1
|
Irvankoski S, Davenport MT, Ess DH, Siitonen JH. Method and Mechanistic Insights to 1,2-Aminochlorinate Alkenes using Blue-Light Activated Dichlorocarbamates. Chemistry 2025; 31:e202403215. [PMID: 40034072 DOI: 10.1002/chem.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/05/2025]
Abstract
Blue light activation of N,N-dichlorocarbamates facilitates a direct 1,2-aminochlorination of unactivated olefins to yield 1,2-chloro-N-Cl compounds under ambient conditions. Mechanistic studies suggest that N,N-dichlorocarbamates undergo a photochemical excitation to yield a neutral nitrogen-centered radical, which rapidly reacts with olefins in an anti-Markovnikov fashion. Using this method, a range of functionally diverse substrates are successfully aminochlorinated to yield the corresponding 1,2-chloro-N-Cl compounds.
Collapse
Affiliation(s)
- Sini Irvankoski
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, USA
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, USA
| | - Juha H Siitonen
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| |
Collapse
|
2
|
Nagesh VV, Pawar AB. Harnessing Dual Reactivity of N-Chloroamides for Cascade C-H Amidation/Chlorination of Indoles under Cobalt-Catalysis: Overriding Hofmann Rearrangement Pathway Leading to Aminocarbonylation. Org Lett 2024; 26:10523-10528. [PMID: 39601445 DOI: 10.1021/acs.orglett.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, we have developed a Cp*Co(III)-catalyzed cascade C-2 amidation/C-3 chlorination of indoles by leveraging the dual functionality of N-chloroamides at ambient temperature. This protocol avoids the aminocarbonylation pathway that may result from the C-H functionalization of isocyanates formed via a potential Hofmann rearrangement of N-chloroamides. In fact, this represents the first example of directed C-H amidation using N-chloroamides as amidating agent. The control experiment indicated that the C-2 C-H amidation occurs prior to C-3 chlorination. Additionally, chloro functionality has been effectively utilized for the construction of C-S and C-N bonds, thereby expanding the molecular diversity of the synthesized compounds.
Collapse
Affiliation(s)
- Vinod V Nagesh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
3
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
4
|
Sharma M, Perkins AM, Awoyemi RF, Schmittou AN, Raju S, Pierce BS, Donnadieu B, Wipf DO, Stokes SL, Emerson JP. Three water-soluble copper(II) N-heterocyclic carbene complexes: toward copper-catalyzed ketone reduction under sustainable conditions. Dalton Trans 2024. [PMID: 38247368 DOI: 10.1039/d3dt03406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A series of tridentate copper(II) N-heterocyclic carbene (NHC) complexes with imidazole, benzimidazole, and 5,6-dimethylbenzimidazole azole rings were synthesized and comprehensively characterized via X-ray crystallography, ESI-MS, cyclic voltammetry, and UV-Vis and EPR spectroscopic studies. These complexes were then utilized for the optimization of ketone reduction under sustainable conditions using 2-acetylpyridine and phenylsilane. The relationships between product formation, temperature, reaction time, and catalyst loading for the hydrogenation reactions are covered in detail. Reduction of eighteen different aliphatic, cyclic, and aromatic ketones were demonstrated, which were compatible to produce the corresponding products in moderate to good yields. These systems were used to develop related DNA-hybrid catalytic systems, but only supported weak enantioselectivity. Further thermodynamic experiments showed Cu-NHC complexes did not demonstrate specific binding to DNA, which is consistent with their limited selectivity.
