1
|
Zhu TY, Zhao YC, Sha C, Nawab S, Liu JY, Yong YC. Enhanced hydrogen production by robust covalent biohybrid based on cell membrane specific click chemistry. BIORESOURCE TECHNOLOGY 2025; 427:132410. [PMID: 40120987 DOI: 10.1016/j.biortech.2025.132410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The light-driven semiconductor-bacteria hybrid holds great potential for synthesis of diverse solar chemicals and fuels. However, the efficiency of electron transfer between biotic-abiotic interface often suffers from the insufficient robustness of biohybrid, which significantly imped its performance and applications. Here, a highly robust biohybrid was established by specifically and covalently grafting carbon quantum dots (CDs) onto bacterial cell membrane via the copper-catalyzed azide-Alkyne click (CuAAC) reaction. The formation of covalent bonds dramatically enhanced the robustness of hybrid and further shorten the distance of biotic-abiotic interface, endowing long-term stability under different conditions. Consequently, the cell membrane-specific covalent-biohybrid exhibited a 7.3-fold higher hydrogen production due to enhanced system stability, higher load of CDs on the cell surface and direct electron transfer efficiency. This work demonstrated a new and promising approach to improve the robustness and performance of photocatalytic semiconductor-bacteria hybrid system, which would further diversify the toolbox for solar chemicals/fuels production.
Collapse
Affiliation(s)
- Tian-Yu Zhu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yi-Cheng Zhao
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Chong Sha
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Said Nawab
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jun-Ying Liu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yang-Chun Yong
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Yan L, Zhang B, Zhang C, Zhang Y, Shuang S, Shi L. Smartphone-driven handheld monitoring of Cr(VI) and living cell imaging using nitrogen-doped yellow fluorescence carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 341:126429. [PMID: 40403469 DOI: 10.1016/j.saa.2025.126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/27/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
User-friendly, field-portable, and direct read-out mini-device is indispensable for under-developed countries or resources-insufficient areas. Herein, a field-portable handheld monitoring platform incorporating smartphone, 3D-printed device, and test strip stained with yellow fluorescence (FL) carbon dots (YCDs) proves the efficacy for real-time quantitation of Cr(VI) by a consecutive FL color transformation. YCDs were synthesized with starch, rhodamine 6G, and L-lysine through hydrothermal procedure, manifesting intriguing yellow-emitting behavior locating at 556 nm under 470 nm excitation. With increasing Cr(VI) concentration, FL intensity of YCDs at 556 nm is significantly quenched, accompanying by a continuous FL colour alteration from bright yellow to dark yellow. Inspired by above FL phenomena, YCDs-based test strips are fabricated to realize point-of-care quantifying of Cr(VI). Inspiringly, developed field-portable handheld monitoring platform is further generalized to on-site quantify Cr(VI) concentration in tap water based on wide linear ranges of 0-800 μM, and low limit of detection of 0.349 μM. Furthermore, laser confocal imaging of HeLa cells corroborates that YCDs can be utilized for visual determination of Cr(VI) in living cells, illustrating that YCDs presents powerful biosensing application prospect.
Collapse
Affiliation(s)
- Liru Yan
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Bianxiang Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
3
|
Li Q, Lu H, Cheng M, Meckenstock RU, Zhou J, Zhang H. Insights into the Direct Photoelectron Transfer Mechanism in Cofactor-free Redox Carbon Dots and Cytochrome c Nitrite Reductase Biohybrids Responsible for Ammonia Synthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6686-6695. [PMID: 40153603 DOI: 10.1021/acs.est.4c14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Highly efficient NH3 production has been reported to be achieved by photosensitizing Shewanella oneidensis MR-1 using carbon dots (CDs). During this process, cytochrome c nitrite reductase (NrfA) is regarded as the rate-limiting enzyme. However, the precise electron transfer mechanism between CDs and NrfA remains unclear. Herein, a hybrid photosynthetic system composed of NrfA and redox CDs (NrfA/R-CDs) was constructed, achieving a maximum NH3 production rate of 12.5 ± 1.1 μmol (NH3)·mg-1 (NrfA)·h-1. R-CDs with aromatic ketone groups could store photoinduced electrons, enhancing carrier separation efficiency. These stored photoelectrons were capable of being directly transferred to NrfA without the need of cofactors. Even under dark conditions, direct electron transfer occurred from the stored photoelectrons in R-CDs to NrfA, providing an indirect illumination approach to reduce phototoxicity to NrfA. Molecular docking and dynamics simulations demonstrated the formation of a stable complex between the heme 2 region of NrfA and R-CDs. The short distance (10 Å) and π-electronic interactions between R-CDs and heme 2 facilitated the direct electronic transfer process. This study provides a comprehensive understanding of the interfacial photoelectron transfer mechanism and guidelines for constructing nanomaterials with photoelectron storage and release properties.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024. China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024. China
| | - Manman Cheng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024. China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
4
|
Suri M, Salimi Jazi F, Crowley JC, Park Y, Fu B, Chen P, Zipfel WR, Barstow B, Hanrath T. Spatially resolved charge-transfer kinetics at the quantum dot-microbe interface using fluorescence lifetime imaging microscopy. Proc Natl Acad Sci U S A 2025; 122:e2407987122. [PMID: 40096614 PMCID: PMC11962476 DOI: 10.1073/pnas.2407987122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025] Open
Abstract
Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano-bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano-bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano-bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and Shewanella oneidensis microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ([Formula: see text]), with a lower acceptor number ([Formula: see text]) and 2) a slower transfer rate ([Formula: see text]) with a higher acceptor number ([Formula: see text]). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano-bio hybrids.
