1
|
Jia H, Wu R, Li L, Zhang L, Sun X, Feng X, Wang Y, Cai E, Sun S, Chang C. Induced cuproptosis by targeting the ESCRT-III complex potentiates copper-based control of smut diseases. Int J Biol Macromol 2025; 305:141292. [PMID: 39984090 DOI: 10.1016/j.ijbiomac.2025.141292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Sporisorium scitamineum, the fungal pathogen causing sugarcane smut, employs a unique copper detoxification mechanism to evade cuproptosis, a copper-dependent cell death pathway recently highlighted in anticancer research. This study reveals its copper tolerance through a novel cuproptosis evasion strategy. Through fluorescence tracing of the SsCtr3 transporter and copper ions combined with elesclomol induction, we found that the ESCRT pathway mediates SsCtr3 to sequester excess copper into vacuoles under high‑copper stress. This sequestration prevents cytoplasmic copper overload and subsequent mitochondrial DLAT aggregation that triggers cuproptosis. Pathogenicity assays revealed that disrupting the ESCRT pathway significantly enhances efficacy of copper-based compounds treatments. By elucidating the molecular crosstalk between fungal copper transport and cuproptosis suppression, this study delineates the fungus's copper homeostasis-cuproptosis axis, providing a strategic framework for optimizing copper-based disease control in sugarcane and related crops.
Collapse
Affiliation(s)
- Huan Jia
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongrong Wu
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xian Sun
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaonan Feng
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Wang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Enping Cai
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou 510316, China
| | - Shuquan Sun
- Kaifeng Engineering Technology Research Center of Aquatic Environmental Pollution Monitoring, Yellow River Conservancy Technical Institute, 475004, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Fu Y, Hou L, Han K, Zhao C, Hu H, Yin S. The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr 2025; 48:161-179. [PMID: 40220473 DOI: 10.1016/j.clnu.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Copper plays an important physiological role in the body, with both deficiency and excess potentially impacting overall health. The body maintains a stringent copper metabolism mechanism to oversee absorption, utilization, storage, and elimination. Dietary consumption serves as the principal source of copper. The dietary factors may interfere with the absorption and metabolism of copper, leading to fluctuation of copper levels in the body. However, these dietary factors can also be strategically employed to facilitate the precise regulation of copper. This paper delved into the advancements in research concerning copper in food processing, including dietary sources of copper, the regulatory processes of copper metabolism and health implications of copper. The safety and its underlying mechanisms of excess copper were also highlighted. In particular, the paper examines the influence of dietary factors on the absorption and metabolism of copper, aiming to provide direction for accurate copper regulation and the creation of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yuhan Fu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lirui Hou
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Kai Han
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shutao Yin
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
3
|
Yang Q, Liu X, Tang H, Chen Y, Bai L. Emerging roles of cuproptosis in liver diseases. Dig Liver Dis 2025:S1590-8658(25)00320-2. [PMID: 40254494 DOI: 10.1016/j.dld.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Intracellular copper levels should be maintained within a controlled range to obtain copper homeostasis. Cuproptosis, a newly discovered form of cell death, occurs when excessive copper ions bind to the lipoylated enzymes in the tricarboxylic acid cycle, which leads to lipoylated protein aggregation, proteotoxic stress, and ultimately cell death. Herein, we summarize the current knowledge regarding copper metabolism, the discovery and molecular mechanism of cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various liver diseases, including hepatocellular carcinoma (HCC), Wilson disease (WD), metabolic-associated fatty liver disease (MAFLD), liver fibrosis, hepatic ischemia-reperfusion injury (HIRI) and drug-induced liver injury (DILI). Understanding the mechanism of cuproptosis can not only provide deeper insights into the pathogenesis of liver diseases but also open up new avenues for the development of targeted therapies.
Collapse
Affiliation(s)
- Qi Yang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Xiaoxuan Liu
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Huixin Tang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China.
| | - Li Bai
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China.
| |
Collapse
|
4
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-025-09998-y. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
5
|
Cheng C, McCauley BS, Matulionis N, Vogelauer M, Camacho D, Christofk HR, Dang W, Irwin NAT, Kurdistani SK. Histone H3 cysteine 110 enhances iron metabolism and modulates replicative life span in Saccharomyces cerevisiae. SCIENCE ADVANCES 2025; 11:eadv4082. [PMID: 40215312 PMCID: PMC11988410 DOI: 10.1126/sciadv.adv4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
The discovery of histone H3 copper reductase activity provides a novel metabolic framework for understanding the functions of core histone residues, which, unlike N-terminal residues, have remained largely unexplored. We previously demonstrated that histone H3 cysteine 110 (H3C110) contributes to cupric (Cu2+) ion binding and its reduction to the cuprous (Cu1+) form. However, this residue is absent in Saccharomyces cerevisiae, raising questions about its evolutionary and functional significance. Here, we report that H3C110 has been lost in many fungal lineages despite near-universal conservation across eukaryotes. Introduction of H3C110 into S. cerevisiae increased intracellular Cu1+ levels and ameliorated the iron homeostasis defects caused by inactivation of the Cup1 metallothionein or glutathione depletion. Enhanced histone copper reductase activity also extended replicative life span under oxidative growth conditions but reduced it under fermentative conditions. Our findings suggest that a trade-off between histone copper reductase activity, iron metabolism, and life span may underlie the loss or retention of H3C110 across eukaryotes.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brenna S. McCauley
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dimitrios Camacho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
TIAN KE, LI ZHIPENG, ZHAI XIANGYU, ZHOU HUAXIN, YAO HUI. A novel prognostic scoring model based on cuproptosis identifies COMMD1 as a novel therapy target for liver hepatocellular carcinoma. Oncol Res 2025; 33:617-630. [PMID: 40109870 PMCID: PMC11915051 DOI: 10.32604/or.2024.049772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 03/22/2025] Open
Abstract
Background Primary liver cancer poses a significant global health burden, with projections indicating a surpassing of one million cases by 2025. Cuproptosis, a copper-dependent mechanism of cell death, plays a crucial role in the pathogenesis, progression, and prognosis of various cancers, including hepatocellular carcinoma (HCC). Purpose This study aimed to develop a prognostic model for HCC based on cuproptosis-related genes, utilizing clinical data and gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Materials and Methods Clinical features and gene expression data of HCC patients were collected from publicly available databases. Patients from TCGA were randomly divided into training and testing sets, and Lasso Cox regression was applied to develop a predictive model using cuproptosis-related genes. Results The analysis identified Copper Metabolism Domain Containing 1 (COMMD1) as a potential prognostic marker for HCC, with deletion of this gene impacting disease progression. Cellular functional experiments validated the role of COMMD1 in HCC. Conclusions COMMD1 emerges as a promising candidate for HCC treatment, with implications for prognosis prediction and therapeutic targeting.