Collapse
Affiliation(s)
- Mitu Sharma
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Amanda M Perkins
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Allison N Schmittou
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - David O Wipf
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Sean L Stokes
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
5
|
Beig N, Goyal V, Bansal RK. Application of N-heterocyclic carbene-Cu(I) complexes as catalysts in organic synthesis: a review. Beilstein J Org Chem 2023; 19:1408-1442. [PMID: 37767335 PMCID: PMC10520485 DOI: 10.3762/bjoc.19.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
N-Heterocyclic carbenes (NHCs) are a special type of carbenes in which the carbene carbon atom is part of the nitrogen heterocyclic ring. Due to the simplicity of their synthesis and the modularity of their stereoelectronic properties, NHCs have unquestionably emerged as one of the most fascinating and well-known species in chemical science. The remarkable stability of NHCs can be attributed to both kinetic as well as thermodynamic effects caused by its structural features. NHCs constitute a well-established class of new ligands in organometallic chemistry. Although initially NHCs were regarded as pure σ-donor ligands, later experimental and theoretical studies established the presence of a significant back donation from the d-orbital of the metal to the π* orbital of the NHC. Over the last two decades, NHC-metal complexes have been extensively used as efficient catalysts in different types of organic reactions. Of these, NHC-Cu(I) complexes found prominence for various reasons, such as ease of preparation, possibility of structural diversity, low cost, and versatile applications. This article overviews applications of NHC-Cu(I) complexes as catalysts in organic synthesis over the last 12 years, which include hydrosilylation reactions, conjugate addition, [3 + 2] cycloaddition, A3 reaction, boration and hydroboration, N-H and C(sp2)-H carboxylation, C(sp2)-H alkenylation and allylation, C(sp2)-H arylation, C(sp2)-H amidation, and C(sp2)-H thiolation. Preceding the section of applications, a brief description of the structure of NHCs, nature of NHC-metal bond, and methods of preparation of NHC-Cu complexes is provided.
Collapse
Affiliation(s)
- Nosheen Beig
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| | - Varsha Goyal
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| | - Raj Kumar Bansal
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| |
Collapse
|
6
|
Matheau-Raven D, Dixon DJ. A One-Pot Synthesis-Functionalization Strategy for Streamlined Access to 2,5-Disubstituted 1,3,4-Oxadiazoles from Carboxylic Acids. J Org Chem 2022; 87:12498-12505. [PMID: 36054913 PMCID: PMC9486941 DOI: 10.1021/acs.joc.2c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A one-pot 1,3,4-oxadiazole synthesis-arylation strategy
for accessing
2,5-disubstituted 1,3,4-oxadiazoles, from carboxylic acids, N-isocyaniminotriphenylphosphorane (NIITP), and aryl iodides,
is reported. The reaction sequence, featuring a second stage copper-catalyzed
1,3,4-oxadiazole arylation, was found to tolerate (hetero)aryl, alkyl,
and alkenyl carboxylic acids, and (hetero)aryl iodide coupling partners.
The effectiveness of the two-stage strategy was exemplified by the
late-stage functionalization of five carboxylic acid-containing APIs,
and an extension to the synthesis of aminated 1,3,4-oxadiazoles using N-benzoyloxy amine coupling partners was also demonstrated.
Collapse
Affiliation(s)
- Daniel Matheau-Raven
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
7
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202202971. [PMID: 35403797 DOI: 10.1002/anie.202202971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.
Collapse
Affiliation(s)
- Wongyu Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α‐C−H Amination of Cyclic Amine Scaffolds Enabled by Polar‐Radical Relay. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wongyu Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sangwon Seo
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
9
|
Ham WS, Choi H, Zhang J, Kim D, Chang S. C2-Selective, Functional-Group-Divergent Amination of Pyrimidines by Enthalpy-Controlled Nucleophilic Functionalization. J Am Chem Soc 2022; 144:2885-2892. [PMID: 35138104 DOI: 10.1021/jacs.1c13373] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis of heteroaryl amines has been an important topic in organic chemistry because of their importance in small-molecule discovery. In particular, 2-aminopyrimidines represent a highly privileged structural motif that is prevalent in bioactive molecules, but a general strategy to introduce the pyrimidine C2-N bonds via direct functionalization is elusive. Here we describe a synthetic platform for site-selective C-H functionalization that affords pyrimidinyl iminium salt intermediates, which then can be transformed into various amine products in situ. Mechanism-based reagent design allowed for the C2-selective amination of pyrimidines, opening the new scope of site-selective heteroaryl C-H functionalization. Our method is compatible with a broad range of pyrimidines with sensitive functional groups and can access complex aminopyrimidines with high selectivity.