Collapse
Affiliation(s)
- Mokshin Suri
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | - Farshid Salimi Jazi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY14853
| | - Jack C. Crowley
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
| | - Youngchan Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Bing Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Warren R. Zipfel
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY14853
| | - Tobias Hanrath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| |
Collapse
|
5
|
Han X, Xia C, Wu H, Xie Y, Li R, Sui B, Yu Y, Wang B, Yang B. Unveiling the Photoluminescence Mechanism of Carbonized Polymer Dots: Evolution and Synergistic Photoluminescence of Multiple Molecular Fluorophores. Angew Chem Int Ed Engl 2025; 64:e202422822. [PMID: 39718004 DOI: 10.1002/anie.202422822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Carbonized polymer dots (CPDs) are a class of exceptional fluorescent materials with diverse applications. However, their photoluminescence (PL) mechanism remained enigmatic and controversial, hindering further development and application. While molecular fluorophores explain primary fluorescence in some CPDs, the overall PL of CPDs still cannot be fully explained, such as their excitation-dependent behaviors, let alone the modulation of PL. Besides, the extracted molecular fluorophores are dissociative, raising questions including the purity of CPDs and whether the PL of CPDs nanoparticles come from these molecular fluorophores. Here, the emission around 510 nm of citric acid-ethylenediamine CPDs (CA-EDA CPDs) was proved to be contributed by a molecular fluorophore, which evolved from another molecular fluorophore following the quantum confinement effect. Further research revealed the whole PL mechanism of CA-EDA CPDs to be the evolution and synergistic PL of multiple molecular fluorophores linked on CPDs nanoparticle. The evolution of molecular fluorophores had also been observed in another two systems, indicating the universality of this mechanism, and a new approach for regulating the optical properties of CPDs was put forward inspired by this mechanism. This study not only refined the PL mechanism but also paved the way for future advancements of CPDs.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Han Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yadian Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Rui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Qiao L, Ma B, Jiang Y, Pan X, Mao Z, Zhang Y, Sheldon RA, Wang A. Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone. Int J Biol Macromol 2025; 295:139444. [PMID: 39761903 DOI: 10.1016/j.ijbiomac.2024.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one. Herein we fabricated several nitrogen-doped carbon dots (CDs) with visible light absorption properties, good water solubility and biocompatibility for photocatalytic regeneration of NADPH. The CD with a smaller size and suitable redox potential gave the highest NADPH yield (55.7 %). Based on this, NADPH-dependent aldo-keto reductase crosslinked aggregates (AKR-CLEs) were initially applied as a stable biocatalyst to reduce the prochiral ketone. (S)-1-(2-Chlorophenyl) ethanol, an intermediate for LPA1R antagonists, was obtained in 65.3 % yield and 99.99 % enantiomeric excess (ee) under visible light irradiation. The isotope tracer experiment confirmed that water is the hydrogen donor in this light-driven, photo-enzymatic asymmetric hydrogenation system. This method is useful for the sustainable synthesis of chiral alcohols. Moreover, the general principle of utilizing water as the sacrificial hydrogen and electron donor holds potential for application in other redox cofactor regeneration systems.