Collapse
Affiliation(s)
- KE TIAN
- General Surgery Department 2, The No. 2 People’s Hospital of Lanzhou, Lanzhou, 730030, China
| | - ZHIPENG LI
- The Hepatobiliary Surgery Department, The Second Hospital of Shandong University, Jinan, 250000, China
| | - XIANGYU ZHAI
- The Hepatobiliary Surgery Department, The Second Hospital of Shandong University, Jinan, 250000, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - HUAXIN ZHOU
- The Hepatobiliary Surgery Department, The Second Hospital of Shandong University, Jinan, 250000, China
| | - HUI YAO
- General Surgery Department 2, The No. 2 People’s Hospital of Lanzhou, Lanzhou, 730030, China
| |
Collapse
|
7
|
Xie J, Su Y, Shang W, Wu Y, He J, Li T, Shen Y, Zhang Y, Tong X, Bian Q. Involvement of copper in cell death and cancer. Apoptosis 2025; 30:488-505. [PMID: 39702813 DOI: 10.1007/s10495-024-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Copper (cu) is an essential micronutrient required for numerous metabolic processes. It plays a crucial role in cellular respiration by participating in the electron transport chain and facilitating numerous biological reactions. Various diseases, including cancer, demonstrate localized elevation of copper levels and/or alterations in the overall distribution of copper. Modulating local or systemic copper levels as a novel therapeutic approach for treating and ameliorating diseases has emerged as a prominent trend in disease management, particularly in the realm of cancer therapy, which is currently under investigation. The objective of this review is to offer a thorough examination of copper metabolism in both physiological and pathological contexts. Specifically, it delves into how copper ions can effectively target and stimulate tumor cell death via the process known as cuproptosis in cancer patients. Furthermore, this review explores the utilization of three categories of anticancer medications (copper ion carriers, copper complexes, and copper chelating agents) pertaining to copper metabolism within the realm of cancer therapy, elucidating on the distinct mechanisms through which they exert their effects.
Collapse
Affiliation(s)
- Jiahao Xie
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yue Su
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenzhong Shang
- Department of Hematology, Hangzhou First People 's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yanfang Wu
- Department of Hematology, First People 's Hospital of Fuyang District, Hangzhou, Zhejiang, 310014, China
| | - Junjia He
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ting Li
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yeyu Shen
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang Province, 317200, China.
| | - Xiangmin Tong
- Department of Hematology, First People 's Hospital of Fuyang District, Hangzhou, Zhejiang, 310014, China.
| | - Qiong Bian
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
8
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Sudhahar V, Xiao Z, Das A, Ash D, Yadav S, Matier CD, Pezacki AT, Chatterjee B, Antipova OA, Vogt S, McMenamin M, Kelley S, Csanyi G, Lee J, Jo H, Chang CJ, Rao J, Kaplan JH, Ushio-Fukai M, Fukai T. Endothelial Cu Uptake Transporter CTR1 Senses Disturbed Flow to Promote Atherosclerosis through Cuproptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634587. [PMID: 39975331 PMCID: PMC11838200 DOI: 10.1101/2025.01.27.634587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Endothelial cells (ECs) lining blood vessels sense disturbed blood flow (D-flow), which drives mitochondrial dysfunction and atherosclerosis. Copper (Cu) is an essential micronutrient, and its disruption of homeostasis has been implicated in atherosclerosis. Cellular Cu levels are tightly controlled by Cu transport proteins including the Cu importer CTR1. Cuproptosis is a recently discovered form of regulated cell death triggered by mitochondrial Cu accumulation, but its endogenous stimulants and role in atherosclerosis remain unknown. Using EC-specific CTR1-deficient mice and cultured ECs, we show that endothelial CTR1 responds to D-flow by increasing mitochondrial Cu levels through its interaction with the mitochondrial Cu transporter SLC25A3 at caveolae/lipid rafts. This leads to the aggregation of lipoylated mitochondrial proteins, mitochondrial dysfunction, and cuproptosis, thereby exacerbating atherosclerosis. Importantly, mitochondria-targeted Cu-chelating nanoparticles effectively mitigate D-flow-induced cuproptosis and atherosclerosis, highlighting the endothelial CTR1-SLC25A3-mitochondrial Cu axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta GA, USA
| | - Zhen Xiao
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta GA, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Shikha Yadav
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Carson D. Matier
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Aidan T. Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Barun Chatterjee
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Olga A. Antipova
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Malgorzata McMenamin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stephanie Kelley
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | | | - Jianghong Rao
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jack H. Kaplan
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta GA, USA
| |
Collapse
|
10
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
12
|
Hu J, Zhu J, Chen T, Zhao Y, Xu Q, Wang Y. Cuproptosis in cancer therapy: mechanisms, therapeutic application and future prospects. J Mater Chem B 2024; 12:12191-12206. [PMID: 39526989 DOI: 10.1039/d4tb01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cuproptosis is a regulated form of cell death induced by the accumulation of metal ions and is closely linked to aspects of cellular drug resistance, cellular metabolism, and signalling pathways. Due to its crucial role in regulating physiological and pathological processes, cuproptosis has gained increasing significance as a potential target for anticancer drug development. In this review, we introduce the definition of cuproptosis and provide a comprehensive discussion of the mechanisms of cuproptosis. In addition, the methods for the detection of cuproptosis are summarized, and recent advances in cuproptosis in cancer therapy are reviewed, mainly in terms of elesclomol (ES)-mediated cuproptosis and disulfiram (DSF)-mediated cuproptosis, which provided practical value for applications. Finally, the current challenges and future development of cuproptosis-mediated cancer therapy are discussed. In summary, this review highlights recent progress on cuproptosis in cancer therapy, offering novel ideas and strategies for future research and applications.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
13
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Bakhshian A, Fitisemanu FM, Jiménez-González ML, Flinn L, Pezacki AT, Lanzirotti A, Ortiz Frade LA, Chang CJ, Navea JG, Blaby-Haas CE, Hainer SJ, Padilla-Benavides T. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis. PLoS Genet 2024; 20:e1011495. [PMID: 39637238 DOI: 10.1371/journal.pgen.1011495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions. mCrip2 binds two to four Cu+ ions with high affinity and presents limited redox potential. CRISPR/Cas9-mediated deletion of mCrip2 impaired myogenesis, likely due to Cu accumulation in cells. CUT&RUN and transcriptome analyses revealed its association with gene promoters, including MyoD1 and metallothioneins, suggesting a novel Cu-responsive regulatory role for mCrip2. Our work describes the significance of mCrip2 in skeletal muscle differentiation and metal homeostasis, expanding understanding of the Cu-network in myoblasts. Copper (Cu) is essential for various cellular processes, including respiration and stress response, but imbalances can cause serious health issues. This study reveals a new Cu-binding protein (Cu-BP) involved in muscle development in primary myoblasts. Using unbiased metalloproteomic techniques and high throughput sequencing, we identified mCrip2 as a key Cu-BP found in cell nuclei and cytoplasm. mCrip2 binds up to four Cu+ ions and has a limited redox potential. Deleting mCrip2 using CRISPR/Cas9 disrupted muscle formation due to Cu accumulation. Further analyses showed that mCrip2 regulates the expression of genes like MyoD1, essential for muscle differentiation, and metallothioneins in response to copper supplementation. This research highlights the importance of mCrip2 in muscle development and metal homeostasis, providing new insights into the Cu-network in cells.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - David C Klein
