1
|
Yang Y, Wang Z, Bai J, Qiao H. Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? J Mol Evol 2025; 93:193-211. [PMID: 39992367 DOI: 10.1007/s00239-025-10237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Yin C, Yu X, Wu B, Tian L. Spontaneous Emergence of Lipid Vesicles in a Coacervate-Based Compartmentalized System. Angew Chem Int Ed Engl 2025; 64:e202414372. [PMID: 39656166 DOI: 10.1002/anie.202414372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Indexed: 12/22/2024]
Abstract
The spontaneous emergence of lipid vesicles in the absence of evolved biological machinery represents a major challenge for bottom-up synthetic biology. We show that coacervate microdroplets could create a compartmentalized environment that enriches lipid molecules and facilitates their spontaneous assembly into lipid vesicles. These vesicles can escape from the coacervate microdroplets in a continuous process under non-equilibrium conditions, resembling a constant production process akin to a "primitive enzyme" factory assembly line. These findings significantly extend our understanding of the intricate interaction between lipid molecules and coacervate microdroplets, shedding light on the emergence of cellular systems and offering a new perspective on the conditions necessary for the development of life on Earth.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohu Wu
- MLZ, JCNS, JCNS-4, Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Erguven H, Wang L, Gutierrez B, Beaven AH, Sodt AJ, Izgu EC. Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues. JACS AU 2024; 4:1841-1853. [PMID: 38818047 PMCID: PMC11134385 DOI: 10.1021/jacsau.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
Cell-like materials that sense environmental cues can serve as next-generation biosensors and help advance the understanding of intercellular communication. Currently, bottom-up engineering of protocell models from molecular building blocks remains a grand challenge chemists face. Herein, we describe giant unilamellar vesicles (GUVs) with biomimetic lipid membranes capable of sensing environmental redox cues. The GUVs employ activity-based sensing through designer phospholipids that are fluorescently activated in response to specific reductive (hydrogen sulfide) or oxidative (hydrogen peroxide) conditions. These synthetic phospholipids are derived from 1,2-dipalmitoyl-rac-glycero-3-phosphocholine and they possess a headgroup with heterocyclic aromatic motifs. Despite their structural deviation from the phosphocholine headgroup, the designer phospholipids (0.5-1.0 mol %) mixed with natural lipids can vesiculate, and the resulting GUVs (7-20 μm in diameter) remain intact over the course of redox sensing. All-atom molecular dynamics simulations gave insight into how these lipids are positioned within the hydrophobic core of the membrane bilayer and at the membrane-water interface. This work provides a purely chemical method to investigate potential redox signaling and opens up new design opportunities for soft materials that mimic protocells.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Liming Wang
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Bryan Gutierrez
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Andrew H. Beaven
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
- Postdoctoral
Research Associate Program, National Institute
of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
| | - Enver Cagri Izgu
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
- Cancer
Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
- Rutgers
Center for Lipid Research, New Jersey Institute
for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
4
|
Hazra B, Mandal R, Sahu J, Das S, Prasad M, Tarafdar PK. Self-immolation Assisted Morphology Transformation of Prebiotic Lipidated-cationic Amino Acids: Electro-droplet Mediated C-C Coupling Reaction to Synthesize Macromolecules. Chemistry 2024; 30:e202303555. [PMID: 38205907 DOI: 10.1002/chem.202303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Jayati Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
5
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Prasad M, Hazra B, Mandal R, Das S, Tarafdar PK. ATP-Assisted Protocellular Membrane Formation with Ethanolamine-Based Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37421360 DOI: 10.1021/acs.langmuir.3c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.