Collapse
Affiliation(s)
- Won Seok Ham
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoonchul Choi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jianbo Zhang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
10
|
Huang G, Fang Y, Ni S, Li M, Dang L. Theoretical Study on NHC−Ag(I)/Au(I) Catalyzed Mobius Versus Wagner‐Meerwein Rearrangements of 2‐Methyl‐N‐methoxyaniline. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanglong Huang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Yu‐Qi Fang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Shao‐Fei Ni
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Ming‐De Li
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| |
Collapse
|
11
|
Xiong T, Zhang Q, Zhang Q. Transition-Metal-Catalyzed Alkylation of Polyfluoroarenes through C–F Bond Cleavage. Synlett 2021. [DOI: 10.1055/a-1479-8264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe polyfluoroarenes are a subgroup of organofluorines that are widely utilized in both medicinal chemistry and materials science. We briefly summarize recent advances in the synthesis of these important compounds, with particular attention to our recent CuH-catalyzed defluorinative alkylation of polyfluoroarenes with alkenes in a highly site-selective C–F bond-cleavage fashion.1 Introduction2 Transition-Metal-Catalyzed Alkylation through Selective C–F Bond Cleavage3 CuH-Catalyzed Defluorinative Alkylation of Polyfluoroarenes with Alkenes4 Summary and Outlook
Collapse
Affiliation(s)
- Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University
| |
Collapse
|
12
|
Rufino-Felipe E, Nayely Osorio-Yáñez R, Vera M, Valdés H, González-Sebastián L, Reyes-Sanchez A, Morales-Morales D. Transition-metal complexes bearing chelating NHC Ligands. Catalytic activity in cross coupling reactions via C H activation. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Jeon HJ, Lee W, Seo S, Chang S. N-Chloro- N-sodio-carbamates as a Practical Amidating Reagent for Scalable and Sustainable Amidation of Aldehydes under Visible Light. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyun Ji Jeon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Wongyu Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
14
|
Liu HC, Li Y, Gong XP, Niu ZJ, Wang YZ, Li M, Shi WY, Zhang Z, Liang YM. Cu-Catalyzed Direct C-H Alkylation of Polyfluoroarenes via Remote C(sp 3)-H Functionalization in Carboxamides. Org Lett 2021; 23:2693-2698. [PMID: 33739843 DOI: 10.1021/acs.orglett.1c00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel dehydrogenative coupling reaction of N-fluorocarboxamides with polyfluoroarenes forming C(sp2)-C(sp3) bonds enabled by copper catalysis has been accomplished. N-Fluorocarboxamides are postulated to undergo copper-mediated dehydrogenative cross-coupling reaction with electron-deficient polyfluoroarenes via a radical pathway. Benzylic C-H bonds and aliphatic C-H bonds in N-fluorocarboxamides could proceed smoothly and demonstrated excellent regioselectivity. The detailed mechanism presented is supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
15
|
Falk E, Gasser VCM, Morandi B. Synthesis of N-Alkyl Anilines from Arenes via Iron-Promoted Aromatic C-H Amination. Org Lett 2021; 23:1422-1426. [PMID: 33544600 DOI: 10.1021/acs.orglett.1c00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report both an intermolecular C-H amination of arenes to access N-methylanilines and an intramolecular variant for the synthesis of tetrahydroquinolines. A newly developed, highly electrophilic aminating reagent was key for the direct synthesis of unprotected N-methylanilines from simple arenes. The reactions display a broad functional group tolerance and employ catalytic amounts of a benign iron salt under mild reaction conditions.