Collapse
Affiliation(s)
- Li Qiao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoting Pan
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhili Mao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
7
|
Wei D, Xu S, Wang X, Wu W, Liu Z, Wu X, Yang J, Xu Y, Li Y, Luo Y. Photoinduced electron transfer enables cytochrome P450 enzyme-catalyzed reaction cycling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109412. [PMID: 39708699 DOI: 10.1016/j.plaphy.2024.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Cytochrome P450 enzymes (CYPs), the members of the largest superfamily of enzymes in plant kingdom, catalyze a variety of functional group transformations involved in metabolite biosynthesis, end-product derivatization, and exogeneous molecule detoxification. Nevertheless, CYPs' functional characterization and practically industrial application have been largely encumbered by their critical dependency on the reducing equivalent for the catalytic cycling, driven by the tedious electron relay mediated by CYP reductase (CPR). Here, we report a photoinduced electron transfer system that initiates and sustains the CYP-catalyzed reaction cycling. Using Camptotheca acuminata CYP72A565-catalyzed carbon-carbon cleavage reaction, a key biosynthetic reaction in the biosynthesis of plant-derived antitumor monoterpene indole alkaloid camptothecin, as a representative CYP-catalyzed reaction model, we identified eosin Y (EY) and triethanolamine (TEOA) as an efficient photosensitizer/sacrificial reagent pair for the photoinduced electron generating system. The C. acuminata camptothecin 10-hydroxylase-catalyzed regioselective C10-hydroxylation of camptothecin into 10-hydroxycamptothecin could be enabled by the photoinduced electron transfer system, demonstrating that the EY/TEOA pair serves as an efficient surrogate for membranous CPR and can be expanded to other CYP-catalyzed reaction cycling. The catalytic efficiency of the photoinduced electron transfer-driven CYP-catalyzed cycling exceeds that of the native NADPH-dependent CPR-supported CYP-catalyzed reaction, thereby circumventing the dependency on both NADPH and the reductase CPR. The present study provides a photoinduced electron generating and transferring system as an efficient and facile alternative to membranous NADPH-dependent CPR, offering a new avenue for CYP-mediated conversion of complex bioactive natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Daijing Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyu Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu, 611130, China
| | - Zhan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| |
Collapse
|
8
|
Kim Y, Kim H, Lee H, Lee TH, Cho HH. Organic semiconductor bulk heterojunctions for solar-to-chemical conversion: recent advances and challenges. NANOSCALE 2025; 17:1889-1921. [PMID: 39688026 DOI: 10.1039/d4nr03938f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering. In particular, the use of OS bulk heterojunctions (BHJs) consisting of intermixed electron-donating and electron-accepting OSs facilitates efficient charge generation under illumination, thereby contributing to enhanced STC conversion efficiency. This review explores the recent advancements in the rational design of OS materials and approaches aimed at enhancing the performance of BHJ-based PEC cells and PCs for solar-driven production of hydrogen and valuable chemicals. The discussion also introduces new perspectives to address the remaining challenges in this field.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Hoon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hyeongyu Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tack Ho Lee
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Han-Hee Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Han L, Li B, Xu Y. High-performance ratiometric fluorescence detection and removal of tetracycline in milk based on CDs@ZSM-5:Eu 3. Food Chem 2025; 463:141441. [PMID: 39340904 DOI: 10.1016/j.foodchem.2024.141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Exploring materials with the dual functionality of detecting and removing tetracycline (TC) residues is crucial because of the environmental and health risks posed by antibiotic overuse. This study introduces a dual-emissive luminescent probe, CDs@ZSM-5:Eu3+, created through a solvent-free method combined with subsequent Eu3+ion exchange. The nanocomposite's blue emission, originating from carbon dots (CDs), is quenched by TC via an internal filtering effect, while an antenna effect triggers a strong red fluorescence of a TC-Eu3+chelate. The ratiometric fluorescence changes in CDs@ZSM-5:Eu3+ endow a self-calibrated sensing mechanism for TC, offering a low detection limit of 5.04 nM and a broad detection range of 0.01-50 μM. Demonstrated in real milk samples, the probe exhibits high selectivity and accuracy in detecting TC. The nanocomposite also displayed an impressive TC removal capacity of 238.1 mg g-1 in water, ascribing to the enrichment and electrostatic attraction effects of ZSM-5 toward TC molecules. This research offers a facile strategy for constructing multifunctional zeolite-based hybrids for simultaneous TC detection and removal from aqueous solutions.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Le Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong 528311, China.