Collapse
Affiliation(s)
- Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
7
|
Sadihov-Hanoch H, Bandela AK, Chotera-Ouda A, Ben David O, Cohen-Luria R, Lynn DG, Ashkenasy G. Dynamic exchange controls the assembly structure of nucleic-acid-peptide chimeras. SOFT MATTER 2023; 19:3940-3945. [PMID: 37211859 DOI: 10.1039/d2sm01528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent attempts to develop the next generation of functional biomaterials focus on systems chemistry approaches exploiting dynamic networks of hybrid molecules. This task is often found challenging, but we herein present ways for profiting from the multiple interaction interfaces forming Nucleic-acid-Peptide assemblies and tuning their formation. We demonstrate that the formation of well-defined structures by double-stranded DNA-peptide conjugates (dsCon) is restricted to a specific range of environmental conditions and that precise DNA hybridization, satisfying the interaction interfaces, is a crucial factor in this process. We further reveal the impact of external stimuli, such as competing free DNA elements or salt additives, which initiate dynamic interconversions, resulting in hybrid structures exhibiting spherical and fibrillar domains or a mixture of spherical and fibrillar particles. This extensive analysis of the co-assembly systems chemistry offers new insights into prebiotic hybrid assemblies that may now facilitate the design of new functional materials. We discuss the implications of these findings for the emergence of function in synthetic materials and during early chemical evolution.
Collapse
Affiliation(s)
- Hava Sadihov-Hanoch
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Anil Kumar Bandela
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Agata Chotera-Ouda
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Oshrat Ben David
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - David G Lynn
- Departments of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Gonen Ashkenasy
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
Mandal R, Ghosh A, Rout NK, Prasad M, Hazra B, Sar S, Das S, Datta A, Tarafdar PK. Self-assembled prebiotic amphiphile-mixture exhibits tunable catalytic properties. Org Biomol Chem 2023; 21:4473-4481. [PMID: 37194351 DOI: 10.1039/d3ob00606a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.
Collapse
Affiliation(s)
- Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Anupam Ghosh
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nilesh K Rout
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Sanu Sar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Ayan Datta
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| |
Collapse
|
9
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
10
|
Todd ZR, Cohen ZR, Catling DC, Keller SL, Black RA. Growth of Prebiotically Plausible Fatty Acid Vesicles Proceeds in the Presence of Prebiotic Amino Acids, Dipeptides, Sugars, and Nucleic Acid Components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15106-15112. [PMID: 36445982 PMCID: PMC9753748 DOI: 10.1021/acs.langmuir.2c02118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Fatty acid vesicles may have played a role in the origin of life as a major structural component of protocells, with the potential for encapsulation of genetic materials. Vesicles that grew and divided more rapidly than other vesicles could have had a selective advantage. Fatty acid vesicles grow by incorporating additional fatty acids from micelles, and certain prebiotic molecules (e.g., sugars, nucleobases, and amino acids) can bind to fatty acid vesicles and stabilize them. Here, we investigated whether the presence of a variety of biomolecules affects the overall growth of vesicles composed of decanoic acid, a prebiotically plausible fatty acid, upon micelle addition. We tested 31 molecules, including 15 dipeptides, 7 amino acids, 6 nucleobases or nucleosides, and 3 sugars. We find that the initial radius and final radius of vesicles are largely unaffected by the presence of the additional compounds. However, three dipeptides enhanced the initial rates of growth compared to control vesicles with no small molecules added; another three dipeptides decreased the initial rates of growth. We conclude that vesicles can indeed grow in the presence of a wide range of molecules likely to have been involved in the origin of life. These results imply that vesicles would have been able to grow in complex and heterogeneous chemical environments. We find that the molecules that enhance the initial growth rate tend to have hydrophobic groups (e.g., leucine), which may interact with the lipid membrane to affect growth rate; furthermore, the molecules that cause the largest decrease in initial growth rate are dipeptides containing a serine residue, which contains a hydroxyl group that could potentially hydrogen-bond with the fatty acid carboxylate groups.
