1
|
Bories P, Rima J, Tranier S, Marcoux J, Grimoire Y, Tomaszczyk M, Launay A, Fata K, Marrakchi H, Burlet‐Schiltz O, Mourey L, Ducoux‐Petit M, Bardou F, Bon C, Quémard A. HadBD dehydratase from Mycobacterium tuberculosis fatty acid synthase type II: A singular structure for a unique function. Protein Sci 2024; 33:e4964. [PMID: 38501584 PMCID: PMC10949391 DOI: 10.1002/pro.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.
Collapse
Affiliation(s)
- Pascaline Bories
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Yasmina Grimoire
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Mathilde Tomaszczyk
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Anne Launay
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Karine Fata
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Odile Burlet‐Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Manuelle Ducoux‐Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Fabienne Bardou
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| |
Collapse
|
2
|
McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. Structure of a modular polyketide synthase reducing region. Structure 2023; 31:1109-1120.e3. [PMID: 37348494 PMCID: PMC10527585 DOI: 10.1016/j.str.2023.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.
Collapse
Affiliation(s)
- Tyler M McCullough
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anya Dhar
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Zhai G, Zhu Y, Sun G, Zhou F, Sun Y, Hong Z, Dong C, Leadlay PF, Hong K, Deng Z, Zhou F, Sun Y. Insights into azalomycin F assembly-line contribute to evolution-guided polyketide synthase engineering and identification of intermodular recognition. Nat Commun 2023; 14:612. [PMID: 36739290 PMCID: PMC9899208 DOI: 10.1038/s41467-023-36213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
Modular polyketide synthase (PKS) is an ingenious core machine that catalyzes abundant polyketides in nature. Exploring interactions among modules in PKS is very important for understanding the overall biosynthetic process and for engineering PKS assembly-lines. Here, we show that intermodular recognition between the enoylreductase domain ER1/2 inside module 1/2 and the ketosynthase domain KS3 inside module 3 is required for the cross-module enoylreduction in azalomycin F (AZL) biosynthesis. We also show that KS4 of module 4 acts as a gatekeeper facilitating cross-module enoylreduction. Additionally, evidence is provided that module 3 and module 6 in the AZL PKS are evolutionarily homologous, which makes evolution-oriented PKS engineering possible. These results reveal intermodular recognition, furthering understanding of the mechanism of the PKS assembly-line, thus providing different insights into PKS engineering. This also reveals that gene duplication/conversion and subsequent combinations may be a neofunctionalization process in modular PKS assembly-lines, hence providing a different case for supporting the investigation of modular PKS evolution.
Collapse
Affiliation(s)
- Guifa Zhai
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yan Zhu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fan Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yangning Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zhou Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Chuan Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Kui Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China. .,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Hobson C, Jenner M, Jian X, Griffiths D, Roberts DM, Rey-Carrizo M, Challis GL. Diene incorporation by a dehydratase domain variant in modular polyketide synthases. Nat Chem Biol 2022; 18:1410-1416. [PMID: 36109649 PMCID: PMC7613849 DOI: 10.1038/s41589-022-01127-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Modular polyketide synthases (PKSs) are biosynthetic assembly lines that construct structurally diverse natural products with wide-ranging applications in medicine and agriculture. Various mechanisms contribute to structural diversification during PKS-mediated chain assembly, including dehydratase (DH) domain-mediated elimination of water from R and S-configured 3-hydroxy-thioesters to introduce E- and Z-configured carbon-carbon double bonds, respectively. Here we report the discovery of a DH domain variant that catalyzes the sequential elimination of two molecules of water from a (3R, 5S)-3,5-dihydroxy thioester during polyketide chain assembly, introducing a conjugated E,Z-diene into various modular PKS products. We show that the reaction proceeds via a (2E, 5S)-2-enoyl-5-hydroxy-thioester intermediate and involves an additional universally conserved histidine residue that is absent from the active site of most conventional DH domains. These findings expand the diverse range of chemistries mediated by DH-like domains in modular PKSs, highlighting the catalytic versatility of the double hotdog fold.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Chemistry, University of Warwick, Coventry, UK.,Willow Biosciences Inc., Vancouver, British Columbia, Canada