Collapse
Affiliation(s)
- Eric Falk
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
|
17
|
Singh H, Sen C, Suresh E, Panda AB, Ghosh SC. C-H Amidation and Amination of Arenes and Heteroarenes with Amide and Amine using Cu-MnO as a Reusable Catalyst under Mild Conditions. J Org Chem 2021; 86:3261-3275. [PMID: 33522804 DOI: 10.1021/acs.joc.0c02603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An atom-economical and efficient route for the direct amidation and amination of aryl C-H bonds using our synthesized recyclable heterogeneous Cu-MnO catalyst is reported here. The direct C-H amidation was carried out using a simple amide without any preactivated coupling partner, and simple air was used as the sole oxidant. The reaction proceeds very smoothly with a broad range of substrates containing numerous functional groups in very good to excellent yields. Direct C-H aminations with a secondary amine were carried out under base-, ligand-, and external oxidant-free conditions in very good to excellent yields in very mild conditions. Both the amidation and amination can be scaled up on a gram scale with similar yields. The major advantage is that our catalyst is recyclable and reused several times without any significant loss of reactivity.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chiranjit Sen
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asit B Panda
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Subhash C Ghosh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
18
|
Liu C. Theoretical research on the direct carboxylation of benzene with CO
2
catalyzed by different carbene‐CuOH compounds. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cong Liu
- Research and Development Center ShanDong GuoBang Pharmaceutical Co., Ltd. Weifang Shandong China
| |
Collapse
|
19
|
Lee W, Jeon HJ, Jung H, Kim D, Seo S, Chang S. Controlled Relay Process to Access N-Centered Radicals for Catalyst-free Amidation of Aldehydes under Visible Light. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Al-Zoubi RM, Al-Jammal WK, Al-Zoubi MS, McDonald R, Zarour A, Yassin A, Al-Ansari A. Copper( i)-catalyzed regioselective Ullmann-type coupling of primary carbamates and 5-substituted-1,2,3-triiodobenzenes: facile synthesis of 2,3-diiodinated N-aryl carbamates. NEW J CHEM 2021; 45:8432-8439. [DOI: 10.1039/d1nj01332g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mild, efficient, and unprecedented synthesis of 2,3-diiodinated N-aryl carbamates via highly regioselective Ullmann-type cross-coupling of 5-substituted-1,2,3-triiodobenzene and carbamate.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry
- Jordan University of Science and Technology
- P.O.Box 3030
- Irbid
- Jordan
| | - Walid K. Al-Jammal
- Department of Chemistry
- Jordan University of Science and Technology
- P.O.Box 3030
- Irbid
- Jordan
| | - Mazhar S. Al-Zoubi
- Department of Basic Medical Sciences
- Faculty of Medicine
- Yarmouk University
- Irbid
- Jordan
| | - Robert McDonald
- Department of Chemistry
- Gunning-Lemieux Chemistry Centre
- University of Alberta
- Edmonton
- Canada
| | - Ahmad Zarour
- Surgical Research Section
- Department of Surgery
- Hamad Medical Corporation
- Doha
- Qatar
| | - Aksam Yassin
- Surgical Research Section
- Department of Surgery
- Hamad Medical Corporation
- Doha
- Qatar
| | - Abdulla Al-Ansari
- Surgical Research Section
- Department of Surgery
- Hamad Medical Corporation
- Doha
- Qatar
| |
Collapse
|
21
|
Xie W, Kim D, Chang S. Copper-Catalyzed Formal Dehydrogenative Coupling of Carbonyls with Polyfluoroarenes Leading to β-C-H Arylation. J Am Chem Soc 2020; 142:20588-20593. [PMID: 33237759 DOI: 10.1021/jacs.0c10904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We herein communicate a formal dehydrogenative coupling of carbonyls with polyfluoroarenes enabled by Cu catalysis. Silyl enol ethers initially prepared from carbonyls are postulated to undergo the copper-mediated oxidative dehydrogenative coupling with polyfluoroarenes via a radical pathway. Including cyclic and linear ketones, aldehydes, and esters, a broad range of β-aryl carbonyl products were efficiently obtained in high regio- and stereoselectivity with excellent functional group tolerance.