Collapse
Affiliation(s)
- Zoe R. Todd
- Department
of Earth and Space Sciences, University
of Washington, Seattle, Washington98195, United States
| | - Zachary R. Cohen
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - David C. Catling
- Department
of Earth and Space Sciences, University
of Washington, Seattle, Washington98195, United States
| | - Sarah L. Keller
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Roy A. Black
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
11
|
Hazra B, Mondal A, Prasad M, Gayen S, Mandal R, Sardar A, Tarafdar PK. Lipidated Lysine and Fatty Acids Assemble into Protocellular Membranes to Assist Regioselective Peptide Formation: Correlation to the Natural Selection of Lysine over Nonproteinogenic Lower Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15422-15432. [PMID: 36450098 DOI: 10.1021/acs.langmuir.2c02849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demonstrated that a mixture of lipidated lysine (cationic) and prebiotic fatty acids (decanoic acid, anionic) can form protocellular membranes (amino acid-based membranes) at low concentrations via electrostatic, hydrogen bonding, and hydrophobic interactions. The formation of vesicular membranes was characterized by dynamic light scattering (DLS), pyrene and Nile Red partitioning, cryo-transmission electron microscopy (TEM) images, and glucose encapsulation studies. The lipidated nonproteinogenic analogues of lysine (Lys), such as ornithine (Orn) and 2,4-diaminobutyric acid (Dab), also form membranes with decanoate (DA). Time-dependent turbidimetric and 1H NMR studies suggested that the Lys-based membrane is more stable than the membranes prepared from nonproteinogenic lower analogues. The Lys-based membrane embeds a model acylating agent (aminoacyl-tRNA mimic) and facilitates the colocalization of substrates to support regioselective peptide formation via the α-amine of Lys. These membranes thereby assist peptide formation and control the positioning of the reactants (model acylating agent and -NH2 of amino acids) to initiate biologically relevant reactions during early evolution.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anoy Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Soumajit Gayen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
12
|
Joshi MP, Uday A, Rajamani S. Elucidating N-acyl amino acids as a model protoamphiphilic system. Commun Chem 2022; 5:147. [PMID: 36697941 PMCID: PMC9814278 DOI: 10.1038/s42004-022-00762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Protoamphiphiles are prebiotically-plausible moieties that would have constituted protocell membranes on early Earth. Although prebiotic soup would have contained a diverse set of amphiphiles capable of generating protocell membranes, earlier studies were mainly limited to fatty acid-based systems. Herein, we characterize N-acyl amino acids (NAAs) as a model protoamphiphilic system. To the best of our knowledge, we report a new abiotic route in this study for their synthesis under wet-dry cycles from amino acids and monoglycerides via an ester-amide exchange process. We also demonstrate how N-oleoyl glycine (NOG, a representative NAA) results in vesicle formation over a broad pH range when blended with a monoglyceride or a fatty acid. Notably, NOG also acts as a substrate for peptide synthesis under wet-dry cycles, generating different lipopeptides. Overall, our study establishes NAAs as a promising protoamphiphilic system, and highlights their significance in generating robust and functional protocell membranes on primitive Earth.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| | - Ashwin Uday
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| |
Collapse
|
13
|
Kubota R, Torigoe S, Hamachi I. Temporal Stimulus Patterns Drive Differentiation of a Synthetic Dipeptide-Based Coacervate. J Am Chem Soc 2022; 144:15155-15164. [PMID: 35943765 DOI: 10.1021/jacs.2c05101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The fate of living cells often depends on their processing of temporally modulated information, such as the frequency and duration of various signals. Synthetic stimulus-responsive systems have been intensely studied for >50 years, but it is still challenging for chemists to create artificial systems that can decode dynamically oscillating stimuli and alter the systems' properties/functions because of the lack of sophisticated reaction networks that are comparable with biological signal transduction. Here, we report morphological differentiation of synthetic dipeptide-based coacervates in response to temporally distinct patterns of the light pulse. We designed a simple cationic diphenylalanine peptide derivative to enable the formation of coacervates. The coacervates concentrated an anionic methacrylate monomer and a photoinitiator, which provided a unique reaction environment and facilitated light-triggered radical polymerization─even in air. Pulsed light irradiation at 9.0 Hz (but not at 0.5 Hz) afforded anionic polymers. This dependence on the light pulse patterns is attributable to the competition of reactive radical intermediates between the methacrylate monomer and molecular oxygen. The temporal pulse pattern-dependent polymer formation enabled the coacervates to differentiate in terms of morphology and internal viscosity, with an ultrasensitive switch-like mode. Our achievements will facilitate the rational design of smart supramolecular soft materials and are insightful regarding the synthesis of sophisticated chemical cells.