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry. Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Jaime Carrazco-Carrillo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Denzel Bonilla-Pinto
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Antonio Rivera
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Arpie Bakhshian
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Fa'alataitaua M Fitisemanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Martha L Jiménez-González
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Lyra Flinn
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Lemont, Illinois, United States of America
| | - Luis Antonio Ortiz Frade
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology. University of California, Berkeley, California, United States of America
| | - Juan G Navea
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Crysten E Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California & DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sarah J Hainer
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvanian United States of America
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
14
|
Tao Z, Kang S, Liu J, Wang R, Zhou J, Yang W, Wang M. A clinical study showing the expression characteristics of cuproptosis markers in cases with Wilson disease. Medicine (Baltimore) 2024; 103:e40598. [PMID: 39809184 PMCID: PMC11596713 DOI: 10.1097/md.0000000000040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates levels of cuproptosis markers in Wilson disease (WD) and their role in the occurrence and development of WD. We retrospectively collected clinical data from 76 patients with Leipzig score ≥ 4 hospitalized in the First Affiliated Hospital of Anhui University of Chinese Medicine from January 2023 to September 2023. The participants were given copper chelators (sodium dimercaptosulphonate (20 mg·kg-1), 4 courses of treatment, 32 days). The levels of clinical indicators (ALT, AST, ALP, HA, LN, PIIINP, CIV, liver stiffness measurement, United Wilson disease rating scale), oxidative stress indexes (SOD, MDA, GSH), cuproptosis markers (FDX1, DLAT, LIAS, ACO-2, SDHB, PLOD1, DPYD) of the participants were measured before and after treatment. Compared with the control group, FDX1, DLAT, DPYD, and POLD1 in WD were significantly up-regulated before treatment (6464.34 ± 2980.66 vs 4125.43 ± 2230.13 pg ⋅ mL-1, P < .001, 1364.36 ± 376.81 vs 884.22 ± 175.42 pg ⋅ mL-1, P < .001, 279.74 ± 123.63 vs 155.68 ± 67.32 pg ⋅ mL-1, P < .001, 3536.11 ± 1404.83 vs 1487.76 ± 658.26 pg ⋅ mL-1, P < .001), while SDHB was significantly down-regulated (2458.75 ± 1103.75 vs 5338.22 ± 921.54 pg ⋅ mL-1, P < .05). SOD was significantly down-regulated before treatment (13.20 ± 2.06 vs 13.27 ± 1.79 U ⋅ mgprot-1, P < .05), while MDA and GSH were significantly up-regulated (10.53 ± 4.76 vs 4.92 ± 1.81 nmol ⋅ mL-1, P < .001, 49.28 ± 25.55 vs 24.70 ± 12.01 µol ⋅ L-1, P < .001). POLD1 were down-regulated (3536.11 ± 1404.83 vs 1487.76 ± 658.26 pg ⋅ mL-1, P < .001), and SDHB was up-regulated after treatment (2458.75 ± 1103.75 vs2709.61 ± 906.95 pg ⋅ mL-1, P < .05), while SOD, MDA and GSH were significantly down-regulated (13.20 ± 2.06 vs 12.48 ± 1.52 U ⋅ mgprot-1, P < .05, 10.53 ± 4.76 vs 7.65 ± 3.65 nmol ⋅ mL-1, P < .001, 49.28 ± 25.55 vs 34.09 ± 15.02 µmol ⋅ L-1, P < .001). The expression levels of cuproptosis markers and oxidative stress indexes are abnormal in WD patients. However, chelation therapy can improve the recovery of cuproptosis markers, oxidative stress indexes, and hepatic fibrosis indexes.
Collapse
Affiliation(s)
- Zhuang Tao
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuai Kang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jipeng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jiafeng Zhou
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Meixia Wang
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
15
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 PMCID: PMC12044431 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
16
|
Lv X, Zhao L, Song Y, Chen W, Tuo Q. Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. Int J Mol Sci 2024; 25:11462. [PMID: 39519014 PMCID: PMC11546650 DOI: 10.3390/ijms252111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with atherosclerosis (AS) playing a central role in its pathogenesis as a chronic inflammatory condition. Copper, an essential trace element in the human body, participates in various biological processes and plays a significant role in the cardiovascular system. Maintaining normal copper homeostasis is crucial for cardiovascular health, and dysregulation of copper balance is closely associated with the development of CVD. When copper homeostasis is disrupted, it can induce cell death, which has been proposed to be a novel form of "cuproptosis", distinct from traditional programmed cell death. This new form of cell death is closely linked to the occurrence and progression of AS. This article elaborately describes the physiological mechanisms of copper homeostasis and explores its interactions with signaling pathways related to AS. Additionally, we focus on the process and mechanism of cell death induced by imbalances in copper homeostasis and summarize the relationship between copper homeostasis-related genes and AS. We also emphasize potential therapeutic approaches, such as copper balance regulators and nanotechnology interventions, to adjust copper levels in the body, providing new ideas and strategies for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Liyan Zhao
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Yuting Song
- College of Integrative Chinese and Western Medicine, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| |
Collapse
|
17
|
Zhou S, Liu D, Fan K, Liu H, Zhang XD. Atomic-level design of biomimetic iron-sulfur clusters for biocatalysis. NANOSCALE 2024; 16:18644-18665. [PMID: 39257356 DOI: 10.1039/d4nr02883j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Designing biomimetic materials with high activity and customized biological functions by mimicking the central structure of biomolecules has become an important avenue for the development of medical materials. As an essential electron carrier, the iron-sulfur (Fe-S) clusters have the advantages of simple structure and high electron transport capacity. To rationally design and accurately construct functional materials, it is crucial to clarify the electronic structure and conformational relationships of Fe-S clusters. However, due to the complex catalytic mechanism and synthetic process in vitro, it is hard to reveal the structure-activity relationship of Fe-S clusters accurately. This review introduces the main structural types of Fe-S clusters and their catalytic mechanisms first. Then, several typical structural design strategies of biomimetic Fe-S clusters are systematically introduced. Furthermore, the development of Fe-S clusters in the biocatalytic field is enumerated, including tumor treatment, antibacterial, virus inhibition and plant photoprotection. Finally, the problems and development directions of Fe-S clusters are summarized. This review aims to guide people to accurately understand and regulate the electronic structure of Fe-S at the atomic level, which is of great significance for designing biomimetic materials with specific functions and expanding their applications in biocatalysis.
