1
|
Chen X, Au CM, Fang P, Xue Y, Leung KCF, Chan WL. Late-Stage N-Alkenylative Modifications of Indolic Scaffolds with Propiolates: Toward Bisconjugation and Macrocyclization. Org Lett 2025; 27:5081-5086. [PMID: 40368809 DOI: 10.1021/acs.orglett.5c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
A facile, mild, and scalable late-stage N-alkenylative modification strategy is introduced on 1H-indoles, 9H-carbazoles, and their structural derivatives and analogues, including alkaloids, bioactive agents, and tryptophan motifs, via chemo- and regioselective phosphine-mediated propiolate hydroamination. Saliently, through this protocol, bisconjugation and macrocyclization on (bis)indolic scaffolds can also be accomplished, with the installation of new α,β-unsaturated ester handles for potential further versatile synthetic manipulations.
Collapse
Affiliation(s)
- Xiaoye Chen
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Chi-Ming Au
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Pengyuan Fang
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Wai-Lun Chan
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
2
|
Zhang Y, Yu H, Tang F, Zhang FH, Zhang M, Dong J, Zhao J, Huang W, Liu B. Bioinspired Methionine-Selective Desulfurization Editing of Peptides via the Photocatalysis Strategy. J Am Chem Soc 2025; 147:16379-16389. [PMID: 40323122 DOI: 10.1021/jacs.5c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
S-Adenosylmethionine (SAM) frequently functions as a cofactor or precursor for enzymes, initiating an array of radical reactions in biological systems. In contrast with the conventional 5'-deoxyadenosyl (dAdo) radical pathway, which proceeds via homolytic cleavage of the S-C(5') bond of SAM, the Dph2 enzyme provides an alternative 3-amino-3-carboxypropyl (ACP) radical pathway through breaking the S-C(γ) bond. Inspired by this distinctive bond cleavage mode, we have developed a chemically induced pathway to generate an ACP-type radical intermediate on methionine-based sulfonium. This strategy presents a novel desulfurization conjugation mode for methionine modification, diverging from previous approaches that conjugate onto the sulfur atom or the adjacent methyl group of methionine. The versatility of this strategy is demonstrated by the efficient functionalization of various peptides and peptide macrocyclizations. Density Functional Theory (DFT) calculations provide further insights into the mechanism of this desulfurization reaction, explaining the exceptional selectivity of homolytic cleavage of the S-C(γ) bond of methionine-based sulfonium. The successful implementation of this novel desulfurization strategy represents a substantial advancement in the understanding of sulfonium-based intramolecular radical substitution reactions and provides new opportunities for the functionalization of biomolecules, thereby fostering progress in interdisciplinary research.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huixin Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Feng-Hua Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Meihui Zhang
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd, Shenzhen 518055, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| |
Collapse
|
3
|
Gao A, Qi Y, Luo Y, Hu X, Jiang R, Chang S, Zhou X, Liu L, Zhu L, Feng X, Jiang L, Zhong H. Mass spectrometric monitoring of redox transformation and arylation of tryptophan. Anal Chim Acta 2025; 1349:343822. [PMID: 40074454 DOI: 10.1016/j.aca.2025.343822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways. We described herein a mass spectrometric approach that can not only detect electron transfer-associated changes in masses and charges, but also identify electron-directed bond cleavages and radical-radical cross-coupling reactions in redox transformation of tryptophan. Photoactive TiO2 that is widely applied in cosmetic products is used as electron donor and receptor because of the capability to generate photoelectrons and holes. It was demonstrated tryptophan undergoes redox transformation through the removal of an electron from amino nitrogen atom by hole oxidization along with an electron capture in the indole ring. The back and forth electron-shuttle converts electric energy into chemical energy that enforces bond cleavages. Sodium-coupled electron transfer (SCET) was found in complementary with proton-coupled electron transfer in tryptophan. The movement of sodium ions avoids electric charge buildup caused by electron transfer. Various redox products were detected on both light irradiated TiO2 and skins, among which β-carboline shows extensive radical scavenging ability for diverse cross-coupling with indole derivatives. Light-independent redox products have been detected in vivo such as in mouse brain, indicating the presence of in vivo electron transfer-directed redox transformation. It has also been revealed that tryptophan can be arylated on Cα and Cβ atoms in response to the exposure of halogenated aromatics.
Collapse
Affiliation(s)
- Anji Gao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yinghua Qi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yixiang Luo
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xiaoyuan Hu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ruowei Jiang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shao Chang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Linhui Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Luping Zhu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ling Jiang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
4
|
Kundu SK, Bandyopadhyay A, Sarkar R. Tryptophan-specific modification and diversification of peptides and proteins. Org Biomol Chem 2025; 23:1773-1793. [PMID: 39831339 DOI: 10.1039/d4ob02015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished. This review provides a comprehensive summary of the latest advances in tryptophan-specific modification and diversification of peptides and proteins that exhibit significant applications in proteomics, protein engineering, living cell imaging, drug discovery, etc. The article also highlights literature gaps and new opportunities for the sake of future innovation in the field.