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Xinyun Jian
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Griffiths
- Department of Chemistry, University of Warwick, Coventry, UK.,Monash University Accident Research Centre, Clayton, Victoria, Australia
| | | | - Matias Rey-Carrizo
- Department of Chemistry, University of Warwick, Coventry, UK.,BCN Medical Writing, Sabadell, Spain
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK. .,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK. .,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Yin Z, Liebhart E, Stegmann E, Brötz-Oesterhelt H, Dickschat JS. An isotopic probe to follow the stereochemical course of dehydratase reactions in polyketide and fatty acid biosynthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00272h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four stereoisomeric and isotopically labelled probes that are suitable to easily follow the stereochemical course of dehydratases have been synthesised.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Elisa Liebhart
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Deptartment of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
6
|
Wagner L, Roß T, Hollmann T, Hahn F. Cross-linking of a polyketide synthase domain leads to a recyclable biocatalyst for chiral oxygen heterocycle synthesis. RSC Adv 2021; 11:20248-20251. [PMID: 35479892 PMCID: PMC9033652 DOI: 10.1039/d1ra03692k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of polyketide synthase (PKS) domains for chemoenzymatic synthesis can often not be tapped due to their low stability and activity in vitro. In this proof-of-principle study, the immobilisation of the heterocycle-forming PKS domain AmbDH3 as a cross-linked enzyme aggregate (CLEA) is described. The AmbDH3-CLEA showed good activity recovery, stability and recyclability. Repetitive reactions on the semi-preparative scale were performed with high conversion and isolated yield. Similar to that observed for the free enzyme, the aggregate retained substrate tolerance and the ability for kinetic resolution. This first example of a successful enzymatic PKS domain immobilisation demonstrates that cross-linking can in principle be applied to this type of enzyme to increase its applicability for chemoenzymatic synthesis. Cross-linking of the polyketide synthase domain AmbDH3 led to an active aggregate with improved properties for the chemoenzymatic synthesis of chiral oxygen heterocycles, such as recyclability and facile purification.![]()
Collapse
Affiliation(s)
- Lisa Wagner
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Theresa Roß
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Tim Hollmann
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Frank Hahn
- Department of Chemistry, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
7
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
8
|
Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics 2021; 22:29. [PMID: 33413100 PMCID: PMC7789753 DOI: 10.1186/s12864-020-07346-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Tomato plant growth is frequently hampered by a high susceptibility to pests and diseases. Traditional chemical control causes a serious impact on both the environment and human health. Therefore, seeking environment-friendly and cost-effective green methods in agricultural production becomes crucial nowadays. Plant Growth Promoting Rhizobacteria (PGPR) can promote plant growth through biological activity. Their use is considered to be a promising sustainable approach for crop growth. Moreover, a vast number of biosynthetic gene clusters (BGCs) for secondary metabolite production are being revealed in PGPR, which helps to find potential anti-microbial activities for tomato disease control. Results We isolated 181 Bacillus-like strains from healthy tomato, rhizosphere soil, and tomato tissues. In vitro antagonistic assays revealed that 34 Bacillus strains have antimicrobial activity against Erwinia carotovora, Pseudomonas syringae; Rhizoctonia solani; Botrytis cinerea; Verticillium dahliae and Phytophthora infestans. The genomes of 10 Bacillus and Paenibacillus strains with good antagonistic activity were sequenced. Via genome mining approaches, we identified 120 BGCs encoding NRPs, PKs-NRPs, PKs, terpenes and bacteriocins, including known compounds such as fengycin, surfactin, bacillibactin, subtilin, etc. In addition, several novel BGCs were identified. We discovered that the NRPs and PKs-NRPs BGCs in Bacillus species are encoding highly conserved known compounds as well as various novel variants. Conclusions This study highlights the great number of varieties of BGCs in Bacillus strains. These findings pave the road for future usage of Bacillus strains as biocontrol agents for tomato disease control and are a resource arsenal for novel antimicrobial discovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07346-8.