Collapse
Affiliation(s)
- Weilong Xie
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science & Technology, Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science & Technology, Daejeon 34141, Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science & Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Kuehn L, Eichhorn AF, Schmidt D, Marder TB, Radius U. NHC-stabilized copper(I) aryl complexes and their transmetalation reaction with aryl halides. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
|
24
|
Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH. Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review. Top Curr Chem (Cham) 2020; 378:39. [PMID: 32367181 DOI: 10.1007/s41061-020-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
During the last decade, organometallic, coordination, and catalytic chemistry of the three-dimensional metals such as copper (Cu) has been greatly affected by the emergence of nitrogen heterocyclic carbene (NHC) complexes. The NHCs, and in particular the mononuclear CuI-based ones, have been proven vastly useful in several applications such as in biosynthesis, catalysis, photochemistry, etc. This review tries to thoroughly describe a series of mononuclear CuI NHC complexes and their subcategories such as heteroleptics, and bidentate and tridentate heteroatom complexes, and give some detailed insights on their development, emergence, and applications. A brief outlook is also disclosed to enable other researchers to further develop a platform for future advances and studies in the field of CuI-based NHCs.
Collapse
Affiliation(s)
- Sina Matavos-Aramyan
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran.
| | - Sadaf Soukhakian
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| | - Mohammad Hossein Jazebizadeh
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| |
Collapse
|
25
|
Cervantes‐Reyes A, Rominger F, Hashmi ASK. Sterically Demanding Ag I and Cu I N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry 2020; 26:5530-5540. [PMID: 32104933 PMCID: PMC7216994 DOI: 10.1002/chem.202000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Indexed: 12/13/2022]
Abstract
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2 O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC -N angles (118-128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur ) values span easily in the 50-57 % range, and that one of (9-Dipp)CuBr complex (%Vbur =57.5) overcomes to other known erNHC-metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76-93 % product at the 0.5-2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
26
|
Asada T, Hoshimoto Y, Ogoshi S. Rotation-Triggered Transmetalation on a Heterobimetallic Cu/Al N-Phosphine-Oxide-Substituted Imidazolylidene Complex. J Am Chem Soc 2020; 142:9772-9784. [DOI: 10.1021/jacs.0c03252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takahiro Asada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Zi Y, Schömberg F, Wagner K, Vilotijevic I. C–H Functionalization of Benzothiazoles via Thiazol-2-yl-phosphonium Intermediates. Org Lett 2020; 22:3407-3411. [DOI: 10.1021/acs.orglett.0c00882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Konrad Wagner
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| |
Collapse
|
28
|
Xie W, Heo J, Kim D, Chang S. Copper-Catalyzed Direct C-H Alkylation of Polyfluoroarenes by Using Hydrocarbons as an Alkylating Source. J Am Chem Soc 2020; 142:7487-7496. [PMID: 32233362 DOI: 10.1021/jacs.0c00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Construction of carbon-carbon bonds is one of the most important tools in chemical synthesis. In the previously established cross-coupling reactions, prefunctionalized starting materials were usually employed in the form of aryl or alkyl (pseudo)halides or their metalated derivatives. However, the direct use of arenes and alkanes via a 2-fold oxidative C-H bond activation strategy to access chemoselective C(sp2)-C(sp3) cross-couplings is highly challenging due to the low reactivity of carbon-hydrogen (C-H) bonds and the difficulty in suppressing side reactions such as homocouplings. Herein, we present the new development of a copper-catalyzed cross-dehydrogenative coupling of polyfluoroarenes with alkanes under mild conditions. Relatively weak sp3 C-H bonds at the benzylic or allylic positions, and nonactivated hydrocarbons could be alkylated by the newly developed catalyst system. A moderate-to-high site selectivity was observed among various C-H bonds present in hydrocarbon reactants, including gaseous feedstocks and complex molecules. Mechanistic information was obtained by performing combined experimental and computational studies to reveal that the copper catalyst plays a dual role in activating both alkane sp3 C-H bonds and sp2 polyfluoroarene C-H bonds. It was also suggested that the noncovalent π-π interaction and weak hydrogen bonds formed in situ between the optimal ligand and arene substrates are key to facilitating the current coupling reactions.