Collapse
Affiliation(s)
- Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India
- Department of Chemistry, Chapra Government College, Nadia 741123, West Bengal, India
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| |
Collapse
|
5
|
Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta 2025; 1338:343551. [PMID: 39832869 DOI: 10.1016/j.aca.2024.343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Chemical proteomics has advanced small molecule ligand discovery by providing insights into protein-ligand binding mechanism and enabling medicinal chemistry optimization of protein selectivity on a global scale. Mass spectrometry is the predominant analytical method for chemoproteomics, and various approaches have been deployed to investigate and target a rapidly growing number of protein classes and biological systems. Two methods, intact mass analysis (IMA) and top-down proteomics (TDMS), have gained interest in recent years due to advancements in high resolution mass spectrometry instrumentation. Both methods apply mass spectrometry analysis at the proteoform level, as opposed to the peptide level of bottom-up proteomics (BUMS), thus addressing some of the challenges of protein inference and incomplete information on modification stoichiometry. This Review covers recent research progress utilizing MS-based proteomics methods, discussing in detail the capabilities and opportunities for improvement of each method. Further, heightened attention is given to IMA and TDMS, highlighting these methods' strengths and considerations when utilized in chemoproteomic studies. Finally, we discuss the capabilities of native mass spectrometry (nMS) and ion mobility mass spectrometry (IM-MS) and how these methods can be used in chemoproteomics research to complement existing approaches to further advance the field of functional proteomics.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
6
|
Skakuj K, Iglhaut M, Shao Q, Garcia FJ, Huang BY, Brittain SM, Nesvizhskii AI, Schirle M, Nomura DK, Toste FD. Light-Activated Reactivity of Nitrones with Amino Acids and Proteins. Angew Chem Int Ed Engl 2025; 64:e202415976. [PMID: 39509590 PMCID: PMC11753931 DOI: 10.1002/anie.202415976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Controlled modifications of amino acids are an indispensable tool for advancing fundamental and translational research based on peptides and proteins. Yet, we still lack methods to chemically modify each naturally occurring amino acid sidechain. To help address this gap, we show that N,α-diaryl oxaziridines expand the scope of bioconjugation methods to chemically modify cysteine, methionine, and tryptophan residues with evidence for additional tyrosine labelling in a proteomic context. Conjugation primarily at tryptophan sites can be accessed by selective cleavage of modifications at other sidechains. The N,α-diaryl oxaziridine reagents are accessed through photoisomerization of nitrones, which serve as photocaged reagents, thus providing an additional level of control over reactivity. Initial guiding principles for the design of nitrone reagents are developed by exploring the impact of structure on UV/Vis absorption, photoisomerization, and reactivity. We identify a nitrone structure that maximizes photoisomerization efficiency, the aqueous stability of the oxaziridine, the extent of amino acid modification, and the stability of the resulting amino acid conjugates. We then translate nitrone reagents to modify proteins in aqueous conditions. Finally, we use nitrones to profile reactive residues across the proteome of a mammalian cell line and find that they expand the proteome coverage.
Collapse
Affiliation(s)
- Kacper Skakuj
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Maximilian Iglhaut
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Qian Shao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Bo-Yang Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Ann Arbor, Michigan, 48109, USA
| | | | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| |
Collapse
|
7
|
Li J, Hu QL, Liu JS, Xiong XF. Triflic Acid-Mediated Chemoselective Indole C2-Heteroarylation of Peptide Tryptophan Residues by Triazine. Org Lett 2024; 26:10928-10933. [PMID: 39648991 DOI: 10.1021/acs.orglett.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide modification provides opportunities to afford peptides with designed functions. Among the proteogenic amino acids, tryptophan represents an ideal and attractive target for peptide modification because of the exclusive chemical reactivity of its unique indole structure. Herein, we reported an indole C2 position-selective and transition-metal-free modification approach for indole derivatives and tryptophan-containing peptides by triazine derivatives via triflic acid activation and that the incorporated functional group could act as an orthogonal handle for further bioconjugation via an inverse electron demand Diels-Alder reaction.
Collapse
Affiliation(s)
- Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Jia-Shu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Bertelsen MB, Tsang E, Palmfeldt J, Kristoffersen CH, Nisavic M, Gothelf KV. A Diketopinic Reagent for the Reversible Bioconjugation to Arginine Residues on Native Antibodies. Bioconjug Chem 2024; 35:1755-1761. [PMID: 39432883 DOI: 10.1021/acs.bioconjchem.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Arginine is one of the less commonly targeted amino acids in protein bioconjugation, despite its unique reactivity and abundance on the surface of proteins. In this work, a molecule containing diketopinic acid and an azide handle was developed for the chemo-selective bioconjugation to arginine. This compound proved to be efficient for bioconjugation to IgG1 and IgG4 antibodies, achieving mono- and double-label conversion rates of 37-44 and 12-30%, respectively. Mass spectrometry analysis confirmed the antibody modification at two conserved regions. The compound was also applied for the labeling of other proteins such as transferrin, BSA, and an EgA1 nanobody. The conjugation was shown to be reversible using an o-phenylenediamine-based alkaline solution. This novel conjugation method offers precise and stable bioconjugation to proteins, enhancing the potential for various biomedical applications.
Collapse
Affiliation(s)
- Mathias B Bertelsen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Celine H Kristoffersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Marija Nisavic
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Calvert SH, Pawlak T, Hessman G, McGouran JF. Rapid diazotransfer for selective lysine labelling. Org Biomol Chem 2024; 22:7976-7981. [PMID: 39283514 DOI: 10.1039/d4ob01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets. In addition, conditons can be modified to selectively label a single lysine residue in both protein targets investigated. Finally, we demonstrate selective modification of proteins containing a single azidolysine using copper(I)-catalyzed triazole formation.
Collapse
Affiliation(s)
- Susannah H Calvert
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Tomasz Pawlak
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Gary Hessman
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
11
|
Tsao KK, Imai S, Chang M, Hario S, Terai T, Campbell RE. The best of both worlds: Chemigenetic fluorescent sensors for biological imaging. Cell Chem Biol 2024; 31:1652-1664. [PMID: 39236713 PMCID: PMC11466441 DOI: 10.1016/j.chembiol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using in vitro protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.
