1
|
Scrutton N, Hay S, Heyes D. Transitioning enzyme catalysis towards photocatalysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20230380. [PMID: 40336288 PMCID: PMC12059584 DOI: 10.1098/rsta.2023.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2025]
Abstract
Enzyme biocatalysis is being industrialized at a phenomenal rate. Biocatalysis offers routes to chemical transformations that avoid the use of expensive metal catalysts, high temperatures and pressures, while providing impressive enantio-, regio- and chemo-selectivities. Working individually or as cascades, in live cells or cell-free preparations, to manufacture everyday chemicals, materials, healthcare products, fuels and pharmaceuticals and in diagnostic and industrial sensing applications, enzymes are key enablers in a circular bioeconomy. An ability to exploit and tailor biocatalysts rapidly and predictably requires knowledge of structure-mechanism relationships and the physical chemistry of enzyme action. This knowledge has advanced since our millennium article on this topic (Sutcliffe and Scrutton Phil Trans R. Soc. Lond. A. 2000. 358, 367-386). Here, we discuss an emerging frontier-enzyme photobiocatalysis. Photoenzymes are rarely found in nature. This limits 'difficult-to-achieve' reactions in biology that are generally accessible to chemical photocatalysts. We discuss here the emergence of photobiocatalysis as a new frontier. We review knowledge of natural photoenzymes and identify challenges and limitations in their use as photobiocatalysts. We consider emerging reports on repurposing natural enzymes as photobiocatalysts. We also discuss prospects for de novo design of photobiocatalysts which as a general concept would transform catalysis science.This article is part of the theme issue 'Science into the next millennium: 25 years on'.
Collapse
Affiliation(s)
- Nigel Scrutton
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Sam Hay
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Derren Heyes
- Department of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Read BJ, Mitchell JBO, da Silva RG. Allosteric activation unveils protein-mass modulation of ATP phosphoribosyltransferase product release. Commun Chem 2024; 7:77. [PMID: 38582930 PMCID: PMC10998830 DOI: 10.1038/s42004-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Heavy-isotope substitution into enzymes slows down bond vibrations and may alter transition-state barrier crossing probability if this is coupled to fast protein motions. ATP phosphoribosyltransferase from Acinetobacter baumannii is a multi-protein complex where the regulatory protein HisZ allosterically enhances catalysis by the catalytic protein HisGS. This is accompanied by a shift in rate-limiting step from chemistry to product release. Here we report that isotope-labelling of HisGS has no effect on the nonactivated reaction, which involves negative activation heat capacity, while HisZ-activated HisGS catalytic rate decreases in a strictly mass-dependent fashion across five different HisGS masses, at low temperatures. Surprisingly, the effect is not linked to the chemical step, but to fast motions governing product release in the activated enzyme. Disruption of a specific enzyme-product interaction abolishes the isotope effects. Results highlight how altered protein mass perturbs allosterically modulated thermal motions relevant to the catalytic cycle beyond the chemical step.
Collapse
Affiliation(s)
- Benjamin J Read
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - John B O Mitchell
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Rafael G da Silva
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.
| |
Collapse
|
3
|
Brown M, Schramm VL. Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis. Biochemistry 2023; 62:2928-2933. [PMID: 37788145 PMCID: PMC10636763 DOI: 10.1021/acs.biochem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori (HpMTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with 2H, 13C, and 15N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics. Here, a slow-onset, tight-binding transition-state analogue of HpMTAN is characterized with heavy and light enzymes. Dissociation constants for the initial encounter complex (Ki) and for the tightly bound complex after slow-onset inhibition (Ki*) with hexylthio-DADMe-Immucillin-A (HTDIA) gave Ki values for light and heavy HpMTAN = 52 ± 10 and 85 ± 13 pM and Ki* values = 5.9 ± 0.3 and 10.0 ± 1.2 pM, respectively. HTDIA dissociates from heavy HpMTAN at 0.063 ± 0.002 min-1, faster than that from light HpMTAN at 0.032 ± 0.004 min-1. These values are consistent with transition-state formation by an improved catalytic site dynamic search and inconsistent with catalytic efficiency proportional to tight binding of the transition state.