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Shogo Torigoe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Katsura, Nishikyo̅-ku, Kyoto 615-8530, Japan
| |
Collapse
|
14
|
Joshi MP, Steller L, Van Kranendonk MJ, Rajamani S. Influence of Metal Ions on Model Protoamphiphilic Vesicular Systems: Insights from Laboratory and Analogue Studies. Life (Basel) 2021; 11:life11121413. [PMID: 34947944 PMCID: PMC8708898 DOI: 10.3390/life11121413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023] Open
Abstract
Metal ions strongly affect the self-assembly and stability of membranes composed of prebiotically relevant amphiphiles (protoamphiphiles). Therefore, evaluating the behavior of such amphiphiles in the presence of ions is a crucial step towards assessing their potential as model protocell compartments. We have recently reported vesicle formation by N-acyl amino acids (NAAs), an interesting class of protoamphiphiles containing an amino acid linked to a fatty acid via an amide linkage. Herein, we explore the effect of ions on the self-assembly and stability of model N-oleoyl glycine (NOG)-based membranes. Microscopic analysis showed that the blended membranes of NOG and Glycerol 1-monooleate (GMO) were more stable than pure NOG vesicles, both in the presence of monovalent and divalent cations, with the overall vesicle stability being 100-fold higher in the presence of a monovalent cation. Furthermore, both pure NOG and NOG + GMO mixed systems were able to self-assemble into vesicles in natural water samples containing multiple ions that were collected from active hot spring sites. Our study reveals that several aspects of the metal ion stability of NAA-based membranes are comparable to those of fatty acid-based systems, while also confirming the robustness of compositionally heterogeneous membranes towards high metal ion concentrations. Pertinently, the vesicle formation by NAA-based systems in terrestrial hot spring samples indicates the conduciveness of these low ionic strength freshwater systems for facilitating prebiotic membrane-assembly processes. This further highlights their potential to serve as a plausible niche for the emergence of cellular life on the early Earth.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Correspondence: (M.P.J.); (S.R.); Tel.: +91-20-2590-8061 (S.R.)
| | - Luke Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (L.S.); (M.J.V.K.)
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (L.S.); (M.J.V.K.)
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Correspondence: (M.P.J.); (S.R.); Tel.: +91-20-2590-8061 (S.R.)
| |
Collapse
|
15
|
Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specialists in several branches of life sciences are trying to solve, piece by piece, the immensely complex puzzle of the origin of life. Some parts of the puzzle seem to appear with a rather high degree of clarity, while others remain totally obscure. We cannot be sure that life emerged only on our Earth, but we believe that the presence of large amounts of water in its liquid state is absolutely essential for the emergence and evolution of living matter. We can also assume that the latter exploits everywhere the same light elements, mainly C, H, O, N, S, and P, and somehow manipulates the same simple monomeric and polymeric organic compounds, such as alpha-amino acids, carbohydrates, nucleic bases, and surface-active carboxylic acids. The author contributes to the field by stating that all fundamental particles of our matter are “homochiral” and predominantly produce in an absolute asymmetric synthesis amino acids of L-configuration and carbohydrates of D-series. Another important point is that free atmospheric oxygen mainly stems from the photolysis of water molecules by cosmic irradiation and is not necessarily bound to living organisms on the planet.
Collapse
|
16
|
Špačková J, Fabra C, Cazals G, Hubert-Roux M, Schmitz-Afonso I, Goldberga I, Berthomieu D, Lebrun A, Métro TX, Laurencin D. Cost-efficient and user-friendly 17O/ 18O labeling procedures of fatty acids using mechanochemistry. Chem Commun (Camb) 2021; 57:6812-6815. [PMID: 34143162 PMCID: PMC8265319 DOI: 10.1039/d1cc02165f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/27/2021] [Indexed: 01/12/2023]