Collapse
Affiliation(s)
- Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saaya Hario
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
12
|
Spampinato A, Leone DL, Pohl R, Tarábek J, Šoltysová M, Polák M, Kádek A, Sýkorová V, Řezáčová P, Hocek M. ABNOH-Linked Nucleotides and DNA for Bioconjugation and Cross-linking with Tryptophan-Containing Peptides and Proteins. Chemistry 2024; 30:e202402151. [PMID: 38924659 DOI: 10.1002/chem.202402151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG4-N3 with 5-ethynyl-dUMP or -dUTP. The modified triphosphate was used as substrate for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The keto-ABNO radical reacted with tryptophan (Trp) and Trp-containing peptides to form a stable tricyclic fused hexahydropyrrolo-indole conjugates. Similarly modified ABNOH-linked nucleotides reacted with Trp-containing peptides to form a stable conjugate in the presence but surprisingly even in the absence of NaNO2 (presumably through activation by O2). The reactive ABNOH-modified DNA probe was used for bioconjugations and crosslinking with Trp-containing peptides or proteins.
Collapse
Affiliation(s)
- Ambra Spampinato
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Denise-Liu' Leone
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Marek Polák
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Alan Kádek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
13
|
Nuruzzaman M, Colella BM, Nizam ZM, Cho IJ, Zagorski J, Ohata J. Redox-neutral, metal-free tryptophan labeling of polypeptides in hexafluoroisopropanol (HFIP). RSC Chem Biol 2024; 5:d4cb00142g. [PMID: 39234575 PMCID: PMC11368038 DOI: 10.1039/d4cb00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Despite the unmet needs for chemical tools to study biological roles of tryptophan in living systems, there has been a lack of chemical modification methods for tryptophan residues that can be used in cellular environments. Driven by a preliminary computational study of our previous research, this work experimentally examined our hypotheses to translate the metal-catalyzed tryptophan modification method in hexafluoroisopropanol (HFIP) into a metal-free process. While one of the hypotheses merely confirmed the superiority of the thiophene-ethanol reagent developed in the previous report, the second hypothesis resulted in the identification of a trifluoroborate salt and an acidic ionic liquid as alternatives for the catalysis. Labeling of lysates of a human cell line was achieved with the acidic ionic liquid catalyst, where negative impacts of the tryptophan labeling and HFIP medium on the cellular samples were apparently insignificant. Because the labeling process does not require any redox mediators and is a formal redox-neutral reaction, the metal-free approach would be of use for tryptophan biology research potentially related to their various redox roles.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Zeinab M Nizam
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Isaac JiHoon Cho
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Julia Zagorski
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| |
Collapse
|
14
|
Feng F, Gao Y, Zhao Q, Luo T, Yang Q, Zhao N, Xiao Y, Han Y, Pan J, Feng S, Zhang L, Wu M. Single-electron transfer between sulfonium and tryptophan enables site-selective photo crosslinking of methyllysine reader proteins. Nat Chem 2024; 16:1267-1277. [PMID: 39079947 DOI: 10.1038/s41557-024-01577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
The identification of readers, an important class of proteins that recognize modified residues at specific sites, is essential to uncover the biological roles of post-translational modifications. Photoreactive crosslinkers are powerful tools for investigating readers. However, existing methods usually employ synthetically challenging photoreactive warheads, and their high-energy intermediates generated upon irradiation, such as nitrene and carbene, may cause substantial non-specific crosslinking. Here we report dimethylsulfonium as a methyllysine mimic that binds to specific readers and subsequently crosslinks to a conserved tryptophan inside the binding pocket through single-electron transfer under ultraviolet irradiation. The crosslinking relies on a protein-templated σ-π electron donor-acceptor interaction between sulfonium and indole, ensuring excellent site selectivity for tryptophan in the active site and orthogonality to other methyllysine readers. This method could escalate the discovery of methyllysine readers from complex cell samples. Furthermore, this photo crosslinking strategy could be extended to develop other types of microenvironment-dependent conjugations to site-specific tryptophan.
Collapse
Affiliation(s)
- Feng Feng
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yingxiao Gao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ting Luo
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Qingyun Yang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yusong Han
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
15
|
Ghosh A, Zhao Y. Nanoparticles that Distinguish Chemical and Supramolecular Contexts of Lysine for Single-Site Functionalization of Protein. NANO LETTERS 2024; 24:8763-8769. [PMID: 38976835 DOI: 10.1021/acs.nanolett.4c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lysine is one of the most abundant residues on the surface of proteins and its site-selective functionalization is extremely challenging. The existing methods of functionalization rely on differential reactivities of lysine on a protein, making it impossible to label less reactive lysines selectively. We here report polymeric nanoparticles that mimic enzymes involved in the posttranslational modifications of proteins that distinguish the chemical and supramolecular contexts of a lysine and deliver the labeling reagent precisely to its ε amino group. The nanoparticles are prepared through molecular imprinting of cross-linkable surfactant micelles, plus an in situ, on-micelle derivatization of the peptide template prior to the imprinting. The procedures encode the polymeric nanoparticles with all the supramolecular information needed for sequence identification and precise labeling, allowing single-site functionalization of a predetermined lysine on the target protein in a mixture.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
16
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
17
|
Yang QQ, Liu SJ, Huang W, Peng C, Han B. Exploring Protein Bioconjugation: A Redox-Based Strategy for Tryptophan Targeting. RESEARCH (WASHINGTON, D.C.) 2024; 7:0410. [PMID: 38966747 PMCID: PMC11222011 DOI: 10.34133/research.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins, antibodies, and even cells. The study in Nature by Chang and Toste introduces a redox-based strategy for tryptophan bioconjugation, employing N-sulfonyloxaziridines as oxidative cyclization reagents, demonstrating high efficiency comparable to traditional click reactions. Meanwhile, this tool provides feasible methods for investigating the mechanisms underlying functional tryptophan-related biochemical processes, paving the way for protein function exploration, activity-based proteomics for functional amino acid identification and characterization, and even the design of covalent inhibitors.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