Collapse
Affiliation(s)
- Weilong Xie
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
30
|
Cai Y, Ye X, Liu S, Shi S. Nickel/NHC‐Catalyzed Asymmetric C−H Alkylation of Fluoroarenes with Alkenes: Synthesis of Enantioenriched Fluorotetralins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiaodong Ye
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Sheng Liu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
31
|
Cai Y, Ye X, Liu S, Shi SL. Nickel/NHC-Catalyzed Asymmetric C-H Alkylation of Fluoroarenes with Alkenes: Synthesis of Enantioenriched Fluorotetralins. Angew Chem Int Ed Engl 2019; 58:13433-13437. [PMID: 31301089 DOI: 10.1002/anie.201907387] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 01/01/2023]
Abstract
Chiral polyfluoroarene derivatives are an important scaffold in chemistry. An unprecedented enantioselective C-H alkylation of polyfluoroarenes with alkenes is described. The reaction employs bulky chiral N-heterocyclic carbene (NHC) ligands for nickel catalysts to enable exclusive activation of C-H bonds over C-F bonds and complete endo-selective C-H annulation and excellent enantioselectivity. A wide variety of chiral fluorotetralins, compounds otherwise difficultly accessed but serve as important bioisosteric analogs of both tetralin and heterocycle units for drug design, are expediently synthesized from easily available substrates. To our knowledge, this is the first example of catalytic enantioselective C-H functionalization of polyfluoroarenes.
Collapse
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiaodong Ye
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Sheng Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
32
|
Hillenbrand J, Ham WS, Ritter T. C–H Pyridonation of (Hetero-)Arenes by Pyridinium Radical Cations. Org Lett 2019; 21:5363-5367. [DOI: 10.1021/acs.orglett.9b02054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
| | - Won Seok Ham
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
34
|
Pérez-Iglesias M, Lozano-Lavilla O, Casares JA. [Cu(C 6Cl 2F 3)(tht)] 4: An Extremely Efficient Catalyst for the Aryl Scrambling between Palladium Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María Pérez-Iglesias
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Olmo Lozano-Lavilla
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Juan A. Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
35
|
Rössler SL, Jelier BJ, Tripet PF, Shemet A, Jeschke G, Togni A, Carreira EM. Pyridyl Radical Cation for C-H Amination of Arenes. Angew Chem Int Ed Engl 2018; 58:526-531. [PMID: 30398683 DOI: 10.1002/anie.201810261] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 11/06/2022]
Abstract
Electron-transfer photocatalysis provides access to the elusive and unprecedented N-pyridyl radical cation from selected N-substituted pyridinium reagents. The resulting C(sp2 )-H functionalization of (hetero)arenes furnishes versatile intermediates for the development of valuable aminated aryl scaffolds. Mechanistic studies that include the first spectroscopic evidence of a spin-trapped N-pyridyl radical adduct implicate SET-triggered, pseudo-mesolytic cleavage of the N-X pyridinium reagents mediated by visible light.