| |
Collapse
|
10
|
Zhang S, Li J, Zhou J, Xu P, Li Y, Zhang Y, Wu S. Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting. Talanta 2025; 282:126983. [PMID: 39395306 DOI: 10.1016/j.talanta.2024.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift. Additionally, The CDs' properties transformed from Aggregation-Caused Quenching (ACQ) to AIE was realized by substituting non-rotatable hydroxyl or amino groups with the rotatable p-methylenediamine on the precursor. The resulting CDs were then applied in multifield. C-CDs was used for ratiometric detection of Al3+ and F- in pure water through three methods including fluorometer, test strip and smartphone. R-CDs was used for imaging cell nucleus and zebrafish. NIR-CDs (λem = 676 nm) exhibits dual emission, AIE and phosphorescent characteristics was used for triple anti-counterfeiting and binary information encryption. In summary, our finding presented a strategy for preparing multicolor CDs, proposed a mechanism for the transition of CDs from ACQ to AIE, and explore their multiple applications in anti-counterfeiting, information encapsulation, sensing and imaging.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Jinhong Li
- Shaanxi Hantang Pharmaceutical Co., Ltd, Xi'an, 710021, PR China
| | - Jieyu Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
11
|
Gisriel CJ, Malavath T, Qiu T, Menzel JP, Batista VS, Brudvig GW, Utschig LM. Structure of a biohybrid photosystem I-platinum nanoparticle solar fuel catalyst. Nat Commun 2024; 15:9519. [PMID: 39496605 PMCID: PMC11535483 DOI: 10.1038/s41467-024-53476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Biohybrid solar fuel catalysts leverage natural light-driven enzymes to produce valuable fuel products. One useful biological platform for such a system is photosystem I, a pigment-protein complex that captures sunlight and converts it into chemical energy with near unity quantum efficiency, which generates low potential reducing equivalents for metabolism. Realizing and understanding the molecular basis for an approach that utilizes those electrons and stores solar energy as a fuel is therefore appealing. Here, we report the 2.27-Å global resolution cryo-EM structure of a photosystem I complex with bound platinum nanoparticles that catalyzes light-driven H2 production. The platinum nanoparticle binding sites and possible stabilizing interactions are described. Overall, the investigation reveals a direct structural look at a photon-to-fuels photosynthetic biohybrid system.
Collapse
Affiliation(s)
- Christopher J Gisriel
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tirupathi Malavath
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Jan Paul Menzel
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
12
|
Lou X, Zhang C, Xu Z, Ge S, Zhou J, Qin D, Qin F, Zhang X, Guo Z, Wang C. Enhanced Interfacial Electron Transfer in Photocatalyst-Natural Enzyme Coupled Artificial Photosynthesis System: Tuning Strategies and Molecular Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404055. [PMID: 38970546 DOI: 10.1002/smll.202404055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Indexed: 07/08/2024]
Abstract
Laccase is capable of catalyzing a vast array of reactions, but its low redox potential limits its potential applications. The use of photocatalytic materials offers a solution to this problem by converting absorbed visible light into electrons to facilitate enzyme catalysis. Herein, MIL-53(Fe) and NH2-MIL-53(Fe) serve as both light absorbers and enzyme immobilization carriers, and laccase is employed for solar-driven chemical conversion. Electron spin resonance spectroscopy results confirm that visible light irradiation causes rapid transfer of photogenerated electrons from MOF excitation to T1 Cu(II) of laccase, significantly increasing the degradation rate constant of tetracycline (TC) from 0.0062 to 0.0127 min-1. Conversely, there is only minimal or no electron transfer between MOF and laccase in the physical mixture state. Theoretical calculations demonstrate that the immobilization of laccase's active site and its covalent binding to the metal-organic framework surface augment the coupled system's activity, reducing the active site accessible from 27.8 to 18.1 Å. The constructed photo-enzyme coupled system successfully combines enzyme catalysis' selectivity with photocatalysis's high reactivity, providing a promising solution for solar energy use.
Collapse
Affiliation(s)
- Xiaoxuan Lou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Chen Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering and Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering and Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Deyu Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Fanzhi Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Washington, 99354, USA
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Chongchen Wang
- School of Environmental and Energy Engineering and Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
13
|
Utschig LM, Mulfort KL. Photosynthetic biohybrid systems for solar fuels catalysis. Chem Commun (Camb) 2024; 60:10642-10654. [PMID: 39229971 DOI: 10.1039/d4cc00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photosynthetic reaction center (RC) proteins are finely tuned molecular systems optimized for solar energy conversion. RCs effectively capture and convert sunlight with near unity quantum efficiency utilizing light-induced directional electron transfer through a series of molecular cofactors embedded within the protein core to generate a long-lived charge separated state with a useable electrochemical potential. Of current interest are new strategies that couple RC chemistry to the direct synthesis of energy-rich compounds. This Feature Article highlights recent work from our lab on RC and RC-inspired hybrid systems that capture the Sun's energy and convert it to chemical energy in the form of H2, a carbon-neutral energy source derived from water. Biohybrids made from the Photosystem I (PSI) RC are among the best photocatalytic H2-producing protein hybrids to date. Targeted self-assembly strategies that couple abiotic catalysts to PSI translate to catalyst incorporation at intrinsic PSI sites within thylakoid membranes to achieve complete solar water-splitting systems. RC-inspired biohybrids interface synthetic photosensitizers and molecular catalysts with small proteins to create photocatalytic systems and enable the spectroscopic discernment of the structural features and electron transfer processes that underpin solar-driven proton reduction. In total, these studies showcase the incredible scientific opportunities photosynthetic biohybrid research provides for harnessing the optimal qualities of both artificial and natural photosynthetic systems and developing materials that capture, convert, and store solar energy as a fuel.
