 (annihilated red fluorescence) with high selectivity and sensitivity. In particular, the probe displayed completely different fluorescent signals (blue-shift) with SO2 in the presence of GSH, thereby allowing the imaging of the metabolism process of GSH to SO2 in two independent channels without spectral cross interference. Given these advantages, this probe has been successfully applied to the real-time monitoring of the SO2 metabolic process in living cells and mice models, and it has thus been found that GSH can metabolize SO2 by enzymatic reaction with TST (thiosulfate sulphurtransferase); additionally, SO2 was transformed into sulfate under SUOX (sulfite oxidase). We anticipate that this research will provide a convenient and efficient tool for understanding the interrelated physiological functions of GSH and SO2 in more biosystems.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
38
|
Jie X, Yang H, Su Y, Xia Z, Wei W. Time-Resolved Monitoring of Intracellular Processes with a Cyclical On-Off Photoswitchable Nanoprobe. ACS Sens 2020; 5:40-49. [PMID: 31829565 DOI: 10.1021/acssensors.9b01182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent microscopic imaging with the help of small-molecule probes (chemoprobes) is one of the most feasible approaches for noninvasive sensing of intracellular molecules. However, the "always on" property of current chemoprobes failed to achieve time-resolved monitoring. Here, we report the development of a supramolecular nanoassembling strategy to integrate multiple functions on one nanoscale probe (nanoprobe) with a cyclical on-off switchable sensing ability. The reversal of the nanoprobe can be rapidly achieved by converting the single-wavelength near-infrared (NIR) laser to two-way emissions by a lanthanum nanoparticle core that is sensitive to the light power density. Through regulating the NIR power density, the azobenzene derivative, which was doped in the surface of the lipid bilayer of the nanoprobe, can act as an "impeller" and "brake" for bio-benign activation and deactivation, respectively, of the nanoprobe in biological applications. A reduced nicotinamide adenine dinucleotide nanoprobe was constructed as the model to demonstrate precise and time-resolved monitoring of intracellular processes including cancerous glycolysis and ligand-induced enzymatic processes. We envision that this cyclical on-off switchable nanoprobe strategy will hold great promise for endowing universal chemoprobes with high precision and temporal resolution.
Collapse
Affiliation(s)
- Xu Jie
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Haimei Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuchen Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhining Xia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Weili Wei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
39
|
Masai H, Yokoyama T, Miyagishi HV, Liu M, Tachibana Y, Fujihara T, Tsuji Y, Terao J. Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material. Nat Commun 2020; 11:408. [PMID: 31964865 PMCID: PMC6972936 DOI: 10.1038/s41467-019-14271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Biological systems are known to spontaneously adjust the functioning of neurotransmitters, ion channels, and the immune system, being promoted or regulated through allosteric effects or inhibitors, affording non-linear responses to external stimuli. Here we report that an insulated conjugated bimetallopolymer, in which Ru(II) and Pt(II) complexes are mutually connected with insulated conjugations, exhibits phosphorescence in response to CO gas. The net profile corresponds to a sigmoidal response with a dual self-controlling system, where drastic changes were exhibited at two threshold concentrations. The first threshold for activation of the system is triggered by the depolymerization of the non-radiative conjugated polymer to luminescent monomers, while the second one for regulation is triggered by the switch in the rate-determining step of the Ru complex. Such a molecular design with cooperative multiple transition metals would provide routes for the development of higher-ordered artificial molecular systems bearing bioinspired responses with autonomous modulation.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Takuya Yokoyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Maning Liu
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yasuhiro Tachibana
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasushi Tsuji
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
40
|
Peng M, Yin J, Lin W. Development of a two-photon fluorescent probe to monitor the changes of viscosity in living cells, zebra fish and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117310. [PMID: 31326856 DOI: 10.1016/j.saa.2019.117310] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
The detection of viscosity is of great significance for medical research. Herein, we have developed a two-photon fluorescent probe CB-V for monitoring micro-viscosity changes. The fluorescence emission intensity of CB-V increased 9.6-fold from methanol to glycerol exhibiting an excellent fluorescence response. With excellent properties of CB-V, monitoring the viscosity variations has been achieved not only in living cells but also in zebra fish and mice.
Collapse
Affiliation(s)
- Min Peng
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
41
|
Zuo Q, Wu Q, Lv Y, Gong X, Cheng D. Imaging of endoplasmic reticulum superoxide anion fluctuation in a liver injury model by a selective two-photon fluorescent probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj00487a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An endoplasmic reticulum-targeted two-photon probe is reported with excellent sensitivity and selectivity for visualizing the O2˙− level in a liver injury model.
Collapse
Affiliation(s)
- Qingping Zuo
- Department of Pharmacy
- The First Hospital of Changsha
- Changsha
- P. R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
42
|
Li W, Gong X, Fan X, Yin S, Su D, Zhang X, Yuan L. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Pan X, Zhao Y, Cheng T, Zheng A, Ge A, Zang L, Xu K, Tang B. Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia. Chem Sci 2019; 10:8179-8186. [PMID: 31857884 PMCID: PMC6836941 DOI: 10.1039/c9sc02020a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022] Open
Abstract
An ultrasensitive fluorescent probe for monitoring NAD(P)H and revealing reductive stress induced by natural antioxidants in HepG2 cells under hypoxia.