Collapse
Affiliation(s)
- Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
4
|
Speirs M, Hardman SJO, Iorgu AI, Johannissen LO, Heyes DJ, Scrutton NS, Sazanovich IV, Hay S. Photoinduced Electron Transfer from a 1,4,5,6-Tetrahydro Nicotinamide Adenine Dinucleotide (Phosphate) Analogue to Oxidized Flavin in an Ene-Reductase Flavoenzyme. J Phys Chem Lett 2023; 14:3236-3242. [PMID: 36972502 PMCID: PMC10084465 DOI: 10.1021/acs.jpclett.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Recent reports have described the use of ene-reductase flavoenzymes to catalyze non-natural photochemical reactions. These studies have focused on using reduced flavoenzyme, yet oxidized flavins have superior light harvesting properties. In a binary complex of the oxidized ene-reductase pentaerythritol tetranitrate reductase with the nonreactive nicotinamide coenzyme analogs 1,4,5,6-tetrahydro NAD(P)H, visible photoexcitation of the flavin mononucleotide (FMN) leads to one-electron transfer from the NAD(P)H4 to FMN, generating a NAD(P)H4 cation radical and anionic FMN semiquinone. This electron transfer occurs in ∼1 ps and appears to kinetically outcompete reductive quenching from aromatic residues in the active site. Time-resolved infrared measurements show that relaxation processes appear to be largely localized on the FMN and the charge-separated state is short-lived, with relaxation, presumably via back electron transfer, occurring over ∼3-30 ps. While this demonstrates the potential for non-natural photoactivity, useful photocatalysis will likely require longer-lived excited states, which may be accessible by enzyme engineering and/or a judicious choice of substrate.
Collapse
Affiliation(s)
- Magnus Speirs
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Samantha J. O. Hardman
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andreea I. Iorgu
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology Facilities
Council, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology and Department of Chemistry, Faculty of
Science and Engineering, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Brown M, Zoi I, Antoniou D, Namanja-Magliano HA, Schwartz SD, Schramm VL. Inverse heavy enzyme isotope effects in methylthioadenosine nucleosidases. Proc Natl Acad Sci U S A 2021; 118:e2109118118. [PMID: 34580228 PMCID: PMC8501826 DOI: 10.1073/pnas.2109118118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Heavy enzyme isotope effects occur in proteins substituted with 2H-, 13C-, and 15N-enriched amino acids. Mass alterations perturb femtosecond protein motions and have been used to study the linkage between fast motions and transition-state barrier crossing. Heavy enzymes typically show slower rates for their chemical steps. Heavy bacterial methylthioadenosine nucleosidases (MTANs from Helicobactor pylori and Escherichia coli) gave normal isotope effects in steady-state kinetics, with slower rates for the heavy enzymes. However, both enzymes revealed rare inverse isotope effects on their chemical steps, with faster chemical steps in the heavy enzymes. Computational transition-path sampling studies of H. pylori and E. coli MTANs indicated closer enzyme-reactant interactions in the heavy MTANs at times near the transition state, resulting in an improved reaction coordinate geometry. Specific catalytic interactions more favorable for heavy MTANs include improved contacts to the catalytic water nucleophile and to the adenine leaving group. Heavy bacterial MTANs depart from other heavy enzymes as slowed vibrational modes from the heavy isotope substitution caused improved barrier-crossing efficiency. Improved sampling frequency and reactant coordinate distances are highlighted as key factors in MTAN transition-state stabilization.
Collapse
Affiliation(s)
- Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ioanna Zoi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Dimitri Antoniou
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | | | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
6
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
7
|
Arcus VL, van der Kamp MW, Pudney CR, Mulholland AJ. Enzyme evolution and the temperature dependence of enzyme catalysis. Curr Opin Struct Biol 2020; 65:96-101. [DOI: 10.1016/j.sbi.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022]
|
8
|
Burgess L, Wilson H, Jones AR, Harvey P, Natrajan LS, Hay S. Covalent Attachment of Active Enzymes to Upconversion Phosphors Allows Ratiometric Detection of Substrates. Chemistry 2020; 26:14817-14822. [PMID: 32476171 PMCID: PMC7756657 DOI: 10.1002/chem.202001974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/14/2023]
Abstract
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Here, UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate proteins with surface-accessible cysteines. Variants of green fluorescent protein (GFP) and the flavoenzyme pentaerythritol tetranitrate reductase (PETNR) were then attached via maleimide-thiol coupling in order to allow energy transfer from the UCP to the GFP or flavin cofactor of PETNR, respectively. PETNR retains its activity when coupled to the UCPs, which allows reversible detection of enzyme substrates via ratiometric sensing of the enzyme redox state.