Collapse
Affiliation(s)
- Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
14
|
Macpherson S, Lawson T, Abfalterer A, Andrich P, Lage A, Reisner E, Euser TG, Stranks SD, Gentleman AS. Influence of Electron Donors on the Charge Transfer Dynamics of Carbon Nanodots in Photocatalytic Systems. ACS Catal 2024; 14:12006-12015. [PMID: 39169903 PMCID: PMC11334169 DOI: 10.1021/acscatal.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Carbon nanodots (CNDs) are nanosized light-harvesters emerging as next-generation photosensitizers in photocatalytic reactions. Despite their ever-increasing potential applications, the intricacies underlying their photoexcited charge carrier dynamics are yet to be elucidated. In this study, nitrogen-doped graphitic CNDs (NgCNDs) are selectively excited in the presence of methyl viologen (MV2+, redox mediator) and different electron donors (EDs), namely ascorbic acid (AA) and ethylenediaminetetraacetic acid (EDTA). The consequent formation of the methyl viologen radical cation (MV•+) is investigated, and the excited charge carrier dynamics of the photocatalytic system are understood on a 0.1 ps-1 ms time range, providing spectroscopic evidence of oxidative or reductive quenching mechanisms experienced by optically excited NgCNDs (NgCNDs*) depending on the ED implemented. In the presence of AA, NgCNDs* undergo oxidative quenching by MV2+ to form MV•+, which is short-lived due to dehydroascorbic acid, a product of photoinduced hole quenching of oxidized NgCNDs. The EDTA-mediated reductive quenching of NgCNDs* is observed to be at least 2 orders of magnitude slower due to screening by EDTA-MV2+ complexes, but the MV•+ population is stable due to the irreversibly oxidized EDTA preventing a back reaction. In general, our methodology provides a distinct solution with which to study charge transfer dynamics in photocatalytic systems on an extended time range spanning 10 orders of magnitude. This approach generates a mechanistic understanding to select and develop suitable EDs to promote photocatalytic reactions.
Collapse
Affiliation(s)
- Stuart Macpherson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Takashi Lawson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Anna Abfalterer
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Paolo Andrich
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Samuel D. Stranks
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Alexander S. Gentleman
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
15
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
16
|
Zhan Q, Ahmad A, Arshad H, Yang B, Chaudhari SK, Batool S, Hasan M, Feng G, Mustafa G, Hatami M. The role of reduced graphene oxide on mitigation of lead phytotoxicity in Triticum aestivum L.plants at morphological and physiological levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108719. [PMID: 38739962 DOI: 10.1016/j.plaphy.2024.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.
Collapse
Affiliation(s)
- Qingying Zhan
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China
| | - Ashfaq Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Huma Arshad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, 42100, Pakistan
| | - Sana Batool
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Guangzhu Feng
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
17
|
Sayyad US, Bhatt H, Ghosh HN, Mondal S. Delineating the core and surface state heterogeneity of carbon dots during electron transfer. NANOSCALE 2024; 16:8143-8150. [PMID: 38572546 DOI: 10.1039/d4nr00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Exploring the heterogeneity of carbon dots (C-Dots) is challenging because of the existence of complex structural diversity, and it is a demanding task for the development and designing of efficient C-Dots for various applications. Herein, we studied the role of the core state and surface state of C-Dots in heterogeneity via the successful investigation of the electron transfer (ET) process between different (blue, green, and red) emitting C-Dots and an electron acceptor methyl viologen (MV2+) using steady-state and time-resolved fluorescence and ultrafast transient absorption (TA) spectroscopic techniques. Selective excitation in the steady-state and time-resolved mode shows that the ET ability of the core state is higher than that of the surface state. Moreover, the kinetics of MV+˙ generation was probed using TA spectroscopy after the excitation of the core and surface state, where we observed that the surface state becomes less efficient due to the presence of an oxygen-containing functional group in the surface state, which acts as an electron scavenger. Moreover, the heterogeneity of the core and surface state was explored through the detection of the MV+˙ generation yield after the irradiation of UV and visible light (exciting the core and surface state). The result indicates that the graphitic nitrogen content in the core state and the oxygen-containing functional group in the surface state play an important role in the heterogeneity in the structure and the ET process. Our findings on the fundamental understanding of the heterogeneity of different emissive C-Dots will provide a new way of designing and developing a metal-free light-harvesting system.