Collapse
Affiliation(s)
- Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
18
|
Deng XJ, Wang YN, Lv CB, Qiu ZZ, Zhu LX, Shi JH, Sana SRGL. Effect of cuproptosis on acute kidney injury after cardiopulmonary bypass in diabetic patients. World J Diabetes 2024; 15:2123-2134. [PMID: 39493567 PMCID: PMC11525729 DOI: 10.4239/wjd.v15.i10.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is a common procedure in cardiac surgery. CPB is a high-risk factor for acute kidney injury (AKI), and diabetes is also such a factor. Diabetes can lead to copper overload. It is currently unclear whether AKI after CPB in diabetic patients is related to copper overload. AIM To explore whether the occurrence of CPB-AKI in diabetic patients is associated with cuproptosis. METHODS Blood and urine were collected from clinical diabetic and non-diabetic patients before and after CPB. Levels of copper ion, lactate, glucose, heat shock protein-70 (HSP-70), and dihydrolipoamide dehydrogenase (DLAT) were determined. A diabetic rat model was established and CPB was performed. The rats were assessed for the development of CPB-AKI, and for the association of AKI with cuproptosis by detecting copper levels, iron-sulfur cluster proteins and observation of mitochondrial structure by electron microscopy. RESULTS CPB resulted in elevations of copper, lactate, HSP-70 and DLAT in blood and urine in both diabetic and non-diabetic patients. CPB was associated with pathologic and mitochondrial damage in the kidneys of diabetic rats. Cuproptosis-related proteins also appeared to be significantly reduced. CONCLUSION CPB-AKI is associated with cuproptosis. Diabetes mellitus is an important factor aggravating CPB-AKI and cuproptosis.
Collapse
Affiliation(s)
- Xi-Jin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yi-Nan Wang
- Department of The Health Management Service Evaluation Center, The Health Management Service Evaluation Center of Heilongjiang Province, Harbin 150000, Hei-longjiang Province, China
| | - Chuan-Bao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 150001, Guangdong Province, China
| | - Zhong-Zhi Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ling-Xin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing-Hui Shi
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
19
|
Kairis A, Neves BD, Couturier J, Remacle C, Rouhier N. Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119797. [PMID: 39033932 DOI: 10.1016/j.bbamcr.2024.119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
Collapse
Affiliation(s)
- Antoine Kairis
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Institut Universitaire de France, F-75000 Paris, France
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
20
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
21
|
Bargagna B, Staderini T, Lang SH, Banci L, Camponeschi F. Defects in the Maturation of Mitochondrial Iron-Sulfur Proteins: Biophysical Investigation of the MMDS3 Causing Gly104Cys Variant of IBA57. Int J Mol Sci 2024; 25:10466. [PMID: 39408793 PMCID: PMC11476781 DOI: 10.3390/ijms251910466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron-sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]-ISCA22 complex into the hetero-dimeric IBA57-[2Fe-2S]-ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Tommaso Staderini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Steven H. Lang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
22
|
Jiang Y, He S, Xiang N, Duan L, Lin Y, Huang W, Wu Z, Qi X. A copper missile-triggered power coalescence and death vortex within tumor cell mitochondria for synergistic cuproptosis/phototherapy/chemotherapy. NANOSCALE 2024; 16:15967-15983. [PMID: 39101331 DOI: 10.1039/d4nr02382j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The importance of copper homeostasis in mitochondria and copper-triggered modality of mitochondrial cell death have been confirmed. However, the existing copper-based nanoplatforms are focused on synergistic therapies while the intracellular therapeutic targets are relatively scattered. Effective integration of all targets within mitochondria to generate power coalescence remains a challenge. Herein, we developed a novel copper-based delivery system to trigger power coalescence and death vortex within tumor cell mitochondria. Specifically, a mitochondrial targeting "copper missile" loaded with curcumin (termed as Cur@CuS-TPP-HA, CCTH) was designed for cuproptosis/phototherapy/chemotherapy synergistic anti-tumor therapy. Once the CCTH NPs are shuttled to the mitochondria, near-infrared (NIR) irradiation initiates the release of copper ions and curcumin for in situ drug accumulation in cancer cell mitochondria. An excess of copper ions and curcumin can activate cuproptosis and mitochondrial apoptosis pathways, respectively. When combined, they can cause an increase in reactive oxygen species (ROS), damage to mitochondrial DNA (mt-DNA), and a decrease in energy supply, thereby leading to a "vicious circle" of mitochondrial damage that further enhances the tumor-killing efficacy. As a consequence, this "copper missile" exhibits advanced anti-tumor effects as verified through in vitro assessments and in vivo evaluations using the 4T1 breast tumor model, providing a promising approach for cuproptosis-based synergistic anti-tumor therapy.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Center of Advanced Pharmaceuticals and Biomaterials, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Shuhan He
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Niu Xiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Linghui Duan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuxiang Lin
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenyu Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China.
| |
Collapse
|
23
|
Fisher CE, Bak DW, Miller KE, Washington-Hughes CL, Dickfoss AM, Weerapana E, Py B, Outten FW. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. J Biol Chem 2024; 300:107506. [PMID: 38944118 PMCID: PMC11327457 DOI: 10.1016/j.jbc.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.
Collapse
Affiliation(s)
- Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Massachusetts, USA
| | - Kennedy E Miller
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Anna M Dickfoss
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Béatrice Py
- Aix-Marseille Université-Centre National de la Recherche Scientifique (UMR7283), Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Marseille, France.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
24
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Tod NP, Vogelauer M, Cheng C, Karimian A, Schmollinger S, Camacho D, Kurdistani SK. The role of histone H3 leucine 126 in fine-tuning the copper reductase activity of nucleosomes. J Biol Chem 2024; 300:107314. [PMID: 38657861 PMCID: PMC11134540 DOI: 10.1016/j.jbc.2024.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The copper reductase activity of histone H3 suggests undiscovered characteristics within the protein. Here, we investigated the function of leucine 126 (H3L126), which occupies an axial position relative to the copper binding. Typically found as methionine or leucine in copper-binding proteins, the axial ligand influences the reduction potential of the bound ion, modulating its tendency to accept or yield electrons. We found that mutation of H3L126 to methionine (H3L126M) enhanced the enzymatic activity of native yeast nucleosomes in vitro and increased intracellular levels of Cu1+, leading to improved copper-dependent activities including mitochondrial respiration and growth in oxidative media with low copper. Conversely, H3L126 to histidine (H3L126H) mutation decreased nucleosome's enzymatic activity and adversely affected copper-dependent activities in vivo. Our findings demonstrate that H3L126 fine-tunes the copper reductase activity of nucleosomes and highlights the utility of nucleosome enzymatic activity as a novel paradigm to uncover previously unnoticed features of histones.