18
|
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem 2024; 7:80. [PMID: 38600184 PMCID: PMC11006884 DOI: 10.1038/s42004-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Mapping the ligandability or potential druggability of all proteins in the human proteome is a central goal of mass spectrometry-based covalent chemoproteomics. Achieving this ambitious objective requires high throughput and high coverage sample preparation and liquid chromatography-tandem mass spectrometry analysis for hundreds to thousands of reactive compounds and chemical probes. Conducting chemoproteomic screens at this scale benefits from technical innovations that achieve increased sample throughput. Here we realize this vision by establishing the silane-based cleavable linkers for isotopically-labeled proteomics-tandem mass tag (sCIP-TMT) proteomic platform, which is distinguished by early sample pooling that increases sample preparation throughput. sCIP-TMT pairs a custom click-compatible sCIP capture reagent that is readily functionalized in high yield with commercially available TMT reagents. Synthesis and benchmarking of a 10-plex set of sCIP-TMT reveal a substantial decrease in sample preparation time together with high coverage and high accuracy quantification. By screening a focused set of four cysteine-reactive electrophiles, we demonstrate the utility of sCIP-TMT for chemoproteomic target hunting, identifying 789 total liganded cysteines. Distinguished by its compatibility with established enrichment and quantification protocols, we expect sCIP-TMT will readily translate to a wide range of covalent chemoproteomic applications.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Nuruzzaman M, Colella BM, Uzoewulu CP, Meo AE, Gross EJ, Ishizawa S, Sana S, Zhang H, Hoff ME, Medlock BTW, Joyner EC, Sato S, Ison EA, Li Z, Ohata J. Hexafluoroisopropanol as a Bioconjugation Medium of Ultrafast, Tryptophan-Selective Catalysis. J Am Chem Soc 2024; 146:6773-6783. [PMID: 38421958 DOI: 10.1021/jacs.3c13447] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chiamaka P Uzoewulu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alissa E Meo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth J Gross
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sravani Sana
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - He Zhang
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Meredith E Hoff
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bryce T W Medlock
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily C Joyner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Elon A Ison
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
20
|
Koutsopetras I, Vaur V, Benazza R, Diemer H, Sornay C, Ersoy Y, Rochet L, Longo C, Hernandez-Alba O, Erb S, Detappe A, Skerra A, Wagner A, Cianferani S, Chaubet G. Site-Selective Protein Conjugation by a Multicomponent Ugi Reaction. Chemistry 2024; 30:e202303242. [PMID: 38050774 DOI: 10.1002/chem.202303242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.
Collapse
Affiliation(s)
- Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Yağmur Ersoy
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Léa Rochet
- Department of Chemistry, University College London, London, UK
| | - Carmen Longo
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | | | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
21
|
Hartmann P, Bohdan K, Hommrich M, Juliá F, Vogelsang L, Eirich J, Zangl R, Farès C, Jacobs JB, Mukhopadhyay D, Mengeler JM, Vetere A, Sterling MS, Hinrichs H, Becker S, Morgner N, Schrader W, Finkemeier I, Dietz KJ, Griesinger C, Ritter T. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat Chem 2024; 16:380-388. [PMID: 38123842 PMCID: PMC10914617 DOI: 10.1038/s41557-023-01388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.
Collapse
Affiliation(s)
- Philipp Hartmann
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Moritz Hommrich
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | | | | | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
22
|
Loynd C, Singha Roy SJ, Ovalle VJ, Canarelli SE, Mondal A, Jewel D, Ficaretta ED, Weerapana E, Chatterjee A. Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation. Nat Chem 2024; 16:389-397. [PMID: 38082177 PMCID: PMC10932882 DOI: 10.1038/s41557-023-01375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2023] [Indexed: 02/06/2024]
Abstract
Electrochemistry has recently emerged as a powerful approach in small-molecule synthesis owing to its numerous attractive features, including precise control over the fundamental reaction parameters, mild reaction conditions and innate scalability. Even though these advantages also make it an attractive strategy for chemoselective modification of complex biomolecules such as proteins, such applications remain poorly developed. Here we report an electrochemically promoted coupling reaction between 5-hydroxytryptophan (5HTP) and simple aromatic amines-electrochemical labelling of hydroxyindoles with chemoselectivity (eCLIC)-that enables site-specific labelling of full-length proteins under mild conditions. Using genetic code expansion technology, the 5HTP residue can be incorporated into predefined sites of a recombinant protein expressed in either prokaryotic or eukaryotic hosts for subsequent eCLIC labelling. We used the eCLIC reaction to site-specifically label various recombinant proteins, including a full-length human antibody. Furthermore, we show that eCLIC is compatible with strain-promoted alkyne-azide and alkene-tetrazine click reactions, enabling site-specific modification of proteins at two different sites with distinct labels.
Collapse
Affiliation(s)
- Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | | | - Vincent J Ovalle
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Sarah E Canarelli
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Atanu Mondal
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA.
| |
Collapse
|
23
|
Xie X, Moon PJ, Crossley SWM, Bischoff AJ, He D, Li G, Dao N, Gonzalez-Valero A, Reeves AG, McKenna JM, Elledge SK, Wells JA, Toste FD, Chang CJ. Oxidative cyclization reagents reveal tryptophan cation-π interactions. Nature 2024; 627:680-687. [PMID: 38448587 PMCID: PMC11198740 DOI: 10.1038/s41586-024-07140-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick J Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gen Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nam Dao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Audrey G Reeves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | | | - Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
24
|
Bandyopadhyay A, Biswas P, Kundu SK, Sarkar R. Electrochemistry-enabled residue-specific modification of peptides and proteins. Org Biomol Chem 2024; 22:1085-1101. [PMID: 38231504 DOI: 10.1039/d3ob01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.