Collapse
Affiliation(s)
- Umarfaruk S Sayyad
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Himanshu Bhatt
- Institute of Nano science and Technology, Mohali, Punjab 140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
18
|
Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, Milton RD, Reisner E. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. Chem Sci 2024; 15:6088-6094. [PMID: 38665532 PMCID: PMC11040649 DOI: 10.1039/d4sc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | - Dongseok Kim
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
19
|
Ding Y, Lee CC, Hu Y, Ribbe MM, Nagpal P, Chatterjee A. Light-driven Transformation of Carbon Monoxide into Hydrocarbons using CdS@ZnS : VFe Protein Biohybrids. CHEMSUSCHEM 2023; 16:e202300981. [PMID: 37419863 DOI: 10.1002/cssc.202300981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic Fisher-Tropsch (FT) process catalyzed by vanadium (V)-nitrogenase can convert carbon monoxide (CO) to longer-chain hydrocarbons (>C2) under ambient conditions, although this process requires high-cost reducing agent(s) and/or the ATP-dependent reductase as electron and energy sources. Using visible light-activated CdS@ZnS (CZS) core-shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V-nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo-enzymatic C-C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto-electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP-independent, photon-to-fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP-coupled transformation of CO into hydrocarbons by V-nitrogenase. The selectivity of products can be controlled by irradiation conditions, with higher photon flux favoring (longer-chain) hydrocarbon generation. The CZS : VFe biohybrids not only can find applications in industrial CO removal for high-value-added chemical production by using the cheap, renewable solar energy, but also will inspire related research interests in understanding the molecular and electronic processes in photo-biocatalytic systems.
Collapse
Affiliation(s)
- Yuchen Ding
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Markus M Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, USA
| | - Prashant Nagpal
- Sachi Bio, Louisville, CO 80027, USA
- Antimicrobial Regeneration Consortium Labs, Louisville, CO 80027, USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Sachi Bio, Louisville, CO 80027, USA
- Antimicrobial Regeneration Consortium Labs, Louisville, CO 80027, USA
| |
Collapse
|
20
|
Zdražil L, Baďura Z, Langer M, Kalytchuk S, Panáček D, Scheibe M, Kment Š, Kmentová H, Thottappali MA, Mohammadi E, Medveď M, Bakandritsos A, Zoppellaro G, Zbořil R, Otyepka M. Magnetic Polaron States in Photoluminescent Carbon Dots Enable Hydrogen Peroxide Photoproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206587. [PMID: 37038085 DOI: 10.1002/smll.202206587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.
Collapse
Affiliation(s)
- Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Michal Langer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | | | - Elmira Mohammadi
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
21
|
Lawson T, Gentleman AS, Lage A, Casadevall C, Xiao J, Petit T, Frosz MH, Reisner E, Euser TG. Low-Volume Reaction Monitoring of Carbon Dot Light Absorbers in Optofluidic Microreactors. ACS Catal 2023; 13:9090-9101. [PMID: 37441232 PMCID: PMC10334427 DOI: 10.1021/acscatal.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 μL per measurement and with a detectability of <1 μM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.
Collapse
Affiliation(s)
- Takashi Lawson
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Alexander S. Gentleman
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Carla Casadevall
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jie Xiao
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Tristan Petit
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael H. Frosz
- Max
Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
22
|
Allan MG, Pichon T, McCune JA, Cavazza C, Le Goff A, Kühnel MF. Augmenting the Performance of Hydrogenase for Aerobic Photocatalytic Hydrogen Evolution via Solvent Tuning. Angew Chem Int Ed Engl 2023; 62:e202219176. [PMID: 36786366 PMCID: PMC10946759 DOI: 10.1002/anie.202219176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance under an aerobic atmosphere in these solvents when paired with a TiO2 photocatalyst. Tuning the water content further increases hydrogen evolution activity to a TOF of 60±3 s-1 and quantum yield to 2.3±0.4 % under aerobic conditions, compared to a TOF of 4 s-1 in a purely aqueous solvent. Contrary to common belief, this work therefore demonstrates that placing natural hydrogenases into non-natural environments can enhance their intrinsic activity beyond their natural performance, paving the way for full water splitting using hydrogenases.