Collapse
Affiliation(s)
- Nataliya P Tod
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ansar Karimian
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Stefan Schmollinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dimitrios Camacho
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
26
|
Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, Zhang J, Li S, Li W, Wang F. Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol 2024; 133:112075. [PMID: 38663316 DOI: 10.1016/j.intimp.2024.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cuproptosis has recently been identified as a novel regulatory mechanism of cell death. It is characterized by the accumulation of copper in mitochondria and its binding to acylated proteins. These characteristics lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, ultimately resulting in cell death. Cuproptosis is distinct from other types of cell death, including necrosis, apoptosis, ferroptosis, and pyroptosis. Cu induces oxidative stress damage, protein acylation, and the oligomerization of acylated TCA cycle proteins. These processes lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, disrupting cellular Cu homeostasis, and causing cell death. Cuproptosis plays a significant role in the development and progression of various kidney diseases such as acute kidney injury, chronic kidney disease, diabetic nephropathy, kidney transplantation, and kidney stones. On the one hand, inducers of cuproptosis, such as disulfiram (DSF), chloroquinolone, and elesclomol facilitate cuproptosis by promoting cell oxidative stress. In contrast, inhibitors of Cu chelators, such as tetraethylenepentamine and tetrathiomolybdate, relieve these diseases by inhibiting apoptosis. To summarize, cuproptosis plays a significant role in the pathogenesis of kidney disease. This review comprehensively discusses the molecular mechanisms underlying cuproptosis and its significance in kidney diseases.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shukun Wu
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
27
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
28
|
Wang Z, Zhou P, Li Y, Zhang D, Chu F, Yuan F, Pan B, Gao F. A Bimetallic Polymerization Network for Effective Increase in Labile Iron Pool and Robust Activation of cGAS/STING Induces Ferroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308397. [PMID: 38072786 DOI: 10.1002/smll.202308397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Jiangsu, 223002, P. R. China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Dazhen Zhang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fuchao Chu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
29
|
Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, Mayotte N, Bonneil E, Wittman M, Carmichael J, Ruel R, Thibault P, Hébert J, Marinier A, Sauvageau G. SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadl4018. [PMID: 38517966 PMCID: PMC10959413 DOI: 10.1126/sciadv.adl4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.
Collapse
Affiliation(s)
- Céline Moison
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Deanne Gracias
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Julie Schmitt
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Girard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Spinella
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Fortier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Bounkham Thavonekham
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mark Wittman
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - James Carmichael
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
30
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Kim JE, Jeon S, Lindahl PA. Discovery of an unusual copper homeostatic mechanism in yeast cells respiring on minimal medium and an unexpectedly diverse labile copper pool. J Biol Chem 2023; 299:105435. [PMID: 37944620 PMCID: PMC10704325 DOI: 10.1016/j.jbc.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Copper is essential for all eukaryotic cells but many details of how it is trafficked within the cell and how it is homeostatically regulated remain uncertain. Here, we characterized the copper content of cytosol and mitochondria using liquid chromatography with ICP-MS detection. Chromatograms of cytosol exhibited over two dozen peaks due to copper proteins and coordination complexes. Yeast cells respiring on minimal media did not regulate copper import as media copper concentration increased; rather, they imported copper at increasing rates while simultaneously increasing the expression of metallothionein CUP1 which then sequestered most of the excessive imported copper. Peak intensities due to superoxide dismutase SOD1, other copper proteins, and numerous coordination complexes also increased, but not as drastically. The labile copper pool was unexpectedly diverse and divided into two groups. One group approximately comigrated with copper-glutathione, -cysteine, and -histidine standards; the other developed only at high media copper concentrations and at greater elution volumes. Most cytosolic copper arose from copper-bound proteins, especially CUP1. Cytosol contained an unexpectedly high percentage of apo-copper proteins and apo-coordination complexes. Copper-bound forms of non-CUP1 proteins and complexes coexisted with apo-CUP1 and with the chelator BCS. Both experiments suggest unexpectedly stable-binding copper proteins and coordination complexes in cytosol. COX17Δ cytosol chromatograms were like those of WT cells. Chromatograms of soluble mitochondrial extracts were obtained, and mitoplasting helped distinguish copper species in the intermembrane space versus in the matrix/inner membrane. Issues involving the yeast copperome, copper homeostasis, labile copper pool, and copper trafficking are discussed.
Collapse
Affiliation(s)
- Joshua E Kim
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Seoyoung Jeon
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
32
|
Yang X, Deng L, Diao X, Yang S, Zou L, Yang Q, Li J, Nie J, Zhao L, Jiao B. Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer. iScience 2023; 26:108218. [PMID: 37953954 PMCID: PMC10637938 DOI: 10.1016/j.isci.2023.108218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC) poses a considerable challenge due to its aggressive nature. Notably, metal ion-induced cell death, such as ferroptosis, has garnered significant attention and demonstrated potential implications for cancer. Recently, cuproptosis, a potent cell death pathway reliant on copper, has been identified. However, whether cuproptosis can be targeted for cancer treatment remains uncertain. Here, we screened the US Food and Drug Administration (FDA)-approved drug library and identified zinc pyrithione (ZnPT) as a compound that significantly inhibited TNBC progression. RNA sequencing revealed that ZnPT disrupted copper homeostasis. Furthermore, ZnPT facilitated the oligomerization of dihydrolipoamide S-acetyltransferase, a landmark molecule of cuproptosis. Clinically, high expression levels of cuproptosis-related proteins were significantly correlated with poor prognosis in TNBC patients. Collectively, these findings indicate that ZnPT can induce cell death by targeting and disrupting copper homeostasis, providing a potential experimental foundation for exploring cuproptosis as a target in drug discovery for TNBC patients.
Collapse
Affiliation(s)
- Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Li Deng
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Xianhong Diao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Siyuan Yang
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian Li
- Institutional Center for Shared Technologies and Facilities, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianyun Nie
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Lina Zhao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| |
Collapse
|
33
|
Lei G, Tang L, Yu Y, Bian W, Yu L, Zhou J, Li Y, Wang Y, Du J. The potential of targeting cuproptosis in the treatment of kidney renal clear cell carcinoma. Biomed Pharmacother 2023; 167:115522. [PMID: 37757497 DOI: 10.1016/j.biopha.2023.115522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the top ten malignancies and tumor-related causes of death worldwide. The most common histologic subtype is kidney renal clear cell carcinoma (KIRC), accounting for approximately 75% of all RCC cases. Early resection is considered the basic treatment for patients with KIRC. However, approximately 30% of these patients experience recurrence post-operation. Cuproptosis, an autonomous mechanism for controlling cell death, encompasses various molecular mechanisms and multiple cellular metabolic pathways. These pathways mainly include copper metabolic signaling pathways, mitochondrial metabolism signaling pathways, and lipoic acid pathway signaling pathways. Recent evidence shows that cuproptosis is identified as a key cell death modality that plays a meaningful role in tumor progression. However, there is no published systematic review that summarizes the correlation between cuproptosis and KIRC, despite the fact that investigations on cuproptosis and the pathogenesis of KIRC have increased in past years. Researchers have discovered that exogenous copper infusion accelerates the dysfunction of mitochondrial dysfunction and suppresses KIRC cells by inducing cuproptosis. The levels of tricarboxylic acid cycle proteins, lipoic acid protein, copper, and ferredoxin 1 (FDX1) were dysregulated in KIRC cells, and the prognosis of patients with high FDX1 expression is better than that of patients with low expression. Cuproptosis played an indispensable role in the regulation of tumor microenvironment features, tumor progression, and long-term prognosis of KIRC. In this review, we summarized the systemic and cellular metabolic processes of copper and the copper-related signaling pathways, highlighting the potential targets related to cuproptosis for KIRC treatment.