Collapse
|
9
|
Liu L, Yu Q, Zhang H, Tao W, Wang R, Bai L, Zhao YL, Shi T. Theoretical study on substrate recognition and catalytic mechanisms of gephyronic acid dehydratase DH1. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01776k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional dehydratase GphF DH1 catalyzes both the dehydration of β-hydroxy and the double bond isomerization with the energy barrier of 27.0 kcal mol−1 and 17.2 kcal mol−1 respectively.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Qian Yu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Haoqing Zhang
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Rufan Wang
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
10
|
Zhai G, Wang W, Xu W, Sun G, Hu C, Wu X, Cong Z, Deng L, Shi Y, Leadlay PF, Song H, Hong K, Deng Z, Sun Y. Cross-Module Enoylreduction in the Azalomycin F Polyketide Synthase. Angew Chem Int Ed Engl 2020; 59:22738-22742. [PMID: 32865309 DOI: 10.1002/anie.202011357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/14/2022]
Abstract
The colinearity of canonical modular polyketide synthases, which creates a direct link between multienzyme structure and the chemical structure of the biosynthetic end-product, has become a cornerstone of knowledge-based genome mining. Herein, we report genetic and enzymatic evidence for the remarkable role of an enoylreductase in the polyketide synthase for azalomycin F biosynthesis. This internal enoylreductase domain, previously identified as acting only in the second of two chain extension cycles on an initial iterative module, is shown to also catalyze enoylreduction in trans within the next module. The mechanism for this rare deviation from colinearity appears to involve direct cross-modular interaction of the reductase with the longer acyl chain, rather than back transfer of the substrate into the iterative module, suggesting an additional and surprising plasticity in natural PKS assembly-line catalysis.
Collapse
Affiliation(s)
- Guifa Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Wenyan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, No. 299 Bayi Road, Wuhan, 430072, P. R. China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China.,Current address: Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Chaoqun Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Xiangming Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Zisong Cong
- College of Chemistry and Molecular Sciences, Wuhan University, No. 299 Bayi Road, Wuhan, 430072, P. R. China
| | - Liang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Yanrong Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, No. 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, No. 299 Bayi Road, Wuhan, 430072, P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, P. R. China
| |
Collapse
|
11
|
Zhai G, Wang W, Xu W, Sun G, Hu C, Wu X, Cong Z, Deng L, Shi Y, Leadlay PF, Song H, Hong K, Deng Z, Sun Y. Cross‐Module Enoylreduction in the Azalomycin F Polyketide Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guifa Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Wenyan Wang
- College of Chemistry and Molecular Sciences Wuhan University No. 299 Bayi Road Wuhan 430072 P. R. China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
- Current address: Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology, and Research (A*STAR) Singapore Singapore
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Chaoqun Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Xiangming Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Zisong Cong
- College of Chemistry and Molecular Sciences Wuhan University No. 299 Bayi Road Wuhan 430072 P. R. China
| | - Liang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Yanrong Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Peter F. Leadlay
- Department of Biochemistry University of Cambridge No. 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Heng Song
- College of Chemistry and Molecular Sciences Wuhan University No. 299 Bayi Road Wuhan 430072 P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University) Ministry of Education, and School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 P. R. China
| |
Collapse
|
12
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
13
|
Hjerrild P, Tørring T, Poulsen TB. Dehydration reactions in polyfunctional natural products. Nat Prod Rep 2020; 37:1043-1064. [DOI: 10.1039/d0np00009d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we review methods for chemical dehydration of alcohols to alkenes and discuss the potential of late-stage functionalization by direct, site- and chemo-selective dehydration of complex molecular substrates.