Collapse
Affiliation(s)
- Letitia Burgess
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Hannah Wilson
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Alex R. Jones
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Biometrology, Chemical and Biological Sciences, National Physical LaboratoryHampton RoadTeddington, MiddlesexTW11 0LWUnited Kingdom
| | - Peter Harvey
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- School of MedicineThe University of NottinghamUniversity ParkNottinghamNG7 2RDUnited Kingdom
| | - Louise S. Natrajan
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam Hay
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
9
|
Abstract
We have analyzed the reaction catalyzed by formate dehydrogenase using transition path sampling. This system has recently received experimental attention using infrared spectroscopy and heavy-enzyme studies. Some of the experimental results point to the possible importance of protein motions that are coupled to the chemical step. We found that the residue Val123 that lies behind the nicotinamide ring occasionally comes into van der Waals contact with the acceptor and that in all reactive trajectories, the barrier-crossing event is preceded by this contact, meaning that the motion of Val123 is part of the reaction coordinate. Experimental results have been interpreted with a two-dimensional formula for the chemical rate, which cannot capture effects such as the one we describe.
Collapse
Affiliation(s)
- Dimitri Antoniou
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Hardman SJO, Iorgu AI, Heyes DJ, Scrutton NS, Sazanovich IV, Hay S. Ultrafast Vibrational Energy Transfer between Protein and Cofactor in a Flavoenzyme. J Phys Chem B 2020; 124:5163-5168. [PMID: 32496802 PMCID: PMC7467709 DOI: 10.1021/acs.jpcb.0c04929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 01/19/2023]
Abstract
Protein motions and enzyme catalysis are often linked. It is hypothesized that ultrafast vibrations (femtosecond-picosecond) enhance the rate of hydride transfer catalyzed by members of the old yellow enzyme (OYE) family of ene-reductases. Here, we use time-resolved infrared (TRIR) spectroscopy in combination with stable "heavy" isotopic labeling (2H, 13C, 15N) of protein and/or cofactor to probe the vibrational energy transfer (VET) between pentaerythritol tetranitrate reductase (a member of the OYE family) and its noncovalently bound flavin mononucleotide (FMN) cofactor. We show that when the FMN cofactor is photoexcited with visible light, vibrational energy is transferred from the flavin to the surrounding protein environment on the picosecond timescale. This finding expands the scope of VET investigation in proteins, which are limited by suitable intrinsic probes, and may have implications in the understanding of the mechanism of recently discovered photoactive flavoenzymes.
Collapse
Affiliation(s)
- Samantha J. O. Hardman
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andreea I. Iorgu
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex
at Harwell, Science and Technology Facilities
Council, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Sam Hay
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
11
|
Abstract
We review the adaptations of enzyme activity to different temperatures. Psychrophilic (cold-adapted) enzymes show significantly different activation parameters (lower activation enthalpies and entropies) from their mesophilic counterparts. Furthermore, there is increasing evidence that the temperature dependence of many enzyme-catalyzed reactions is more complex than is widely believed. Many enzymes show curvature in plots of activity versus temperature that is not accounted for by denaturation or unfolding. This is explained by macromolecular rate theory: A negative activation heat capacity for the rate-limiting chemical step leads directly to predictions of temperature optima; both entropy and enthalpy are temperature dependent. Fluctuations in the transition state ensemble are reduced compared to the ground state. We show how investigations combining experiment with molecular simulation are revealing fundamental details of enzyme thermoadaptation that are relevant for understanding aspects of enzyme evolution. Simulations can calculate relevant thermodynamic properties (such as activation enthalpies, entropies, and heat capacities) and reveal the molecular mechanisms underlying experimentally observed behavior.
Collapse
Affiliation(s)
- Vickery L Arcus
- School of Science, University of Waikato, Hamilton 3240, New Zealand;
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;
| |
Collapse
|
12
|
Johannissen LO, Iorgu AI, Scrutton NS, Hay S. What are the signatures of tunnelling in enzyme-catalysed reactions? Faraday Discuss 2020; 221:367-378. [DOI: 10.1039/c9fd00044e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computed tunnelling contributions and correlations between apparent activation enthalpy and entropy are explored for the interpretation of enzyme-catalysed H-transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Andreea I. Iorgu
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Sam Hay
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| |
Collapse
|
13
|
Phillips RS, Craig S, Kovalevsky A, Gerlits O, Weiss K, Iorgu AI, Heyes DJ, Hay S. Pressure and Temperature Effects on the Formation of Aminoacrylate Intermediates of Tyrosine Phenol-lyase Demonstrate Reaction Dynamics. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert S. Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Steven Craig
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Oksana Gerlits
- Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Kevin Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Andreea I. Iorgu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| |
Collapse
|
14
|
Scott AF, Luk LY, Tuñón I, Moliner V, Allemann RK. Heavy Enzymes and the Rational Redesign of Protein Catalysts. Chembiochem 2019; 20:2807-2812. [PMID: 31016852 PMCID: PMC6900096 DOI: 10.1002/cbic.201900134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 11/21/2022]
Abstract
An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled "heavy" dihydrofolate reductases and their natural-abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of "heavy" enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.