Collapse
Affiliation(s)
- Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
34
|
Vogelauer M, Cheng C, Karimian A, Iranpour HG, Kurdistani SK. Zinc is Essential for the Copper Reductase Activity of Yeast Nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557765. [PMID: 37745536 PMCID: PMC10515886 DOI: 10.1101/2023.09.14.557765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The histone H3-H4 tetramer is a copper reductase enzyme, facilitating the production of cuprous (Cu1+) ions for distribution to copper-dependent enzymes. It was, however, unknown if this enzymatic activity occurred within nucleosomes. To investigate this, we obtained native nucleosomes from Saccharomyces cerevisiae using micrococcal nuclease digestion of chromatin in isolated nuclei and ion-exchange chromatographic purification. The purified nucleosomal fragments robustly reduced Cu2+ to Cu1+ ions, with the optimal activity dependent on the presence of zinc ions. Mutation of the histone H3 histidine 113 (H3H113) residue at the active site substantially reduced the enzymatic activity of nucleosomes, underscoring the catalytic role of histone H3. Consistently, limiting zinc ions reduced intracellular Cu1+ levels and compromised growth, phenotypes that were mitigated by genetically enhancing the copper reductase activity of histone H3. These results indicate that yeast nucleosomes possess copper reductase activity, suggesting that the fundamental unit of eukaryotic chromatin is an enzyme complex.
Collapse
Affiliation(s)
- Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ansar Karimian
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hooman Golshan Iranpour
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Chen J, Calderone LA, Pan L, Quist T, Pandelia ME. The Fe and Zn cofactor dilemma. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140931. [PMID: 37353133 DOI: 10.1016/j.bbapap.2023.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Fe and Zn ions are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox enzymes, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.
Collapse
Affiliation(s)
- Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Logan A Calderone
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Luying Pan
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Trent Quist
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
36
|
Falcone E, Nobili G, Okafor M, Proux O, Rossi G, Morante S, Faller P, Stellato F. Chasing the Elusive "In-Between" State of the Copper-Amyloid β Complex by X-ray Absorption through Partial Thermal Relaxation after Photoreduction. Angew Chem Int Ed Engl 2023; 62:e202217791. [PMID: 36869617 DOI: 10.1002/anie.202217791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The redox activity of Cu ions bound to the amyloid-β (Aβ) peptide is implicated as a source of oxidative stress in the context of Alzheimer's disease. In order to explain the efficient redox cycling between CuII -Aβ (distorted square-pyramidal) and CuI -Aβ (digonal) resting states, the existence of a low-populated "in-between" state, prone to bind Cu in both oxidation states, has been postulated. Here, we exploited the partial X-ray induced photoreduction at 10 K, followed by a thermal relaxation at 200 K, to trap and characterize by X-ray Absorption Spectroscopy (XAS) a partially reduced Cu-Aβ1-16 species different from the resting states. Remarkably, the XAS spectrum is well-fitted by a previously proposed model of the "in-between" state, hence providing the first direct spectroscopic characterization of an intermediate state. The present approach could be used to explore and identify the catalytic intermediates of other relevant metal complexes.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Germano Nobili
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Michael Okafor
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS-Université Grenoble Alpes, 38041, Grenoble, France
| | - Giancarlo Rossi
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89a, 00184, Roma, Italy
| | - Silvia Morante
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| | - Francesco Stellato
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| |
Collapse
|
37
|
Lu H, Liang J, He X, Ye H, Ruan C, Shao H, Zhang R, Li Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int J Mol Sci 2023; 24:ijms24119182. [PMID: 37298135 DOI: 10.3390/ijms24119182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to evaluate the association between Ferredoxin 1 (FDX1) expression and the prognostic survival of tumor patients and predict the efficacy of immunotherapy response to antitumor drug sensitivity. FDX1 plays an oncogenic role in thirty-three types of tumors, based on TCGA and GEO databases, and further experimental validation in vitro was provided through multiple cell lines. FDX1 was expressed highly in multiple types of cancer and differently linked to the survival prognosis of tumorous patients. A high phosphorylation level was correlated with the FDX1 site of S177 in lung cancer. FDX1 exhibited a significant association with infiltrated cancer-associated fibroblasts and CD8+ T cells. Moreover, FDX1 demonstrated correlations with immune and molecular subtypes, as well as functional enrichments in GO/KEGG pathways. Additionally, FDX1 displayed relationships with the tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and RNA and DNA synthesis (RNAss/DNAss) within the tumor microenvironment. Notably, FDX1 exhibited a strong connection with immune checkpoint genes in the co-expression network. The validity of these findings was further confirmed through Western blotting, RT-qPCR, and flow cytometry experiments conducted on WM115 and A375 tumor cells. Elevated FDX1 expression has been linked to the enhanced effectiveness of PD-L1 blockade immunotherapy in melanoma, as observed in the GSE22155 and GSE172320 cohorts. Autodocking simulations have suggested that FDX1 may influence drug resistance by affecting the binding sites of antitumor drugs. Collectively, these findings propose that FDX1 could serve as a novel and valuable biomarker and represent an immunotherapeutic target for augmenting immune responses in various human cancers when used in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Huijiao Lu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue He
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huabin Ye
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
Du J, Huang Z, Li Y, Ren X, Zhou C, Liu R, Zhang P, Lei G, Lyu J, Li J, Tan G. Copper exerts cytotoxicity through inhibition of iron-sulfur cluster biogenesis on ISCA1/ISCA2/ISCU assembly proteins. Free Radic Biol Med 2023:S0891-5849(23)00433-1. [PMID: 37225108 DOI: 10.1016/j.freeradbiomed.2023.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Copper is an essential mineral nutrient that provides the cofactors for some key enzymes. However, excess copper is paradoxically cytotoxic. Wilson's disease is an autosomal recessive hereditary disease characterized by pathological copper accumulation in many organs, with high mortality and disability. Nevertheless, many questions about the molecular mechanism in Wilson's disease remain unknown and there is an imperative need to address these questions to better exploit therapeutic strategy. In this study, we constructed the mouse model of Wilson's disease, ATP7A-/- immortalized lymphocyte cell line and ATP7B knockdown cells to explore whether copper could impair iron-sulfur cluster biogenesis in eukaryotic mitochondria. Through a series of cellular, molecular, and pharmacological analyses, we demonstrated that copper could suppress the assembly of Fe-S cluster, decrease the activity of the Fe-S enzyme and disorder the mitochondrial function both in vivo and in vitro. Mechanistically, we found that human ISCA1, ISCA2 and ISCU proteins have a strong copper-binding activity, which would hinder the process of iron-sulfur assembly. Of note, we proposed a novel mechanism of action to explain the toxicity of copper by providing evidence that iron-sulfur cluster biogenesis may be a primary target of copper toxicity both in cells and mouse models. In summary, the current work provides an in-depth study on the mechanism of copper intoxication and describes a framework for the further understanding of impaired Fe-S assembly in the pathological processes of Wilson's diseases, which helps to develop latent therapeutic strategies for the management of copper toxicity.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhaoyang Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ruolan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guoqiang Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