Collapse
Affiliation(s)
- Per Hjerrild
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Thomas Tørring
- Department of Engineering – Microbial Biosynthesis
- Aarhus University
- Aarhus C
- Denmark
| | | |
Collapse
|
14
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
15
|
Yang XL, Friedrich S, Yin S, Piech O, Williams K, Simpson TJ, Cox RJ. Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase. Chem Sci 2019; 10:8478-8489. [PMID: 31803427 PMCID: PMC6839510 DOI: 10.1039/c9sc03173a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/28/2019] [Indexed: 12/28/2022] Open
Abstract
Exchange of 32 different sub-fragments of the C-methyltransferase (C-MeT), pseudo-ketoreductase (ΨKR) and ketoreductase (KR) catalytic domains of the tenellin iterative Type I polyketide synthase non ribosomal peptide synthetase (PKS-NRPS) TENS by homologous fragments from the desmethylbassianin (DMBS) and militarinone (MILS) PKS-NRPS led to the creation of chimeric synthetases in which programming fidelity was altered, resulting in the production of mixtures of products with different methylation patterns and chain lengths. Swap of KR domain subfragments with the homologous fragments from the KR of the heptaketide militarinone synthetase resulted in the synthesis of penta, hexa and heptaketides. The results of these and previous experiments are rationalised by considering the existence of competition for acyl-carrier protein (ACP) bound substrates between different catalytic domains of the PKS. In particular, competition between the C-MeT and ketoreductase domains (KR) can account for methylation programming, and competition between the KR and the off-loading NRPS accounts for chain-length selectivity.
Collapse
Affiliation(s)
- Xiao-Long Yang
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Steffen Friedrich
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Sen Yin
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Oliver Piech
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Katherine Williams
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany.,School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Russell J Cox
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| |
Collapse
|
16
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
17
|
Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases. J Ind Microbiol Biotechnol 2019; 46:1225-1235. [PMID: 31115703 PMCID: PMC6697708 DOI: 10.1007/s10295-019-02189-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022]
Abstract
Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.
Collapse
|
18
|
Skiba MA, Bivins MM, Schultz JR, Bernard SM, Fiers WD, Dan Q, Kulkarni S, Wipf P, Gerwick WH, Sherman DH, Aldrich CC, Smitha JL. Structural Basis of Polyketide Synthase O-Methylation. ACS Chem Biol 2018; 13:3221-3228. [PMID: 30489068 PMCID: PMC6470024 DOI: 10.1021/acschembio.8b00687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Modular type I polyketide synthases (PKSs) produce some of the most chemically complex metabolites in nature through a series of multienzyme modules. Each module contains a variety of catalytic domains to selectively tailor the growing molecule. PKS O-methyltransferases ( O-MTs) are predicted to methylate β-hydroxyl or β-keto groups, but their activity and structure have not been reported. We determined the domain boundaries and characterized the catalytic activity and structure of the StiD and StiE O-MTs, which methylate opposite β-hydroxyl stereocenters in the myxobacterial stigmatellin biosynthetic pathway. Substrate stereospecificity was demonstrated for the StiD O-MT. Key catalytic residues were identified in the crystal structures and investigated in StiE O-MT via site-directed mutagenesis and further validated with the cyanobacterial CurL O-MT from the curacin biosynthetic pathway. Initial structural and biochemical analysis of PKS O-MTs supplies a new chemoenzymatic tool, with the unique ability to selectively modify hydroxyl groups during polyketide biosynthesis.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Marissa M. Bivins
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - John R. Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Steffen M. Bernard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI, 48109, United States
| | - William D. Fiers
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Qingyun Dan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sarang Kulkarni
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15206, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15206, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Janet L. Smitha