Reductive stress, the opposite of oxidative stress, represents a disorder in the redox balance state which is harmful to biological systems. For decades, the role of oxidative stress in tumor therapy has been the focus of attention, while the effects of reductive stress have been rarely studied. Here, we report the anti-cancer effects of reductive stress induced by three natural antioxidants (resveratrol, curcumin and celastrol). Considering the fact that the solid tumor microenvironment suffers from hypoxia, we performed cell experiments under hypoxic conditions. In order to observe the reductive stress, we first developed an ultrasensitive fluorescent probe (TCF-MQ) for specifically imaging NAD(P)H which is a marker of reductive stress. TCF-MQ responded to NAD(P)H rapidly and exhibited high sensitivity with a detection limit of 6 nM. With the help of TCF-MQ, we found that upon the treatment of HepG2 cells with pharmacological doses of three natural antioxidants under hypoxic conditions, high levels of NAD(P)H were produced before cell death. The excess NAD(P)H resulted in reductive stress instead of oxidative stress. In contrast, under normoxic conditions, there was no reductive stress involved in the process of cell death induced by three natural antioxidants. Therefore, we hypothesize that the mechanism of cancer cell death induced by natural antioxidants under hypoxia should be attributed to the reductive stress.
Collapse
Affiliation(s)
- Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ; .,Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Yuehui Zhao
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Tingting Cheng
- Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Anbin Ge
- Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
44
|
Zhao H, Peng K, Lv F, Liu L, Wang S. Boronic Acid-Functionalized Conjugated Polymer for Controllable Cell Membrane Imaging. ACS APPLIED BIO MATERIALS 2019; 2:1787-1791. [DOI: 10.1021/acsabm.9b00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Cheng D, Peng J, Lv Y, Su D, Liu D, Chen M, Yuan L, Zhang X. De Novo Design of Chemical Stability Near-Infrared Molecular Probes for High-Fidelity Hepatotoxicity Evaluation In Vivo. J Am Chem Soc 2019; 141:6352-6361. [DOI: 10.1021/jacs.9b01374] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Dongjie Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
46
|
Podder A, Koo S, Lee J, Mun S, Khatun S, Kang HG, Bhuniya S, Kim JS. A rhodamine based fluorescent probe validates substrate and cellular hypoxia specific NADH expression. Chem Commun (Camb) 2019; 55:537-540. [DOI: 10.1039/c8cc08991d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel rhodamine-based redox probe (MQR) was developed to visualize the alteration of the NADH level under diverse metabolic perturbations.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Seyoung Koo
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sora Mun
- Department of Senior Healthcare
- BK21 Plus Program
- Graduate School
- Eulji University
- Seongnam 13135
| | - Sabina Khatun
- Department of Chemical Engineering & Materials Science
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | | |
Collapse
|
47
|
Kang Q, Xiao Y, Wang Y. From inorganic precipitation to organic aggregation: solubility product constant-mediated specific metal-ion lighting-up using a triazolium iodide organic fluorescence tag. Analyst 2019; 144:1654-1659. [DOI: 10.1039/c8an01785a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovation in sensing strategies is a continual goal pursued by analytical chemists.
Collapse
Affiliation(s)
- Qing Kang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
48
|
Brooks WLA, Deng CC, Sumerlin BS. Structure-Reactivity Relationships in Boronic Acid-Diol Complexation. ACS OMEGA 2018; 3:17863-17870. [PMID: 31458380 PMCID: PMC6644144 DOI: 10.1021/acsomega.8b02999] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 06/01/2023]
Abstract
Boronic acids have found widespread use in the field of biomaterials, primarily through their ability to bind with biologically relevant 1,2- and 1,3-diols, including saccharides and peptidoglycans, or with polyols to prepare hydrogels with dynamic covalent or responsive behavior. Despite a wide range of boronic acid architectures that have been previously considered, there is a need for greater understanding of the structure-reactivity relationships that govern binding affinity to diols. In this study, various boronic acids and other organoboron compounds were investigated to determine their pK a and their binding constants with the biologically relevant diols including sorbitol, fructose, and glucose. Boronic acid pK a values were determined through spectroscopic titration, whereas binding constants were determined by fluorescence spectroscopy during competitive binding studies. Key structure-reactivity relationships clearly indicated that both boronic acid structure and solution pH must be carefully considered. By considering a variety of boronic acids with systematically varied electronics and sterics, these results provide guidance during selection of organoboron compounds in sensing, delivery, and materials chemistry.
Collapse
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Christopher C. Deng
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
49
|
Zhao Y, Wei K, Kong F, Gao X, Xu K, Tang B. Dicyanoisophorone-Based Near-Infrared-Emission Fluorescent Probe for Detecting NAD(P)H in Living Cells and in Vivo. Anal Chem 2018; 91:1368-1374. [PMID: 30525465 DOI: 10.1021/acs.analchem.8b03563] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NADH and NADPH are ubiquitous coenzymes in all living cells that play vital roles in numerous redox reactions in cellular energy metabolism. To accurately detect the distribution and dynamic changes of NAD(P)H under physiological conditions is essential for understanding their biological functions and pathological roles. In this work, we developed a near-infrared (NIR)-emission fluorescent small-molecule probe (DCI-MQ) composed of a dicyanoisophorone chromophore conjugated to a quinolinium moiety for in vivo NAD(P)H detection. DCI-MQ has the advantages of high water solubility, a rapid response, extraordinary selectivity, great sensitivity (a detection limit of 12 nM), low cytotoxicity, and NIR emission (660 nm) in response to NAD(P)H. Moreover, the probe DCI-MQ was successfully applied for the detection and imaging of endogenous NAD(P)H in both living cells and tumor-bearing mice, which provides an effective tool for the study of NAD(P)H-related physiological and pathological processes.
Collapse
Affiliation(s)
- Yuehui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Keyan Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| |
Collapse
|
50
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|