Collapse
Affiliation(s)
- Alan F. Scott
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Louis Y.‐P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de Valencia46100BurjassotSpain
| | - Vicent Moliner
- Department of Physical and Analytical ChemistryUniversitat Jaume IAvenida de Vicent Sos Baynat, s/n12071CastellonSpain
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
15
|
Toogood HS, Scrutton NS. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis. ACS Catal 2019; 8:3532-3549. [PMID: 31157123 PMCID: PMC6542678 DOI: 10.1021/acscatal.8b00624] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S. Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
16
|
Jones HBL, Crean RM, Mullen A, Kendrick EG, Bull SD, Wells SA, Carbery DR, MacMillan F, van der Kamp MW, Pudney CR. Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry 2019; 58:2362-2372. [PMID: 30964996 DOI: 10.1021/acs.biochem.9b00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.
Collapse
Affiliation(s)
| | | | - Anna Mullen
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | | | | | | | | | - Fraser MacMillan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Marc W van der Kamp
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | | |
Collapse
|
17
|
Iorgu AI, Cliff MJ, Waltho JP, Scrutton NS, Hay S. Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods Enzymol 2019; 620:145-166. [PMID: 31072485 DOI: 10.1016/bs.mie.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incorporation of stable isotopes into proteins is beneficial or essential for a range of experiments, including NMR, neutron scattering and reflectometry, proteomic mass spectrometry, vibrational spectroscopy and "heavy" enzyme kinetic isotope effect (KIE) measurements. Here, we present detailed protocols for the stable isotopic labeling of pentaerythritol tetranitrate reductase (PETNR) via recombinant expression in E. coli. PETNR is an ene-reductase belonging to the Old Yellow Enzyme (OYE) family of flavoenzymes, and is regarded as a model system for studying hydride transfer reactions. Included is a discussion of how efficient back-exchange of amide protons in the protein core can be achieved and how the intrinsic flavin mononucleotide (FMN) cofactor can be exchanged, allowing the production of isotopologues with differentially labeled protein and cofactor. In addition to a thorough description of labeling strategies, we briefly exemplify how data analysis and interpretation of "heavy" enzyme KIEs can be performed.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
18
|
Iorgu AI, Baxter NJ, Cliff MJ, Levy C, Waltho JP, Hay S, Scrutton NS. Nonequivalence of Second Sphere "Noncatalytic" Residues in Pentaerythritol Tetranitrate Reductase in Relation to Local Dynamics Linked to H-Transfer in Reactions with NADH and NADPH Coenzymes. ACS Catal 2018; 8:11589-11599. [PMID: 31119061 PMCID: PMC6516726 DOI: 10.1021/acscatal.8b02810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/23/2018] [Indexed: 11/28/2022]
Abstract
![]()
Many enzymes that
catalyze hydride transfer reactions work via
a mechanism dominated by quantum mechanical tunneling. The involvement
of fast vibrational modes of the reactive complex is often inferred
in these reactions, as in the case of the NAD(P)H-dependent pentaerythritol
tetranitrate reductase (PETNR). Herein, we interrogated the H-transfer
mechanism in PETNR by designing conservative (L25I and I107L) and
side chain shortening (L25A and I107A) PETNR variants and using a
combination of experimental approaches (stopped-flow rapid kinetics,
X-ray crystallography, isotope/temperature dependence studies of H-transfer
and NMR spectroscopy). X-ray data show subtle changes in the local
environment of the targeted side chains but no major structural perturbation
caused by mutagenesis of these two second sphere active site residues.
However, temperature dependence studies of H-transfer revealed a coenzyme-specific
and complex thermodynamic equilibrium between different reactive configurations
in PETNR–coenzyme complexes. We find that mutagenesis of these
second sphere “noncatalytic” residues affects differently
the reactivity of PETNR with NADPH and NADH coenzymes. We attribute
this to subtle, dynamic structural changes in the PETNR active site,
the effects of which impact differently in the nonequivalent reactive
geometries of PETNR−NADH and PETNR−NADPH complexes.
This inference is confirmed through changes observed in the NMR chemical
shift data for PETNR complexes with unreactive 1,4,5,6-tetrahydro-NAD(P)
analogues. We show that H-transfer rates can (to some extent) be buffered
through entropy–enthalpy compensation, but that use of integrated
experimental tools reveals hidden complexities that implicate a role
for dynamics in this relatively simple H-transfer reaction. Similar
approaches are likely to be informative in other enzymes to understand
the relative importance of (distal) hydrophobic side chains and dynamics
in controlling the rates of enzymatic H-transfer.