Collapse
Affiliation(s)
- Michael G. Allan
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversitySingleton ParkSwanseaSA2 8PPWalesUK
| | - Thomas Pichon
- Univ. Grenoble AlpesCEACNRSIRIGCBM38000GrenobleFrance
| | - Jade A. McCune
- Melville Laboratory for Polymer SynthesisUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Alan Le Goff
- University Grenoble AlpesCNRSDCM UMR 5250F-38000GrenobleFrance
| | - Moritz F. Kühnel
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversitySingleton ParkSwanseaSA2 8PPWalesUK
- Dept. Hydrogen Labs and Field TestsFraunhofer Institute for Wind Energy SystemsAm Haupttor, BC 431006237LeunaGermany
| |
Collapse
|
23
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
24
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Regulating Optoelectronics of Carbon Dots with Redox-active Dopamine. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
26
|
Li Y, Luo Q, Liu S, Su J, Chen J, Dong G, Wang Y. Transcriptome analysis of Shewanella xiamenensis co-incubated with internalized carbon dots in response to boosting Cr(VI)-bioreduction. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023. [DOI: 10.3390/catal13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbon dots (CDs) have attracted considerable interest from the scientific community due to their exceptional properties, such as high photoluminescence, broadband absorption, low toxicity, water solubility and (photo)chemical stability. As a result, they have been applied in several fields, such as sensing, bioimaging, artificial lighting and catalysis. In particular, CDs may act as sole photocatalysts or as part of photocatalytic nanocomposites. This study aims to provide a comprehensive review on the use of CDs as sole photocatalysts in the areas of hydrogen production via water splitting, photodegradation of organic pollutants and photoreduction and metal removal from wastewaters. Furthermore, key limitations preventing a wider use of CDs as photocatalysts are pointed out. It is our hope that this review will serve as a basis on which researchers may find useful information to develop sustainable methodologies for the synthesis and use of photocatalytic CDs.
Collapse
|
28
|
Li S, Shi J, Liu S, Li W, Chen Y, Shan H, Cheng Y, Wu H, Jiang Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Wang J, Xia Y, Guo X. Repurposing Photosensitizer Proteins Through Genetic Code Expansion to Facilitate Photo-Biocatalysis. Methods Mol Biol 2023; 2676:41-54. [PMID: 37277623 DOI: 10.1007/978-1-0716-3251-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial photoenzymes with noncanonical photo-redox cofactors have paved the way for enzyme rational design and the creation of new-to-nature biocatalysts. Genetically encoded photo-redox cofactors endow photoenzymes with enhanced or novel activities that catalyze numerous transformations with high efficiency. Herein, we describe a protocol of repurposing photosensitizer proteins (PSP) through genetic code expansion to facilitate multiple photocatalytic conversions including photo-activated dehalogenation of aryl halides, CO2 to CO and CO2 to formic acid reduction. The methods for expression, purification, and characterization of the PSP are detailed. The installation of the catalytic modules and the utilization of PSP-based artificial photoenzymes for photoenzymatic CO2 reduction and dehalogenation are also described.
Collapse
Affiliation(s)
- Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Xia
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuzhen Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
30
|
Wang Z, Zhang Y, Zhang S, Ge M, Zhang H, Wang S, Chen Z, Li S, Yang C. Natural xylose-derived carbon dots towards efficient semi-artificial photosynthesis. J Colloid Interface Sci 2023; 629:12-21. [PMID: 36150244 DOI: 10.1016/j.jcis.2022.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Photosynthesis by plants stores sunlight into chemicals and drives CO2 fixation into sugars with low biomass conversion efficiency due to the unoptimized solar spectrum utilization and various chemical conversion possibilities that follow H2O oxidation. Expanding the solar spectrum utilization and optimizing the charge transfer pathway of photosynthesis is critical to improving the conversion efficiency. Here, a group of carbon dots (CDs) with distinct content of sp2 CC domain are prepared by one-step carbonization of natural xylose, which penetrated natural chloroplasts and integrated with the grana thylakoid to promote in vitro photosynthesis. Structural characterization and electrochemical results reveal the positive impact of graphitization degree on the electron transport capacity of CDs. Classic Hill reaction and ATP production demonstrate the enhanced photosynthetic activity resulting from the CDs-mediated electron transfer of photosystem II. In-depth studies of the structure-function relationship prove the synergistic effect of intensified biotic-abiotic interaction between CDs and chloroplast, lower charge transfer resistance, and extended light absorption. This work posts a promising method to optimize electron transport and improve natural photosynthesis using artificial interventions.
Collapse
Affiliation(s)
- Zirui Wang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yahui Zhang
- Chinese Academy of Forestry, Research Institute of Wood Industry, Xiang Shan Road, Haidian, 100091 Beijing China.