Collapse
Affiliation(s)
- Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
| | - Pranay Biswas
- Department of Physics, Dinabandhu Mahavidyalaya, 24 Parganas (N), 743235, West Bengal, India
| | - Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| |
Collapse
|
25
|
Chen H, Wong HF, Qiu J, Li B, Yuan D, Kong H, Bao Y, Zhang Y, Xu Z, Tse YS, Xia J. Site-Selective Tyrosine Reaction for Antibody-Cell Conjugation and Targeted Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305012. [PMID: 38044303 PMCID: PMC10837340 DOI: 10.1002/advs.202305012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Targeted immunotherapies capitalize on the exceptional binding capabilities of antibodies to stimulate a host response that effectuates long-lived tumor destruction. One example is the conjugation of immunoglobulins (IgGs) to immune effector cells, which equips the cells with the ability to recognize and accurately kill malignant cells through a process called antibody-dependent cellular cytotoxicity (ADCC). In this study, a chemoenzymatic reaction is developed that specifically functionalizes a single tyrosine (Tyr, Y) residue, Y296, in the Fc domain of therapeutic IgGs. A one-pot reaction that combines the tyrosinase-catalyzed oxidation of tyrosine to o-quinone with a subsequent [3+2] photoaddition with vinyl ether is employed. This reaction installs fluorescent molecules or bioorthogonal groups at Y296 of IgGs or the C-terminal Y-tag of an engineered nanobody. The Tyr-specific reaction is utilized in constructing monofunctionalized antibody-drug conjugates (ADCs) and antibody/nanobody-conjugated effector cells, such as natural killer cells or macrophages. These results demonstrate the potential of site-selective antibody reactions for enhancing targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Hong‐Chai Fabio Wong
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Jiaming Qiu
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Biquan Li
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Dingdong Yuan
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Hao Kong
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yishu Bao
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yu Zhang
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Zhiyi Xu
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Ying‐Lung Steve Tse
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong KongShatinHong Kong SARChina
| |
Collapse
|
26
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
27
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
28
|
Hu K, Sun Q, Chen R, Xu T, Li Y, Chen L, Wang A, Qi H, Shao D, Yue H, Wang Y, Tang Z, Wang Y, Liu C, Lv H, Wang F, Xu H. Expanding the toolset of fluorescent covalent staining of biological samples by labeling carboxylate and phosphate groups. JOURNAL OF BIOPHOTONICS 2023; 16:e202300027. [PMID: 37644491 DOI: 10.1002/jbio.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Recently, fluorescent covalent staining methods have been developed for visualization of anatomical structures in cells and tissues. Coupled with expansion microscopy, these stains revealed various ultrastructural details. However, the covalently stainable chemical groups have been limited to amines, carbohydrates, and thiols. Here, we developed procedures for covalently labeling tissues for carboxylate and phosphate groups, utilizing carbodiimide crosslinker chemistry. In porcine kidney tissues, the carboxylate and phosphate stain provides 1.8-4.8-fold higher signal intensity than those from the three existing stains. In cancer cells, such stain allows 2-8-fold more accurate identification of nucleoli than the amine stain. In expansion microscopy samples, such stain reveals a variety of sub-cellular structures in tissues when combined with the amine stain. Such stain also allows imaging of lipid-based structures in cultured cells. With these advantages, this new covalent staining method further expands the toolset for fluorescent visualization of histology.
Collapse
Affiliation(s)
- Kexin Hu
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Qimeng Sun
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Ruifen Chen
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tinghao Xu
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Yuncheng Li
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aidong Wang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hejing Qi
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Danni Shao
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Huanning Yue
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Yaning Wang
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Ziqi Tang
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Yi Wang
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haijun Lv
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huizhong Xu
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
- Institute for Advanced Study, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Horie S, Mishiro K, Nishino M, Domae I, Wakasugi M, Matsunaga T, Kunishima M. Epitope-Based Specific Antibody Modifications. Bioconjug Chem 2023; 34:2022-2033. [PMID: 37861691 DOI: 10.1021/acs.bioconjchem.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Modified antibodies have essential roles in analytic, diagnostic, and therapeutic uses, and thus, these antibodies are required to have optimal physical and biological properties. Consequently, the development of methods for site-selective antibody modification is crucial. Herein, we used epitope-based affinity labeling to introduce a Fab region-selective antibody modification method. Although labeling that exploits the high affinity between an antibody and its epitope may appear straightforward, it remains challenging probably because of the loss of target affinity caused by modification around the epitope-binding site. By thoroughly screening the modifying agent structure, reaction conditions, and purification methods, we developed an efficient method for the selective modification of the Fab region of the antibody while maintaining the high affinity for the epitope.
Collapse
Affiliation(s)
- Saki Horie
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mio Nishino
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Inori Domae
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
30
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
31
|
Watanabe S, Wada Y, Kawano M, Higashibayashi S, Sugai T, Hanaya K. Selective modification of tryptophan in polypeptides via C-N coupling with azoles using in situ-generated iodine-based oxidants in aqueous media. Chem Commun (Camb) 2023; 59:13026-13029. [PMID: 37842839 DOI: 10.1039/d3cc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study demonstrates the C-N coupling of tryptophan with azoles, promoted by an in situ-generated iodine-based oxidant. The protocol was successfully applied to the selective modification of tryptophan in nonprotected polypeptide bearing oxidatively sensitive residues in acidic aqueous media. The present method allows the attachment of reactive handles to polypeptides and the peptide stapling.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
32
|
Depienne S, Bouzelha M, Courtois E, Pavageau K, Lalys PA, Marchand M, Alvarez-Dorta D, Nedellec S, Marín-Fernández L, Grandjean C, Boujtita M, Deniaud D, Mével M, Gouin SG. Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces. Nat Commun 2023; 14:5122. [PMID: 37612288 PMCID: PMC10447534 DOI: 10.1038/s41467-023-40534-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Methods for direct covalent ligation of microorganism surfaces remain poorly reported, and mostly based on metabolic engineering for bacteria and cells functionalization. While effective, a faster method avoiding the bio-incorporation step would be highly complementary. Here, we used N-methylluminol (NML), a fully tyrosine-selective protein anchoring group after one-electron oxidation, to label the surface of viruses, living bacteria and cells. The functionalization was performed electrochemically and in situ by applying an electric potential to aqueous buffered solutions of tagged NML containing the viruses, bacteria or cells. The broad applicability of the click-electrochemistry method was explored on recombinant adeno-associated viruses (rAAV2), Escherichia coli (Gram-) and Staphyloccocus epidermidis (Gram + ) bacterial strains, and HEK293 and HeLa eukaryotic cell lines. Surface electro-conjugation was achieved in minutes to yield functionalized rAAV2 that conserved both structural integrity and infectivity properties, and living bacteria and cell lines that were still alive and able to divide.