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
19
|
Moss NA, Leão T, Rankin MR, McCullough TM, Qu P, Korobeynikov A, Smith JL, Gerwick L, Gerwick WH. Ketoreductase Domain Dysfunction Expands Chemodiversity: Malyngamide Biosynthesis in the Cyanobacterium Okeania hirsuta. ACS Chem Biol 2018; 13:3385-3395. [PMID: 30444349 PMCID: PMC6470004 DOI: 10.1021/acschembio.8b00910] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dozens of type A malyngamides, principally identified by a decorated six-membered cyclohexanone headgroup and methoxylated lyngbic acid tail, have been isolated over several decades. Their environmental sources include macro- and microbiotic organisms, including sea hares, red alga, and cyanobacterial assemblages, but the true producing organism has remained enigmatic. Many type A analogues display potent bioactivity in human-health related assays, spurring an interest in this molecular class and its biosynthetic pathway. Here, we present the discovery of the type A malyngamide biosynthetic pathway in the first sequenced genome of the cyanobacterial genus Okeania. Bioinformatic analysis of two cultured Okeania genome assemblies identified 62 and 68 kb polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) pathways with unusual loading and termination genes. NMR data of malyngamide C acetate derived from 13C-substrate-fed cultures provided evidence that an intact octanoate moiety is transferred to the first KS module via a LipM homologue originally associated with lipoic acid metabolism and implicated an inactive ketoreductase (KR0) as critical for six-membered ring formation, a hallmark of the malyngamide family. Phylogenetic analysis and homology modeling of the penultimate KR0 domain inferred structural cofactor binding and active site alterations as contributory to domain dysfunction, which was confirmed by recombinant protein expression and NADPH binding assay. The carbonyl retained from this KR0 ultimately enables an intramolecular Knoevenagel condensation to form the characteristic cyclohexanone ring. Understanding this critical step allows assignment of a biosynthetic model for all type A malyngamides, whereby well-characterized tailoring modifications explain the surprising proliferation and diversity of analogues.
Collapse
Affiliation(s)
- Nathan A. Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Tiago Leão
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Michael R. Rankin
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue Ann Arbor, MI 48109
| | - Tyler M. McCullough
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue Ann Arbor, MI 48109
| | - Pingping Qu
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg 198504, Russia
| | - Janet L. Smith
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue Ann Arbor, MI 48109
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
20
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
21
|
Dodge GJ, Ronnow D, Taylor RE, Smith JL. Molecular Basis for Olefin Rearrangement in the Gephyronic Acid Polyketide Synthase. ACS Chem Biol 2018; 13:2699-2707. [PMID: 30179448 PMCID: PMC6233718 DOI: 10.1021/acschembio.8b00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyketide synthases (PKS) are a rich source of natural products of varied chemical composition and biological significance. Here, we report the characterization of an atypical dehydratase (DH) domain from the PKS pathway for gephyronic acid, an inhibitor of eukaryotic protein synthesis. Using a library of synthetic substrate mimics, the reaction course, stereospecificity, and tolerance to non-native substrates of GphF DH1 are probed via LC-MS analysis. Taken together, the studies establish GphF DH1 as a dual-function dehydratase/isomerase that installs an odd-to-even double bond and yields a product consistent with the isobutenyl terminus of gephyronic acid. The studies also reveal an unexpected C2 epimerase function in catalytic turnover with the native substrate. A 1.55-Å crystal structure of GphF DH1 guided mutagenesis experiments to elucidate the roles of key amino acids in the multistep DH1 catalysis, identifying critical functions for leucine and tyrosine side chains. The mutagenesis results were applied to add a secondary isomerase functionality to a nonisomerizing DH in the first successful gain-of-function engineering of a PKS DH. Our studies of GphF DH1 catalysis highlight the versatility of the DH active site and adaptation for a specific catalytic outcome with a specific substrate.