Abstract
Two mechanochemical procedures for 17O/18O-isotope labeling of fatty acids are reported: a carboxylic acid activation/hydrolysis approach and a saponification approach. The latter route allowed first-time enrichment of important polyunsaturated fatty acids (PUFAs) including docosahexaenoic acid (DHA). Overall, a total of 9 pure labeled products were isolated in high yields (≥80%) and with high enrichment levels (≥37% average labeling of C=O and C-OH carboxylic oxygen atoms), under mild conditions, and in short time (
Collapse
Affiliation(s)
| | - Charlyn Fabra
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Marie Hubert-Roux
- Normandie Univ., COBRA UMR 6014 and FR 3038 Univ. Rouen, INSA Rouen, CNRS IRCOF, Mont-Saint-Aignan, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ., COBRA UMR 6014 and FR 3038 Univ. Rouen, INSA Rouen, CNRS IRCOF, Mont-Saint-Aignan, France
| | - Ieva Goldberga
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | | | | | | |
Collapse
|
17
|
Sarkar S, Dagar S, Rajamani S. Influence of Wet–Dry Cycling on the Self‐Assembly and Physicochemical Properties of Model Protocellular Membrane Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susovan Sarkar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Shikha Dagar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Sudha Rajamani
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
18
|
Joshi MP, Sawant AA, Rajamani S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid-amino acid mixture under wet-dry cycles. Chem Sci 2021; 12:2970-2978. [PMID: 34164065 PMCID: PMC8179413 DOI: 10.1039/d0sc05650b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis, under prebiotically plausible conditions, remains relatively unexplored. Here we discern the effect of a phospholipid on peptide synthesis using a non-activated amino acid, under wet-dry cycles. We report two competing processes simultaneously forming peptides and N-acyl amino acids (NAAs) in a single-pot reaction from a common set of reactants. NAA synthesis occurs via an ester-amide exchange, which is the first demonstration of this phenomenon in a lipid-amino acid system. Furthermore, NAAs self-assemble into vesicles at acidic pH, signifying their ability to form protocellular membranes under acidic geothermal conditions. Our work highlights the importance of exploring the co-evolutionary interactions between membrane assembly and peptide synthesis, having implications for the emergence of hitherto uncharacterized compounds of unknown prebiotic relevance.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| |
Collapse
|
19
|
Špačková J, Fabra C, Mittelette S, Gaillard E, Chen CH, Cazals G, Lebrun A, Sene S, Berthomieu D, Chen K, Gan Z, Gervais C, Métro TX, Laurencin D. Unveiling the Structure and Reactivity of Fatty-Acid Based (Nano)materials Thanks to Efficient and Scalable 17O and 18O-Isotopic Labeling Schemes. J Am Chem Soc 2020; 142:21068-21081. [PMID: 33264006 PMCID: PMC7877562 DOI: 10.1021/jacs.0c09383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Fatty acids are ubiquitous in biological systems and widely used in materials science, including for the formulation of drugs and the surface-functionalization of nanoparticles. However, important questions regarding the structure and reactivity of these molecules are still to be elucidated, including their mode of binding to certain metal cations or materials surfaces. In this context, we have developed novel, efficient, user-friendly, and cost-effective synthetic protocols based on ball-milling, for the 17O and 18O isotopic labeling of two key fatty acids which are widely used in (nano)materials science, namely stearic and oleic acid. Labeled molecules were analyzed by 1H and 13C solution NMR, IR spectroscopy, and mass spectrometry (ESI-TOF and LC-MS), as well as 17O solid state NMR (for the 17O labeled species). In both cases, the labeling procedures were scaled-up to produce up to gram quantities of 17O- or 18O-enriched molecules in just half-a-day, with very good synthetic yields (all ≥84%) and enrichment levels (up to an average of 46% per carboxylic oxygen). The 17O-labeled oleic acid was then used for the synthesis of a metal soap (Zn-oleate) and the surface-functionalization of ZnO nanoparticles (NPs), which were characterized for the first time by high-resolution 17O NMR (at 14.1 and 35.2 T). This allowed very detailed insight into (i) the coordination mode of the oleate ligand in Zn-oleate to be achieved (including information on Zn···O distances) and (ii) the mode of attachment of oleic-acid at the surface of ZnO (including novel information on its photoreactivity upon UV-irradiation). Overall, this work demonstrates the high interest of these fatty acid-enrichment protocols for understanding the structure and reactivity of a variety of functional (nano)materials systems using high resolution analyses like 17O NMR.