Collapse
Affiliation(s)
| | - Mohammed Bouzelha
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000, Nantes, France
| | | | - Karine Pavageau
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000, Nantes, France
| | | | - Maia Marchand
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Dimitri Alvarez-Dorta
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Capacités, 16 rue des marchandises, 44200, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | | | | | | | - David Deniaud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Mathieu Mével
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000, Nantes, France.
| | | |
Collapse
|
33
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
34
|
Lee JC, Cuthbertson JD, Mitchell NJ. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Org Lett 2023; 25:5459-5464. [PMID: 37462428 PMCID: PMC10391624 DOI: 10.1021/acs.orglett.3c01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Across eukaryotic proteomes, tryptophan is the least abundant of the 20 canonical amino acids, which makes it an ideal chemical handle for the late-stage functionalization of peptide and protein scaffolds with minimal production of undesired isoforms. Herein, we report the photocatalytic C2-alkylation of tryptophan using bromodifluoroacetate/acetamide-derived radical precursors. This rapid visible-light-mediated reaction is additive-free, operationally simple, and tolerates diverse functionality. We demonstrate the late-stage modification of a variety of complex peptides, including examples of biological significance.
Collapse
Affiliation(s)
- Joanna C Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - James D Cuthbertson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
35
|
Malawska KJ, Takano S, Oisaki K, Yanagisawa H, Kikkawa M, Tsukuda T, Kanai M. Bioconjugation of Au 25 Nanocluster to Monoclonal Antibody at Tryptophan. Bioconjug Chem 2023. [PMID: 36893358 DOI: 10.1021/acs.bioconjchem.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
We report the first bioconjugation of Au25 nanocluster to a monoclonal antibody at scarcely exposed tryptophan (Trp) residues toward the development of high-resolution probes for cryogenic electron microscopy (cryo-EM) and tomography (cryo-ET). To achieve this, we improved the Trp-selective bioconjugation using hydroxylamine (ABNOH) reagents instead of previously developed N-oxyl radicals (ABNO). This new protocol allowed for the application of Trp-selective bioconjugation to acid-sensitive proteins such as antibodies. We found that a two-step procedure utilizing first Trp-selective bioconjugation for the introduction of azide groups to the protein and then strain-promoted azide-alkyne cycloaddition (SPAAC) to attach a bicyclononyne (BCN)-presenting redox-sensitive Au25 nanocluster was essential for a scalable procedure. Covalent labeling of the antibody with gold nanoclusters was confirmed by various analytical methods, including cryo-EM analysis of the Au25 nanocluster conjugates.
Collapse
Affiliation(s)
- Katarzyna Joanna Malawska
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Chauhan P, V. R, Kumar M, Molla R, V. B. U, Rai V. Dis integrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS CENTRAL SCIENCE 2023; 9:137-150. [PMID: 36844488 PMCID: PMC9951294 DOI: 10.1021/acscentsci.2c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth. Additionally, bond formation and dissociation are significantly redefined during the translation from small molecules to proteins. Understanding these principles and developing theories to deconvolute the multidimensional attributes could accelerate the area. This outlook presents a disintegrate (DIN) theory for systematically disintegrating the selectivity challenges through reversible chemical reactions. An irreversible step concludes the reaction sequence to render an integrated solution for precise protein bioconjugation. In this perspective, we highlight the key advancements, unsolved challenges, and potential opportunities.
Collapse
|
37
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
39
|
Thakur K, T K S, Singh SK, V R, Rawale DG, Adusumalli SR, Kalra N, Shukla S, Mishra RK, Rai V. Human Behavior-Inspired Linchpin-Directed Catalysis for Traceless Precision Labeling of Lysine in Native Proteins. Bioconjug Chem 2022; 33:2370-2380. [PMID: 36383773 DOI: 10.1021/acs.bioconjchem.2c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex social ecosystem regulates the spectrum of human behavior. However, it becomes relatively easier to understand if we disintegrate the contributing factors, such as locality and interacting partners. Interestingly, it draws remarkable similarity with the behavior of a residue placed in a social setup of functional groups in a protein. Can it inspire principles for creating a unique environment for the precision engineering of proteins? We demonstrate that localization-regulated interacting partner(s) could render precise and traceless single-site modification of structurally diverse native proteins. The method targets a combination of high-frequency Lys residues through an array of reversible and irreversible reactions. However, excellent simultaneous control over chemoselectivity, site selectivity, and modularity ensures that the user-friendly protocol renders acyl group installation, including post-translational modifications (PTMs), on a single Lys. Besides, it offers a chemically orthogonal handle for the installation of probes. Also, a purification protocol integration delivers analytically pure single-site tagged protein bioconjugates. The precise labeling of a surface Lys residue ensures that the structure and enzymatic activities remain conserved post-bioconjugation. For example, the precise modification of insulin does not affect its uptake and downstream signaling pathway. Further, the method enables the synthesis of homogeneous antibody-fluorophore and antibody-drug conjugates (AFC and ADC; K183 and K249 labeling). The trastuzumab-rhodamine B conjugate displays excellent serum stability along with antigen-specific cellular imaging. Further, the trastuzumab-emtansine conjugate offers highly specific antiproliferative activity toward HER-2 positive SKBR-3 breast cancer cells. This work validates that disintegrate theory can create a comprehensive platform to enrich the chemical toolbox to meet the technological demands at the chemistry, biology, and medicine interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neetu Kalra