39
|
Da Vela S, Saudino G, Lucarelli F, Banci L, Svergun DI, Ciofi-Baffoni S. Structural plasticity of NFU1 upon interaction with binding partners: insights into the mitochondrial [4Fe-4S] cluster pathway. J Mol Biol 2023:168154. [PMID: 37211204 PMCID: PMC10388178 DOI: 10.1016/j.jmb.2023.168154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In humans, the biosynthesis and trafficking of mitochondrial [4Fe-4S]2+ clusters is a highly coordinated process that requires a complex protein machinery. In a mitochondrial pathway among various proposed to biosynthesize nascent [4Fe-4S]2+ clusters, two [2Fe-2S]2+ clusters are converted into a [4Fe-4S]2+ cluster on a ISCA1-ISCA2 complex. Along this pathway, this cluster is then mobilized from this complex to mitochondrial apo recipient proteins with the assistance of accessory proteins. NFU1 is the accessory protein that first receives the [4Fe-4S]2+ cluster from ISCA1-ISCA2 complex. A structural view of the protein-protein recognition events occurring along the [4Fe-4S]2+ cluster trafficking as well as how the globular N-terminal and C-terminal domains of NFU1 act in such process is, however, still elusive. Here, we applied small-angle X-ray scattering coupled with on-line size-exclusion chromatography and paramagnetic NMR to disclose structural snapshots of ISCA1-, ISCA2- and NFU1-containing apo complexes as well as the coordination of [4Fe-4S]2+ cluster bound to the ISCA1-NFU1 complex, which is the terminal stable species of the [4Fe-4S]2+ cluster transfer pathway involving ISCA1-, ISCA2- and NFU1 proteins. The structural modelling of ISCA1-ISCA2, ISCA1-ISCA2-NFU1 and ISCA1-NFU1 apo complexes, here reported, reveals that the structural plasticity of NFU1 domains is crucial to drive protein partner recognition and modulate [4Fe-4S]2+ cluster transfer from the cluster-assembly site in ISCA1-ISCA2 complex to the cluster-binding site in ISCA1-NFU1 complex. These structures allowed us to provide a first rational for the molecular function of the N-domain of NFU1, which can act as a modulator in the [4Fe-4S]2+ cluster transfer.
Collapse
Affiliation(s)
- Stefano Da Vela
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Lucarelli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Dmitri I Svergun
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy.
| |
Collapse
|
40
|
Norambuena J, Al-Tameemi H, Bovermann H, Kim J, Beavers WN, Skaar EP, Parker D, Boyd JM. Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus. PLoS Pathog 2023; 19:e1011393. [PMID: 37235600 PMCID: PMC10249872 DOI: 10.1371/journal.ppat.1011393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.
Collapse
Affiliation(s)
- Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
41
|
Kronen M, Vázquez-Campos X, Wilkins MR, Lee M, Manefield MJ. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. mSystems 2023; 8:e0011923. [PMID: 36943133 PMCID: PMC10134865 DOI: 10.1128/msystems.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Collapse
Affiliation(s)
- Miriam Kronen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Hu B, Hounye AH, Wang Z, Qi M, Zhang J. A novel Cuprotosis-related signature predicts the prognosis and selects personal treatments for melanoma based on bioinformatics analysis. Front Oncol 2023; 13:1108128. [PMID: 36824136 PMCID: PMC9941880 DOI: 10.3389/fonc.2023.1108128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Background Melanoma is a common and aggressive cutaneous malignancy characterized by poor prognosis and a high fatality rate. Recently, due to the application of Immune-checkpoint inhibitors (ICI) in melanoma treatment, melanoma patients' prognosis has been tremendously improved. However, the treatment effect varies quite differently from patient to patient. In this study, we aim to construct and validate a Cuproptosis-related risk model to improve outcome prediction of ICIs in melanoma and divide patients into subtypes with different Cuproptosis-related genes. Methods Here, according to differentially expressed genes from four melanoma datasets in GEO (Gene Expression Omnibus), and one in TCGA (The Cancer Genome Atlas) database, a novel signature was developed through LASSO and Cox regression analysis. We used 781 melanoma samples to examine the molecular subtypes associated with Cuproptosis-related genes and studied the related gene mutation and TME cell infiltration. Patients with melanoma can be divided into at least three subtypes based on gene expression profile. Survival pan-cancer analysis was also conducted for melanoma patients. Results The Cuproptosis risk score can predict tumor immunity, subtype, survival, and drug sensitivity for melanoma. And Cuproptosis-associated subtypes can help predict therapeutic outcomes. Conclusion Cuproptosis risk score is a promising potential biomarker in cancer diagnosis, molecular subtypes determination, TME cell infiltration characteristics, and therapy response prediction in melanoma patients.
Collapse
Affiliation(s)
- Bingqian Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, China,*Correspondence: Zheng Wang, ; Jianglin Zhang, ; Min Qi,
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zheng Wang, ; Jianglin Zhang, ; Min Qi,
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China,Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Zheng Wang, ; Jianglin Zhang, ; Min Qi,
| |
Collapse
|
43
|
Grifagni D, Silva JM, Cantini F, Piccioli M, Banci L. Relaxation-based NMR assignment: Spotlights on ligand binding sites in human CISD3. J Inorg Biochem 2023; 239:112089. [PMID: 36502664 DOI: 10.1016/j.jinorgbio.2022.112089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - José M Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
44
|
Kim J, Lindahl PA. CUP1 Metallothionein from Healthy Saccharomyces cerevisiae Colocalizes to the Cytosol and Mitochondrial Intermembrane Space. Biochemistry 2023; 62:62-74. [PMID: 36503220 PMCID: PMC9813906 DOI: 10.1021/acs.biochem.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Liquid chromatography, mass spectrometry, and metal analyses of cytosol and mitochondrial filtrates from healthy copper-replete Saccharomyces cerevisiae cells revealed that metallothionein CUP1 was a notable copper-containing species in both compartments, with its abundance dependent upon the level of copper supplementation in the growth media. Electrospray ionization mass spectrometry of cytosol and soluble mitochondrial filtrates displayed a full isotopologue pattern of CUP1 in which the first eight amino acid residues were truncated and eight copper ions were bound. Neither apo-CUP1 nor intermediate copper-bound forms were detected, but chelator treatment could generate apo-CUP1. Mitoplasting revealed that mitochondrial CUP1 was located in the intermembrane space. Fluorescence microscopy demonstrated that 34 kDa CUP1-GFP entered the organelle, discounting the possibility that 7 kDa CUP1 enters folded and metalated through outer membrane pores. How CUP1 enters mitochondria remains unclear, as does its role within the organelle. Although speculative, mitochondrial CUP1 may limit the concentrations of low-molecular-mass copper complexes in the organelle.