Collapse
Affiliation(s)
| | - Charlyn Fabra
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | | | - Chia-Hsin Chen
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | - Aurélien Lebrun
- IBMM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | - Saad Sene
- ICGM, Univ Montpellier, CNRS,
ENSCM, Montpellier 34095, France
| | | | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL),
Florida State University, Tallahassee, Florida 32306,
United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL),
Florida State University, Tallahassee, Florida 32306,
United States
| | - Christel Gervais
- Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université,
CNRS, 75005 Paris, France
| | | | | |
Collapse
|
20
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
21
|
Bonfio C, Russell DA, Green NJ, Mariani A, Sutherland JD. Activation chemistry drives the emergence of functionalised protocells. Chem Sci 2020; 11:10688-10697. [PMID: 34094321 PMCID: PMC8162433 DOI: 10.1039/d0sc04506c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/27/2020] [Indexed: 11/24/2022] Open
Abstract
The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells.
Collapse
Affiliation(s)
- Claudia Bonfio
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - David A Russell
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - Nicholas J Green
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - Angelica Mariani
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - John D Sutherland
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
22
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
23
|
|
24
|
Gospodinov A, Kunnev D. Universal Codons with Enrichment from GC to AU Nucleotide Composition Reveal a Chronological Assignment from Early to Late Along with LUCA Formation. Life (Basel) 2020; 10:life10060081. [PMID: 32516985 PMCID: PMC7345086 DOI: 10.3390/life10060081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of a primitive genetic code should be considered the most essential event during the origin of life. Almost a complete set of codons (as we know them) should have been established relatively early during the evolution of the last universal common ancestor (LUCA) from which all known organisms descended. Many hypotheses have been proposed to explain the driving forces and chronology of the evolution of the genetic code; however, none is commonly accepted. In the current paper, we explore the features of the genetic code that, in our view, reflect the mechanism and the chronological order of the origin of the genetic code. Our hypothesis postulates that the primordial RNA was mostly GC-rich, and this bias was reflected in the order of amino acid codon assignment. If we arrange the codons and their corresponding amino acids from GC-rich to AU-rich, we find that: 1. The amino acids encoded by GC-rich codons (Ala, Gly, Arg, and Pro) are those that contribute the most to the interactions with RNA (if incorporated into short peptides). 2. This order correlates with the addition of novel functions necessary for the evolution from simple to longer folded peptides. 3. The overlay of aminoacyl-tRNA synthetases (aaRS) to the amino acid order produces a distinctive zonal distribution for class I and class II suggesting an interdependent origin. These correlations could be explained by the active role of the bridge peptide (BP), which we proposed earlier in the evolution of the genetic code.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, Sofia 1113, Bulgaria;
| | - Dimiter Kunnev
- Department of Molecular & Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
25
|
Cheng G, Perez-Mercader J. Dissipative Self-Assembly of Dynamic Multicompartmentalized Microsystems with Light-Responsive Behaviors. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
27
|
|
28
|
Poudyal RR, Guth-Metzler RM, Veenis AJ, Frankel EA, Keating CD, Bevilacqua PC. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat Commun 2019; 10:490. [PMID: 30700721 PMCID: PMC6353945 DOI: 10.1038/s41467-019-08353-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Membraneless compartments, such as complex coacervates, have been hypothesized as plausible prebiotic micro-compartments due to their ability to sequester RNA; however, their compatibility with essential RNA World chemistries is unclear. We show that such compartments can enhance key prebiotically-relevant RNA chemistries. We demonstrate that template-directed RNA polymerization is sensitive to polycation identity, with polydiallyldimethylammonium chloride (PDAC) outperforming poly(allylamine), poly(lysine), and poly(arginine) in polycation/RNA coacervates. Differences in RNA diffusion rates between PDAC/RNA and oligoarginine/RNA coacervates imply distinct biophysical environments. Template-directed RNA polymerization is relatively insensitive to Mg2+ concentration when performed in PDAC/RNA coacervates as compared to buffer, even enabling partial rescue of the reaction in the absence of magnesium. Finally, we show enhanced activities of multiple nucleic acid enzymes including two ribozymes and a deoxyribozyme, underscoring the generality of this approach, in which functional nucleic acids like aptamers and ribozymes, and in some cases key cosolutes localize within the coacervate microenvironments. Membraneless compartments have been theorized to be prebiotic micro-compartments as they spontaneously encapsulate RNA and proteins. Here, the authors report membraneless compartments can enhance RNA chemistries, affecting template directed RNA polymerization and stimulating nucleic acid enzymes.