- School of Bioengineering, VIT Bhopal, Bhopal 466114, Madhya Pradesh, India
| | | | | | | |
Collapse
|
40
|
Declas N, Maynard JRJ, Menin L, Gasilova N, Götze S, Sprague JL, Stallforth P, Matile S, Waser J. Tyrosine bioconjugation with hypervalent iodine. Chem Sci 2022; 13:12808-12817. [PMID: 36519034 PMCID: PMC9645396 DOI: 10.1039/d2sc04558c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Hypervalent iodine reagents have recently emerged as powerful tools for late-stage peptide and protein functionalization. Herein we report a tyrosine bioconjugation methodology for the introduction of hypervalent iodine onto biomolecules under physiological conditions. Tyrosine residues were engaged in a selective addition onto the alkynyl bond of ethynylbenziodoxolones (EBX), resulting in stable vinylbenziodoxolones (VBX) bioconjugates. The methodology was successfully applied to peptides and proteins and tolerated all other nucleophilic residues, with the exception of cysteine. The generated VBX were further functionalized by palladium-catalyzed cross-coupling and azide-alkyne cycloaddition reactions. The method could be successfully used to modify bioactive natural products and native streptavidin to enable thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - John R J Maynard
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Laure Menin
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Natalia Gasilova
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
41
|
Ji X, Zhu N, Ma Y, Liu J, Hu Y. Protein C-Terminal Tyrosine Conjugation via Recyclable Immobilized BmTYR. ACS OMEGA 2022; 7:40532-40539. [PMID: 36385814 PMCID: PMC9647846 DOI: 10.1021/acsomega.2c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Protein modification plays an essential role in biological and pharmaceutical research. Due to the ordinary selectivity and inevitable damage to proteins of chemical synthetic methods, increased efforts were focused on biocatalysts which exhibited high regioselectivity and mild reaction conditions. However, separation of the biocatalysts and modified proteins remained a problem, especially when scaling up. Here, we developed a simple method for site-specific protein modification with a recyclable biocatalyst. The immobilizing tyrosinase (BmTYR) on magnetic beads can oxidize C-terminal tyrosine residues of the target protein to o-quinone, followed by the spontaneous addition of different nucleophiles (e.g., aniline derivatives), resulting in a C-terminal modified protein. Compared to the homogeneous biocatalytic system reported before, this heterogeneous system leads to an easier separation. Furthermore, the solid-phase biocatalyst can be regenerated during separation, providing reusability and lower costs.
Collapse
Affiliation(s)
- Xingyu Ji
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanlin Zhu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yanjie Ma
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Youhong Hu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Benns HJ, Storch M, Falco JA, Fisher FR, Tamaki F, Alves E, Wincott CJ, Milne R, Wiedemar N, Craven G, Baragaña B, Wyllie S, Baum J, Baldwin GS, Weerapana E, Tate EW, Child MA. CRISPR-based oligo recombineering prioritizes apicomplexan cysteines for drug discovery. Nat Microbiol 2022; 7:1891-1905. [PMID: 36266336 PMCID: PMC9613468 DOI: 10.1038/s41564-022-01249-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Nucleophilic amino acids are important in covalent drug development yet underutilized as anti-microbial targets. Chemoproteomic technologies have been developed to mine chemically accessible residues via their intrinsic reactivity towards electrophilic probes but cannot discern which chemically reactive sites contribute to protein function and should therefore be prioritized for drug discovery. To address this, we have developed a CRISPR-based oligo recombineering (CORe) platform to support the rapid identification, functional prioritization and rational targeting of chemically reactive sites in haploid systems. Our approach couples protein sequence and function with biological fitness of live cells. Here we profile the electrophile sensitivity of proteinogenic cysteines in the eukaryotic pathogen Toxoplasma gondii and prioritize functional sites using CORe. Electrophile-sensitive cysteines decorating the ribosome were found to be critical for parasite growth, with target-based screening identifying a parasite-selective anti-malarial lead molecule and validating the apicomplexan translation machinery as a target for ongoing covalent ligand development.
Collapse
Affiliation(s)
- H J Benns
- Department of Life Sciences, Imperial College London, London, UK
- Department of Chemistry, Imperial College London, London, UK
| | - M Storch
- London Biofoundry, Imperial College Translation & Innovation Hub, London, UK
| | - J A Falco
- Department of Chemistry, Boston College, Boston, MA, USA
| | - F R Fisher
- Department of Life Sciences, Imperial College London, London, UK
| | - F Tamaki
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - E Alves
- Department of Life Sciences, Imperial College London, London, UK
| | - C J Wincott
- Department of Life Sciences, Imperial College London, London, UK
| | - R Milne
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - N Wiedemar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - G Craven
- Department of Chemistry, Imperial College London, London, UK
| | - B Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - S Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - J Baum
- Department of Life Sciences, Imperial College London, London, UK
- School of Biomedical Sciences, UNSW, Sydney, NSW, Australia
| | - G S Baldwin
- Department of Life Sciences, Imperial College London, London, UK
| | - E Weerapana
- Department of Chemistry, Boston College, Boston, MA, USA
| | - E W Tate
- Department of Chemistry, Imperial College London, London, UK.