Collapse
Affiliation(s)
- Simon L Rössler
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Benson J Jelier
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Pascal F Tripet
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Andrej Shemet
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Antonio Togni
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093, Zürich, Switzerland
| |
Collapse
|
36
|
Rössler SL, Jelier BJ, Tripet PF, Shemet A, Jeschke G, Togni A, Carreira EM. Pyridyl Radical Cation for C−H Amination of Arenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simon L. Rössler
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Benson J. Jelier
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Pascal F. Tripet
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Andrej Shemet
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Antonio Togni
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 8093 Zürich Switzerland
| |
Collapse
|
37
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1517] [Impact Index Per Article: 216.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
38
|
Ouyang B, Zheng Y, Liu Y, Liu F, Yao J, Peng Y. Copper-catalyzed cross-coupling of chloramine salts and arylboronic acids in water: A green and practical route to N-arylsulfonamides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Yu M, Zhang T, Jalani HB, Dong X, Lu H, Li G. Iridium-Catalyzed Aryl C–H Sulfonamidation and Amide Formation Using a Bifunctional Nitrogen Source. Org Lett 2018; 20:4828-4832. [DOI: 10.1021/acs.orglett.8b01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Yu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhang
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hitesh B. Jalani
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Xunqing Dong
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongjian Lu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
40
|
Qiu Y, Struwe J, Meyer TH, Oliveira JCA, Ackermann L. Catalyst- and Reagent-Free Electrochemical Azole C-H Amination. Chemistry 2018; 24:12784-12789. [PMID: 29901828 DOI: 10.1002/chem.201802832] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 01/09/2023]
Abstract
Catalyst- and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3 )-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
41
|
Xie W, Park SW, Jung H, Kim D, Baik MH, Chang S. Conjugate Addition of Perfluoroarenes to α,β-Unsaturated Carbonyls Enabled by an Alkoxide-Hydrosilane System: Implication of a Radical Pathway. J Am Chem Soc 2018; 140:9659-9668. [PMID: 29990423 DOI: 10.1021/jacs.8b05744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conjugate addition of organometallic reagents to α,β-unsaturated carbonyls is a key strategy for the construction of carbon-carbon bond in organic synthesis. Although direct C-H addition to unsaturated bonds via transition metal catalysis is explored in recent years, electron-deficient arenes that do not bear directing groups continue to be challenging. Herein we disclose the first example of a conjugate addition of perfluoroarenes to α,β-unsaturated carbonyls enabled by an alkoxide-hydrosilane system. The reaction is convenient to carry out at room temperature over a broad range of substrates and reactants to furnish synthetically versatile products in high to excellent yields. Mechanistic experiments in combination with computational studies suggest that a radical pathway is most likely operative in this transformation. The hypervalent silicate and silanide species, which are relevant to the proposed mechanism, were observed experimentally by NMR and single crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Weilong Xie
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Sung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Korea Advanced Institute of Science & Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
42
|
Wang W, Cui L, Sun P, Shi L, Yue C, Li F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem Rev 2018; 118:9843-9929. [DOI: 10.1021/acs.chemrev.8b00057] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lifeng Cui
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
43
|
Srinivas K, Prabusankar G. Role of C, S, Se and P donor ligands in copper(i) mediated C–N and C–Si bond formation reactions. RSC Adv 2018; 8:32269-32282. [PMID: 35547503 PMCID: PMC9086264 DOI: 10.1039/c8ra06057f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions are described. The syntheses and characterization of eight mononuclear copper(i) chalcogenone complexes, two polynuclear copper(i) chalcogenone complexes and one tetranuclear copper(i) phosphine complex are reported. All these new complexes were characterized by CHN analysis, FT-IR, UV-vis, multinuclear NMR and single crystal X-ray diffraction techniques. The single crystal X-ray structures of these complexes depict the existence of a wide range of coordination environments for the copper(i) center. This is the first comparative study of metal–phosphine, metal–NHC and metal–imidazolin-2-chalcogenones in C–N and C–Si bond formation reactions. Among all the catalysts, mononuclear copper(i) thione, mononuclear copper(i) N-heterocyclic carbene and tetranuclear copper(i) phosphine are exceedingly active towards the synthesis of 1,2,3-triazoles as well as for the cross-dehydrogenative coupling of alkynes with silanes. The cross-dehydrogenative coupling of terminal alkynes with silanes represents the first report of a catalytic process mediated by metal–imidazolin-2-chalcogenones. The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions.![]()
Collapse
Affiliation(s)
- Katam Srinivas
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India-502 285
| | - Ganesan Prabusankar
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India-502 285
| |
Collapse
|
44
|
Das R, Banerjee M, Rai RK, Karri R, Roy G. Metal-free C(sp2)–H functionalization of azoles: K2CO3/I2-mediated oxidation, imination, and amination. Org Biomol Chem 2018; 16:4243-4260. [DOI: 10.1039/c8ob00535d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report metal-free one-pot C2−H oxidation, imination, and amination of several azoles from azolium salts by using a commercially available simple and efficient reagent combination K2CO3/I2.