Collapse
Affiliation(s)
- Greg J. Dodge
- Department of Biological Chemistry and Life Sciences Institute University of Michigan Ann Arbor, Michigan, 48109
| | - Danialle Ronnow
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, Indiana 46556
| | - Richard E. Taylor
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, Indiana 46556
| | - Janet L. Smith
- Department of Biological Chemistry and Life Sciences Institute University of Michigan Ann Arbor, Michigan, 48109
| |
Collapse
|
22
|
Xie X, Cane DE. Stereospecific Formation of Z-Trisubstituted Double Bonds by the Successive Action of Ketoreductase and Dehydratase Domains from trans-AT Polyketide Synthases. Biochemistry 2018; 57:3126-3129. [PMID: 29293329 PMCID: PMC5988919 DOI: 10.1021/acs.biochem.7b01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incubation of (±)-2-methyl-3-ketobutyryl-SNAC (3) and (±)-2-methyl-3-ketopentanoyl-SNAC (4) with BonKR2 or OxaKR5, ketoreductase domains from the bongkrekic acid (1) and oxazolomycin (2) polyketide synthases, in the presence of NADPH gave in each case the corresponding (2 R,3 S)-2-methyl-3-hydroxybutyryl-SNAC (5) or (2 R,3 S)-2-methyl-3-hydroxypentanoyl-SNAC (6) products, as established by chiral gas chromatography-mass spectrometry analysis of the derived methyl esters. Identical results were obtained by BonKR2- and OxaKR5-catalyzed reduction of chemoenzymatically prepared (2 R)-2-methyl-3-ketopentanoyl-EryACP6, (2 R)-2-methyl-3-ketobutyryl-BonACP2 (12), and (2 R)-2-methyl-3-ketopentanoyl-BonACP2 (13). The paired dehydratase domains, BonDH2 and OxaDH5, were then shown to catalyze the reversible syn dehydration of (2 R,3 S)-2-methyl-3-hydroxybutyryl-BonACP2 (14) to give the corresponding trisubstituted ( Z)-2-methylbutenoyl-BonACP2 (16).
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
23
|
Wagner DT, Zhang Z, Meoded RA, Cepeda AJ, Piel J, Keatinge-Clay AT. Structural and Functional Studies of a Pyran Synthase Domain from a trans-Acyltransferase Assembly Line. ACS Chem Biol 2018; 13:975-983. [PMID: 29481043 DOI: 10.1021/acschembio.8b00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.
Collapse
Affiliation(s)
- Drew T. Wagner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhicheng Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Roy A. Meoded
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Alexis J. Cepeda
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jörn Piel
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Einblicke in die duale Aktivität einer bifunktionalen Dehydratase-Cyclase-Domäne. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
25
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Insights into the Dual Activity of a Bifunctional Dehydratase-Cyclase Domain. Angew Chem Int Ed Engl 2017; 57:343-347. [PMID: 29084363 DOI: 10.1002/anie.201707774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are a common structural motif in polyketide natural products and contribute significantly to their biological activity. Here, we report structural and mechanistic investigations on AmbDH3, a polyketide synthase domain with dual activity as dehydratase (DH) and pyran-forming cyclase in ambruticin biosynthesis. AmbDH3 is similar to monofunctional DH domains, using H51 and D215 for dehydration. V173 was confirmed as a diagnostic residue for cyclization activity by a mutational study and enzymatic in vitro experiments. Similar motifs were observed in the seemingly monofunctional AmbDH2, which also shows an unexpected cyclase activity. Our results pave the way for mining of hidden cyclases in biosynthetic pathways. They also open interesting prospects for the generation of novel biocatalysts for chemoenzymatic synthesis and pyran-polyketides by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
26
|
Shah DD, You YO, Cane DE. Stereospecific Formation of E- and Z-Disubstituted Double Bonds by Dehydratase Domains from Modules 1 and 2 of the Fostriecin Polyketide Synthase. J Am Chem Soc 2017; 139:14322-14330. [PMID: 28902510 DOI: 10.1021/jacs.7b08896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dehydratase domain FosDH1 from module 1 of the fostriecin polyketide synthase (PKS) catalyzed the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP1 (5) and (E)-2-butenoyl-FosACP1 (11), as established by a combination of direct LC-MS/MS and chiral GC-MS. FosDH1 did not act on either (3S)-3-hydroxybutyryl-FosACP1 (6) or (Z)-2-butenoyl-FosACP1 (12). FosKR2, the ketoreductase from module 2 