Collapse
Affiliation(s)
- Andreea I. Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
19
|
Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels. Proc Natl Acad Sci U S A 2018; 115:E6209-E6216. [PMID: 29915028 DOI: 10.1073/pnas.1805416115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transition path-sampling calculations with several enzymes have indicated that local catalytic site femtosecond motions are linked to transition state barrier crossing. Experimentally, femtosecond motions can be perturbed by labeling the protein with amino acids containing 13C, 15N, and nonexchangeable 2H. A slowed chemical step at the catalytic site with variable effects on steady-state kinetics is usually observed for heavy enzymes. Heavy human purine nucleoside phosphorylase (PNP) is slowed significantly (kchemlight/kchemheavy = 1.36). An asparagine (Asn243) at the catalytic site is involved in purine leaving-group activation in the PNP catalytic mechanism. In a PNP produced with isotopically heavy asparagines, the chemical step is faster (kchemlight/kchemheavy = 0.78). When all amino acids in PNP are heavy except for the asparagines, the chemical step is also faster (kchemlight/kchemheavy = 0.71). Substrate-trapping experiments provided independent confirmation of improved catalysis in these constructs. Transition path-sampling analysis of these partially labeled PNPs indicate altered femtosecond catalytic site motions with improved Asn243 interactions to the purine leaving group. Altered transition state barrier recrossing has been proposed as an explanation for heavy-PNP isotope effects but is incompatible with these isotope effects. Rate-limiting product release governs steady-state kinetics in this enzyme, and kinetic constants were unaffected in the labeled PNPs. The study suggests that mass-constrained femtosecond motions at the catalytic site of PNP can improve transition state barrier crossing by more frequent sampling of essential catalytic site contacts.
Collapse
|
20
|
Jones HBL, Crean RM, Matthews C, Troya AB, Danson MJ, Bull SD, Arcus VL, van der Kamp MW, Pudney CR. Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Vickery L. Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
21
|
Iorgu AI, Baxter NJ, Cliff MJ, Waltho JP, Hay S, Scrutton NS. 1H, 15N and 13C backbone resonance assignments of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:79-83. [PMID: 29168057 PMCID: PMC5869876 DOI: 10.1007/s12104-017-9791-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the flavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H-15N TROSY spectrum. This is the first report of an NMR structural study of a flavoenzyme from the Old Yellow Enzyme family and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicola J Baxter
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
23
|
Ranasinghe C, Guo Q, Sapienza PJ, Lee AL, Quinn DM, Cheatum CM, Kohen A. Protein Mass Effects on Formate Dehydrogenase. J Am Chem Soc 2017; 139:17405-17413. [PMID: 29083897 PMCID: PMC5800309 DOI: 10.1021/jacs.7b08359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel M. Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| |
Collapse
|
24
|
Extracting Kinetic Isotope Effects From a Global Analysis of Reaction Progress Curves. Methods Enzymol 2017. [PMID: 28911785 DOI: 10.1016/bs.mie.2017.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Enzyme reaction progress curves, or time course datasets, are often rich in information, yet their analysis typically reduces their information content to a single parameter, the initial velocity. An alternative approach is described here, where the time course is described by a model constructed from rate equations. In combination with global nonlinear regression, intrinsic rate and/or equilibrium constants can be directly obtained by fitting these data. This method can be greatly enhanced when combined with the measurement of (usually deuterium) isotope effects, which selectively perturb individual step(s) within the reaction, allowing better separation of fitted parameters and more robust model testing. This chapter focuses on practical considerations when using analytical and/or numerically integrated rate equations to model enzyme reactions. The emphasis is on the underlying methodology, which is demonstrated with specific examples alongside recommendations of suitable software.
Collapse
|
25
|
Abstract
Heavy isotope labeling of enzymes slows protein motions without disturbing the electrostatics and can therefore be used to probe the role of dynamics in enzyme catalysis. To identify the structural elements responsible for dynamic effects, individual segments of an enzyme can be labeled and the resulting effect on the kinetics of the reaction can be measured. Such hybrid isotopomers can be constructed by expressed protein ligation, in which complementary labeled and unlabeled peptide segments are prepared by recombinant gene expression and linked by means of chemical ligation. The construction of such hybrid isotopomers is exemplified here with the paradigmatic enzyme dihydrofolate reductase (DHFR) from Escherichia coli.
Collapse
|
26
|
Abstract
Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12C, 14N, and nonexchangeable 1H by 13C, 15N, and 2H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis.
Collapse
|
27
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|