Collapse
Affiliation(s)
- Ranajit Das
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Mainak Banerjee
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Rakesh Kumar Rai
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Ramesh Karri
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Gouriprasanna Roy
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| |
Collapse
|
45
|
Zhang L, Meng XH, Liu P, Chen J, Zhao YL. t
BuLi-Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo Compounds as N-Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Pei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Jie Chen
- Research Institute of Exploration and Development; PetroChina Daqing Oilfield Company Limited; 163712 Daqing China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| |
Collapse
|
46
|
Yu X, Chen K, Guo S, Shi P, Song C, Zhu J. Direct Access to Cobaltacycles via C–H Activation: N-Chloroamide-Enabled Room-Temperature Synthesis of Heterocycles. Org Lett 2017; 19:5348-5351. [DOI: 10.1021/acs.orglett.7b02632] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiaolong Yu
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| | - Kehao Chen
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shan Guo
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| | - Pengfei Shi
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chao Song
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jin Zhu
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructures, Collaborative Innovation Center of Chemistry for
Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
47
|
Wang CS, Wu XF, Dixneuf PH, Soulé JF. Copper-Catalyzed Oxidative Dehydrogenative C(sp 3 )-H Bond Amination of (Cyclo)Alkanes using NH-Heterocycles as Amine Sources. CHEMSUSCHEM 2017; 10:3075-3082. [PMID: 28612980 DOI: 10.1002/cssc.201700783] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 06/07/2023]
Abstract
A copper-catalyzed oxidative C(sp3 )-H/N-H coupling of NH-heterocycles with affordable (cyclo)alkanes has been developed. This procedure involves C(sp3 )-N bond formation through a radical pathway generated by homolytic cleavage of di-tert-butyl peroxide and trapping of the radical(s) by copper catalysts. The reaction tolerates a series of functional groups, such as bromo, fluoro, ester, ketone, nitrile, methyl, and methoxy. free-NH-containing indoles, pyrroles, pyrazoles, indazoles, and benzotriazoles are successfully N-alkylated.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes, "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042, Rennes, France
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Pierre H Dixneuf
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes, "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042, Rennes, France
| | - Jean-François Soulé
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes, "Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
48
|
Hwang Y, Park Y, Chang S. Mechanism-Driven Approach To Develop a Mild and Versatile C−H Amidation through IrIIICatalysis. Chemistry 2017; 23:11147-11152. [DOI: 10.1002/chem.201702397] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Yeongyu Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Republic of Korea) and Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Republic of Korea) and Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Republic of Korea) and Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| |
Collapse
|
49
|
Cp*Rh(III)-Catalyzed Directed C−H Methylation and Arylation of Quinoline N
-Oxides at the C-8 Position. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700484] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Ma YN, Zhang X, Yang SD. Tandem Oxidative C−H Amination and Iodization to Synthesize Difunctional Atropoisomeric P-Stereogenic Phosphinamides. Chemistry 2017; 23:3007-3011. [DOI: 10.1002/chem.201700218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yan-Na Ma
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 73000 P.R. China
| | - Xi Zhang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 73000 P.R. China
| | - Shang-dong Yang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 73000 P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 P. R. China
| |
Collapse
|