of the fostriecin PKS that normally provides the natural substrate for FosDH2, was shown to catalyze the NADPH-dependent stereospecific reduction of 3-ketobutyryl-FosACP2 (23) to (3S)-3-hydroxybutyryl-FosACP2 (8). Consistent with this finding, FosDH2 catalyzed the interconversion of the corresponding triketide substrates (3R,4E)-3-hydroxy-4-hexenoyl-FosACP2 (18) and (2Z,4E)-2,4-hexadienoyl-FosACP2 (21). FosDH2 also catalyzed the stereospecific hydration of (Z)-2-butenoyl-FosACP2 (14) to (3S)-3-hydroxybutyryl-FosACP2 (8). Although incubation of FosDH2 with (3S)-3-hydroxybutyryl-FosACP2 (8) did not result in detectable accumulation of (Z)-2-butenoyl-FosACP2 (14), FosDH2 catalyzed the slow exchange of the 3-hydroxy group of 8 with [18O]-water. FosDH2 unexpectedly could also support the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP2 (7) and (E)-2-butenoyl-FosACP2 (13).
Collapse
Affiliation(s)
- Dhara D Shah
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Young-Ok You
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
27
|
Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure 2017; 25:1045-1055.e2. [PMID: 28625788 PMCID: PMC5553570 DOI: 10.1016/j.str.2017.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observed in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.
Collapse
|
28
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017; 56:7247-7251. [PMID: 28464455 DOI: 10.1002/anie.201703588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 11/05/2022]
Abstract
The dehydratase domains (DHs) of the iso-migrastatin (iso-MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module-6, -9, -10 of MgsF (i.e., DH6, DH9, DH10) and module-11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso-MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β-hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long-range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Zhengren Xu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
29
|
Zhang B, Xu Z, Teng Q, Pan G, Ma M, Shen B. A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Zhengren Xu
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Qihui Teng
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Guohui Pan
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ming Ma
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry; The Scripps Research Institute; Jupiter FL 33458 USA
- Department of Molecular Medicine, Natural Products Library Initiative; The Scripps Research Institute; Jupiter FL 33458 USA
| |
Collapse
|
30
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
31
|
Faille A, Gavalda S, Slama N, Lherbet C, Maveyraud L, Guillet V, Laval F, Quémard A, Mourey L, Pedelacq JD. Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases. J Mol Biol 2017; 429:1554-1569. [PMID: 28377293 DOI: 10.1016/j.jmb.2017.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 02/04/2023]
Abstract
Dehydration reactions play a crucial role in the de novo biosynthesis of fatty acids and a wide range of pharmacologically active polyketide natural products with strong emphasis on human medicine. The type I polyketide synthase PpsC from Mycobacterium tuberculosis catalyzes key biosynthetic steps of lipid virulence factors phthiocerol dimycocerosates and phenolic glycolipids. Given the insolubility of the natural C28-C30 fatty acyl substrate of the PpsC dehydratase (DH) domain, we investigated its structure-function relationships in the presence of shorter surrogate substrates. Since most enzymes belonging to the (R)-specific enoyl hydratase/hydroxyacyl dehydratase family conduct the reverse hydration reaction in vitro, we have determined the X-ray structures of the PpsC DH domain, both unliganded (apo) and in complex with trans-but-2-enoyl-CoA or trans-dodec-2-enoyl-CoA derivatives. This study provides for the first time a snapshot of dehydratase-ligand interactions following a hydration reaction. Our structural analysis allowed us to identify residues essential for substrate binding and activity. The structural comparison of the two complexes also sheds light on the need for long acyl chains for this dehydratase to carry out its function, consistent with both its in vitro catalytic behavior and the physiological role of the PpsC enzyme.
Collapse
Affiliation(s)
- Alexandre Faille
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Nawel Slama
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | | | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
| |
Collapse
|