Collapse
Affiliation(s)
- Raghav R Poudyal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA. .,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Rebecca M Guth-Metzler
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew J Veenis
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erica A Frankel
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA. .,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
29
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Chotera A, Sadihov H, Cohen-Luria R, Monnard PA, Ashkenasy G. Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid-Peptide Chimeras. Chemistry 2018; 24:10128-10135. [PMID: 29732630 DOI: 10.1002/chem.201800500] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Indexed: 01/24/2023]
Abstract
Striking synergy between nucleic acids and proteins is exhibited in living cells. Whether such mutual activity can be performed using simple supramolecular nucleic acid-peptide (NA-pep) architectures remains a mystery. To shed light on this question, we studied the emergence of a primitive synergy in assemblies of short DNA-peptide chimeras. Specifically, we characterized multiple structures forming along gradual mixing trajectory, in which a peptide solution was seeded with increasing amounts of NA-pep chimeras. We report on the systematic change from β-sheet-peptide-based fibrillar architectures into the spherical structures formed by the conjugates. Remarkably, we find that through forming onion-like structures, the conjugates exhibit increased DNA hybridization stability and bind small molecules more efficiently than the peptides or DNA alone. A brief discussion highlights the implications of our findings for the production of new materials and for research on the origin of life.
Collapse
Affiliation(s)
- Agata Chotera
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Hava Sadihov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Pierre-Alain Monnard
- Institute for Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230, Odense M, Denmark
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
31
|
Branscomb E, Russell MJ. Frankenstein or a Submarine Alkaline Vent: Who Is Responsible for Abiogenesis?: Part 1: What is life-that it might create itself? Bioessays 2018; 40:e1700179. [PMID: 29870581 DOI: 10.1002/bies.201700179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Origin of life models based on "energized assemblages of building blocks" are untenable in principle. This is fundamentally a consequence of the fact that any living system is in a physical state that is extremely far from equilibrium, a condition it must itself build and sustain. This in turn requires that it carries out all of its molecular transformations-obligatorily those that convert, and thereby create, disequilibria-using case-specific mechanochemical macromolecular machines. Mass-action solution chemistry is quite unable to do this. We argue in Part 2 of this series that this inherent dependence of life on disequilibria-converting macromolecular machines is also an obligatory requirement for life at its emergence. Therefore, life must have been launched by the operation of abiotic macromolecular machines driven by abiotic, but specifically "life-like", disequilibria, coopted from mineral precipitates that are chemically and physically active. Models grounded in "chemistry-in-a-bag" ideas, however energized, should not be considered.
Collapse
Affiliation(s)
- Elbert Branscomb
- Carl R. Woese Institute for Genomic Biology and Department of Physics, University of Illinois, Urbana, IL, 61801, USA
| | - Michael J Russell
- Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA, 91109-8099, USA
| |
Collapse
|
32
|
Blanco C, Bayas M, Yan F, Chen IA. Analysis of Evolutionarily Independent Protein-RNA Complexes Yields a Criterion to Evaluate the Relevance of Prebiotic Scenarios. Curr Biol 2018; 28:526-537.e5. [PMID: 29398222 DOI: 10.1016/j.cub.2018.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
A central difficulty facing study of the origin of life on Earth is evaluating the relevance of different proposed prebiotic scenarios. Perhaps the most established feature of the origin of life was the progression through an RNA World, a prebiotic stage dominated by functional RNA. We use the appearance of proteins in the RNA World to understand the prebiotic milieu and develop a criterion to evaluate proposed synthetic scenarios. Current consensus suggests that the earliest amino acids of the genetic code were anionic or small hydrophobic or polar amino acids. However, the ability to interact with the RNA World would have been a crucial feature of early proteins. To determine which amino acids would be important for the RNA World, we analyze non-biological protein-aptamer complexes in which the RNA or DNA is the result of in vitro evolution. This approach avoids confounding effects of biological context and evolutionary history. We use bioinformatic analysis and molecular dynamics simulations to characterize these complexes. We find that positively charged and aromatic amino acids are over-represented whereas small hydrophobic amino acids are under-represented. Binding enthalpy is found to be primarily electrostatic, with positively charged amino acids contributing cooperatively to binding enthalpy. Arginine dominates all modes of interaction at the interface. These results suggest that proposed prebiotic syntheses must be compatible with cationic amino acids, particularly arginine or a biophysically similar amino acid, in order to be relevant to the invention of protein by the RNA World.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Marco Bayas
- Departamento de Fisica, Escuela Politécnica Nacional, Quito, Ladron de Guevara E11-253, Ecuador
| | - Fu Yan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA; Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
33
|
Szostak JW. The Origin of Life on Earth and the Design of Alternative Life Forms. MOLECULAR FRONTIERS JOURNAL 2017. [DOI: 10.1142/s2529732517400132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the origin of life on Earth, and to evaluate the potential for life on exoplanets, we must understand the pathways that lead from chemistry to biology. Recent experiments suggest that a chemically rich environment that provides the building blocks of membranes, nucleic acids and peptides, along with sources of chemical energy, could result in the emergence of replicating, evolving cells. The broad scope of synthetic chemistry suggests that it may be possible to design and construct artificial life forms based upon a very different biochemistry than that of existing biology.