Collapse
Affiliation(s)
- Joshua
E. Kim
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Paul A. Lindahl
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
45
|
Chang B, Hu Z, Chen L, Jin Z, Yang Y. Development and validation of cuproptosis-related genes in synovitis during osteoarthritis progress. Front Immunol 2023; 14:1090596. [PMID: 36817415 PMCID: PMC9932029 DOI: 10.3389/fimmu.2023.1090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common refractory degenerative joint diseases worldwide. Synovitis is believed to drive joint cartilage destruction during OA pathogenesis. Cuproptosis is a novel form of copper-induced cell death. However, few studies have examined the correlations between cuproptosis-related genes (CRGs), immune infiltration, and synovitis. Therefore, we analyzed CRGs in synovitis during OA. Microarray datasets (GSE55235, GSE55457, GSE12021, GSE82107 and GSE176308) were downloaded from the Gene Expression Omnibus database. Next, we conducted differential and subtype analyses of CRGs across synovitis. Immune infiltration and correlation analyses were performed to explore the association between CRGs and immune cell abundance in synovitis. Finally, single-cell RNA-seq profiling was performed using the GSE176308 dataset to investigate the expression of CRGs in the various cell clusters. We found that the expression of five CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) was significantly increased in the OA synovium. Moreover, abundant and various types of immune cells infiltrated the synovium during OA, which was correlated with the expression of CRGs. Additionally, single-cell RNA-seq profiling revealed that the cellular composition of the synovium was complex and that their proportions varied greatly as OA progressed. The expression of CRGs differed across various cell types in the OA synovium. The current study predicted that cuproptosis may be involved in the pathogenesis of synovitis. The five screened CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) could be explored as candidate biomarkers or therapeutic targets for OA synovitis.
Collapse
Affiliation(s)
- Bohan Chang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhehan Hu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Chen
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuangzhuang Jin
- Department of Emergence Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
46
|
Camponeschi F, Piccioli M, Banci L. The Intriguing mitoNEET: Functional and Spectroscopic Properties of a Unique [2Fe-2S] Cluster Coordination Geometry. Molecules 2022; 27:8218. [PMID: 36500311 PMCID: PMC9737848 DOI: 10.3390/molecules27238218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the number of cellular and pathological mitoNEET-related processes, very few details are known about the mechanism of action of the protein. The recently discovered existence of a link between NEET proteins and cancer pave the way to consider mitoNEET and its Fe-S clusters as suitable targets to inhibit cancer cell proliferation. Here, we will review the variety of spectroscopic techniques that have been applied to study mitoNEET in an attempt to explain the drastic difference in clusters stability and reactivity observed for the two redox states, and to elucidate the cellular function of the protein. In particular, the extensive NMR assignment and the characterization of first coordination sphere provide a molecular fingerprint helpful to assist the design of drugs able to impair cellular processes or to directly participate in redox reactions or protein-protein recognition mechanisms.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Mario Piccioli
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Consorzio Internuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
47
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 595] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
48
|
Zhao X, Chen J, Yin S, Shi J, Zheng M, He C, Meng H, Han Y, Han J, Guo J, Yuan Z, Wang Y. The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis. Front Oncol 2022; 12:992468. [PMID: 36313717 PMCID: PMC9614267 DOI: 10.3389/fonc.2022.992468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The mechanism of cuproptosis has recently been reported in lipoylated proteins of the tricarboxylic acid (TCA) cycle. Besides, the role of copper was previously recognized in cancer progression. We evaluated the prognostic value of cuproptosis-related gene expression in hepatocellular carcinoma (HCC). METHODS Remarkable genes were selected both in differential expression analysis and Kaplan-Meier survival analysis from ninety-six cuproptosis-related genes using The Cancer Genome Atlas (TCGA) database. The relationships between clinical characteristics and gene expression were performed with Wilcoxon signed-rank test, Kruskal-Wallis test, and logistic regression. Clinicopathologic factors correlated with overall survival in HCCs conducting univariate and multivariate Cox regression analysis. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA) databases were utilized to verify the results. Furthermore, Gene Set Enrichment Analysis (GSEA) identified the potential key pathways that dominate cuproptosis in HCC. RESULTS Elevated ATP7A, SLC25A3, SCO2, COA6, TMEM199, ATP6AP1, LIPT1, DLAT, PDHA1, MTF1, ACP1, FDX2, NUBP2, CIAPIN1, ISCA2 and NDOR1 expression, as well as declined AOC1, FDX1, MT-CO1, and ACO1 expression were significantly emerged in HCC tumor tissues and were significantly associated with HCCs poor survival. The expressions of screened cuproptosis-related genes were prominently related to clinical features. GSEA analysis reported many key signaling pathways (such as natural killer cell mediated cytotoxicity, TCA cycle, glutathione metabolism, ATP-binding cassette (ABC) transporters, Notch signaling pathway, ErbB signaling pathway, and metabolism of xenobiotics by cytochrome p450) were differentially enriched in HCCs with varying degrees of cuproptosis-related genes expression. CONCLUSIONS The twenty cuproptosis-related genes might be utilized as new candidate prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xueying Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shangqi Yin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingren Shi
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaonan He
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinyu Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Guo
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Trindade IB, Coelho A, Cantini F, Piccioli M, Louro RO. NMR of paramagnetic metalloproteins in solution: Ubi venire, quo vadis? J Inorg Biochem 2022; 234:111871. [DOI: 10.1016/j.jinorgbio.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
50
|
Camponeschi F, Ciofi-Baffoni S, Calderone V, Banci L. Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins. Biomolecules 2022; 12:biom12071009. [PMID: 35883565 PMCID: PMC9313013 DOI: 10.3390/biom12071009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron–sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety of functions, such as electron transport, enzymatic catalysis, DNA maintenance, and gene expression regulation. The synthesis and distribution of Fe-S clusters are strictly controlled cellular processes that involve several mitochondrial proteins that specifically interact each other to form a complex machinery (Iron Sulfur Cluster assembly machinery, ISC machinery hereafter). This machinery ensures the correct assembly of both [2Fe-2S] and [4Fe-4S] clusters and their insertion in the mitochondrial target proteins. The present review provides a structural and molecular overview of the rare diseases associated with the genes encoding for the accessory proteins of the ISC machinery (i.e., GLRX5, ISCA1, ISCA2, IBA57, FDX2, BOLA3, IND1 and NFU1) involved in the assembly and insertion of [4Fe-4S] clusters in mitochondrial proteins. The disease-related missense mutations were mapped on the 3D structures of these accessory proteins or of their protein complexes, and the possible impact that these mutations have on their specific activity/function in the frame of the mitochondrial [4Fe-4S] protein biogenesis is described.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|