| | - M A Child
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
43
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
44
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
45
|
Chen TH, Garnir K, Chen CY, Jian CB, Gao HD, Cheng B, Tseng MC, Moucheron C, Kirsch-De Mesmaeker A, Lee HM. A Toolkit for Engineering Proteins in Living Cells: Peptide with a Tryptophan-Selective Ru-TAP Complex to Regioselectively Photolabel Specific Proteins. J Am Chem Soc 2022; 144:18117-18125. [PMID: 36135325 DOI: 10.1021/jacs.2c08342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chemical approach to crosslink functionally versatile bioeffectors (such as peptides) to native proteins of interest (POI) directly inside a living cell is a useful toolbox for chemical biologists. However, this goal has not been reached due to unsatisfactory chemoselectivity, regioselectivity, and protein selectivity in protein labeling within living cells. Herein, we report the proof of concept of a cytocompatible and highly selective photolabeling strategy using a tryptophan-specific Ru-TAP complex as a photocrosslinker. Aside from the high selectivity, the photolabeling is blue light-driven by a photoinduced electron transfer (PeT) and allows the bioeffector to bear an additional UV-responsive unit. The two different photosensitivities are demonstrated by blue light-photocrosslinking a UV-sensitive peptide to POI. Our visible light photolabeling can generate photocaged proteins for subsequent activity manipulation by UV light. Cytoskeletal dynamics regulation is demonstrated in living cells via the unprecedented POI photomanipulation and proves that our methodology opens a new avenue to endogenous protein modification.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kevin Garnir
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Bang Jian
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hua-De Gao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
46
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
47
|
Kobayashi D, Kuraoka E, Hayashi J, Yasuda T, Kohmura Y, Denda M, Harada N, Inagaki N, Otaka A. S-Protected Cysteine Sulfoxide-Enabled Tryptophan-Selective Modification with Application to Peptide Lipidation. ACS Med Chem Lett 2022; 13:1125-1130. [DOI: 10.1021/acsmedchemlett.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Eisuke Kuraoka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Junya Hayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Takuma Yasuda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Kohmura
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
48
|
Decoene KW, Unal K, Staes A, Zwaenepoel O, Gettemans J, Gevaert K, Winne JM, Madder A. Triazolinedione protein modification: from an overlooked off-target effect to a tryptophan-based bioconjugation strategy. Chem Sci 2022; 13:5390-5397. [PMID: 35655564 PMCID: PMC9093138 DOI: 10.1039/d1sc06942j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/14/2022] [Indexed: 12/30/2022] Open
Abstract
Labelling of tyrosine residues in peptides and proteins has been reported to selectively occur via a 'tyrosine-click' reaction with triazolinedione reagents (TAD). However, we here demonstrate that TAD reagents are actually not selective for tyrosine and that tryptophan residues are in fact also labelled with these reagents. This off-target labelling remained under the radar as it is challenging to detect these physiologically stable but thermally labile modifications with the commonly used HCD and CID MS/MS techniques. We show that selectivity of tryptophan over tyrosine can be achieved by lowering the pH of the aqueous buffer to effect selective Trp-labelling. Given the low relative abundance of tryptophan compared to tyrosine in natural proteins, this results in a new site-selective bioconjugation method that does not rely on enzymes nor unnatural amino acids and is demonstrated for peptides and recombinant proteins.
Collapse
Affiliation(s)
- Klaas W Decoene
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium .,Department of Biomolecular Medicine, Ghent University Ghent Belgium.,VIB Center for Medical Biotechnology Technologiepark-Zwijnaarde 75 9052 Ghent Belgium
| | - Kamil Unal
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University Ghent Belgium.,VIB Center for Medical Biotechnology Technologiepark-Zwijnaarde 75 9052 Ghent Belgium.,VIB Core Facility, VIB Center for Medical Biotechnology Technologiepark-Zwijnaarde 75 9052 Ghent Belgium
| | | | - Jan Gettemans
- Department of Biomolecular Medicine, Ghent University Ghent Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University Ghent Belgium.,VIB Center for Medical Biotechnology Technologiepark-Zwijnaarde 75 9052 Ghent Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
49
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
50
|
Hoopes CR, Garcia FJ, Sarkar AM, Kuehl NJ, Barkan DT, Collins NL, Meister GE, Bramhall TR, Hsu CH, Jones MD, Schirle M, Taylor MT. Donor-Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light. J Am Chem Soc 2022; 144:6227-6236. [PMID: 35364811 PMCID: PMC10124759 DOI: 10.1021/jacs.1c10536] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tryptophan (Trp) plays a variety of critical functional roles in protein biochemistry; however, owing to its low natural frequency and poor nucleophilicity, the design of effective methods for both single protein bioconjugation at Trp as well as for in situ chemoproteomic profiling remains a challenge. Here, we report a method for covalent Trp modification that is suitable for both scenarios by invoking photo-induced electron transfer (PET) as a means of driving efficient reactivity. We have engineered biaryl N-carbamoyl pyridinium salts that possess a donor-acceptor relationship that enables optical triggering with visible light whilst simultaneously attenuating the probe's photo-oxidation potential in order to prevent photodegradation. This probe was assayed against a small bank of eight peptides and proteins, where it was found that micromolar concentrations of the probe and short irradiation times (10-60 min) with violet light enabled efficient reactivity toward surface exposed Trp residues. The carbamate transferring group can be used to transfer useful functional groups to proteins including affinity tags and click handles. DFT calculations and other mechanistic analyses reveal correlations between excited state lifetimes, relative fluorescence quantum yields, and chemical reactivity. Biotinylated and azide-functionalized pyridinium salts were used for Trp profiling in HEK293T lysates and in situ in HEK293T cells using 440 nm LED irradiation. Peptide-level enrichment from live cell labeling experiments identified 290 Trp modifications, with 82% selectivity for Trp modification over other π-amino acids, demonstrating the ability of this method to identify and quantify reactive Trp residues from live cells.
Collapse
Affiliation(s)
- Caleb R Hoopes
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Francisco J Garcia
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Akash M Sarkar
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Nicholas J Kuehl
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T Barkan
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nicole L Collins
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Glenna E Meister
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Taylor R Bramhall
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Chien-Hsiang Hsu
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Michael D Jones
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Michael T Taylor
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|