Collapse
|
34
|
Hanczyc MM, Monnard PA. Primordial membranes: more than simple container boundaries. Curr Opin Chem Biol 2017; 40:78-86. [DOI: 10.1016/j.cbpa.2017.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
|
35
|
Kee TP, Monnard PA. Chemical systems, chemical contiguity and the emergence of life. Beilstein J Org Chem 2017; 13:1551-1563. [PMID: 28904604 PMCID: PMC5564265 DOI: 10.3762/bjoc.13.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
Abstract
Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more "systemic" approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.
Collapse
Affiliation(s)
- Terrence P Kee
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
36
|
Shirt-Ediss B, Murillo-Sánchez S, Ruiz-Mirazo K. Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein J Org Chem 2017; 13:1388-1395. [PMID: 28781704 PMCID: PMC5530630 DOI: 10.3762/bjoc.13.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Conceiving the process of biogenesis as the evolutionary development of highly dynamic and integrated protocell populations provides the most appropriate framework to address the difficult problem of how prebiotic chemistry bridged the gap to full-fledged living organisms on the early Earth. In this contribution we briefly discuss the implications of taking dynamic, functionally integrated protocell systems (rather than complex reaction networks in bulk solution, sets of artificially evolvable replicating molecules, or even these same replicating molecules encapsulated in passive compartments) as the proper units of prebiotic evolution. We highlight, in particular, how the organisational features of those chemically active and reactive protocells, at different stages of the process, would strongly influence their corresponding evolutionary capacities. As a result of our analysis, we suggest three experimental challenges aimed at constructing protocell systems made of a diversity of functionally coupled components and, thereby, at characterizing more precisely the type of prebiotic evolutionary dynamics that such protocells could engage in.
Collapse
Affiliation(s)
- Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems Group, University of Newcastle, UK
| | - Sara Murillo-Sánchez
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| | - Kepa Ruiz-Mirazo
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| |
Collapse
|
37
|
Acosta-Andrade C, Artetxe I, Lete MG, Monasterio BG, Ruiz-Mirazo K, Goñi FM, Sánchez-Jiménez F. Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids Surf B Biointerfaces 2017; 155:173-181. [PMID: 28456048 DOI: 10.1016/j.colsurfb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 01/06/2023]
Abstract
Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.
Collapse
Affiliation(s)
- Carlos Acosta-Andrade
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ibai Artetxe
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Marta G Lete
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Bingen G Monasterio
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain; Department of Logic and Philosophy of Science, University of the Basque Country, Donostia, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| |
Collapse
|
38
|
|
39
|
Kobayashi S, Terai T, Yoshikawa Y, Ohkawa R, Ebihara M, Hayashi M, Takiguchi K, Nemoto N. In vitro selection of random peptides against artificial lipid bilayers: a potential tool to immobilize molecules on membranes. Chem Commun (Camb) 2017; 53:3458-3461. [DOI: 10.1039/c7cc00099e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first in vitro selection of binding peptides against artificial lipid membranes was performed using a cDNA display method.
Collapse
Affiliation(s)
- Shota Kobayashi
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Takuya Terai
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Yuki Yoshikawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Ryoya Ohkawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Mika Ebihara
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Masahito Hayashi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kingo Takiguchi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| |
Collapse
|