| | - Siyu Zhang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Min Ge
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chenhui Yang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
31
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
32
|
Ghorai N, Bhunia S, Burai S, Ghosh HN, Purkayastha P, Mondal S. Ultrafast insights into full-colour light-emitting C-Dots. NANOSCALE 2022; 14:15812-15820. [PMID: 36255011 DOI: 10.1039/d2nr04642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing carbon dots (C-Dots) in a controlled way requires a profound understanding of their photophysical properties, such as the origin of their fluorescence and excitation wavelength-dependent emission properties, which has been a perennial problem in the last few decades. Herein, we synthesized three different C-Dots (blue, green, and red-emitting C-Dots) from the same starting materials via a hydrothermal method and separated them by silica column chromatography. All the purified C-Dots exhibited three different emission maxima after a certain range of different excitations, showing a high optical uniformity in their emission properties. It was also observed that the average distributions of the particle size in all the C-Dots were the same with a typical size of 4 nm and the same interplanar d spacing of ∼0.21 nm. Here, we tried to establish a well-defined conclusive answer to the puzzling optical properties of C-Dots via successfully investigating the carrier dynamics of their core and surface state with a myriad use of steady-state, time-resolved photoluminescence, and ultrafast transient absorbance spectroscopy techniques. The ultrafast charge-carrier dynamics of the core and surface state clearly indicated that the graphitic nitrogen in the core state and the oxygen-containing functional group in the surface state predominately contribute to controlling their wide range of emission properties. We believe that these findings will give the C-Dots their own designation in the fluorophore world and create a new avenue for designing and developing C-Dot-based new architectures.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Soumyadip Bhunia
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Subham Burai
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pradipta Purkayastha
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
33
|
Wang Z, Pei G, Qi H, Zhang S, Liu C, Li Z, Han K. Solar Hydrogen Generation over Carbon Nitride Photocatalyst Promoted by Water‐Soluble Carbon Dots. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongyi Wang
- Institute of Frontier and Interdiciplinary Science Shandong University CHINA
| | - Guangxian Pei
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Chinese Academy of Sciences No. 189 Songling Road, Laoshan District 266101 Qingdao CHINA
| | - Haifeng Qi
- Dalian Institute of Chemical Physics Chinese Academy of Sciences CHINA
| | - Shengxin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences CHINA
| | - Chengcheng Liu
- institute of Frontier and Interdisplinary Sceince Shandong University CHINA
| | - Zhen Li
- institute of Frontier and Interdisplinary Science Shandong University CHINA
| | - Keli Han
- Dalian Institute of Chemical Physics Chinese Academy of Sciences CHINA
| |
Collapse
|
34
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
35
|
Zhang M, He S, Pang W, Wei W, Zhou F, Wu X, Qi H, Duan X, Wang Y. On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta 2022; 245:123462. [DOI: 10.1016/j.talanta.2022.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
36
|
Shi S, Zhang P, Chu X, Liu Y, Feng W, Zhou N, Shen J. Combination of Carbon Dots for the Design of Superhydrophobic Fluorescent Materials with Bioinspired Micro-Nano Multiscale Hierarchical Structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
38
|
Badiani VM, Casadevall C, Miller M, Cobb SJ, Manuel RR, Pereira IAC, Reisner E. Engineering Electro- and Photocatalytic Carbon Materials for CO 2 Reduction by Formate Dehydrogenase. J Am Chem Soc 2022; 144:14207-14216. [PMID: 35900819 PMCID: PMC9376922 DOI: 10.1021/jacs.2c04529] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Semiartificial approaches to renewable fuel synthesis exploit the integration of enzymes with synthetic materials for kinetically efficient fuel production. Here, a CO2 reductase, formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough, is interfaced with carbon nanotubes (CNTs) and amorphous carbon dots (a-CDs). Each carbon substrate, tailored for electro- and photocatalysis, is functionalized with positive (-NHMe2+) and negative (-COO-) chemical surface groups to understand and optimize the electrostatic effect of protein association and orientation on CO2 reduction. Immobilization of FDH on positively charged CNT electrodes results in efficient and reversible electrochemical CO2 reduction via direct electron transfer with >90% Faradaic efficiency and -250 μA cm-2 at -0.6 V vs SHE (pH 6.7 and 25 °C) for formate production. In contrast, negatively charged CNTs only result in marginal currents with immobilized FDH. Quartz crystal microbalance analysis and attenuated total reflection infrared spectroscopy confirm the high binding affinity of active FDH to CNTs. FDH has subsequently been coupled to a-CDs, where the benefits of the positive charge (-NHMe2+-terminated a-CDs) were translated to a functional CD-FDH hybrid photocatalyst. High rates of photocatalytic CO2 reduction (turnover frequency: 3.5 × 103 h-1; AM 1.5G) with dl-dithiothreitol as the sacrificial electron donor were obtained after 6 h, providing benchmark rates for homogeneous photocatalytic CO2 reduction with metal-free light absorbers. This work provides a rational basis to understand interfacial surface/enzyme interactions at electrodes and photosensitizers to guide improvements with catalytic biohybrid materials.
Collapse
Affiliation(s)
- Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.,Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Melanie Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rita R Manuel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
39
|
Pavliuk MV, Lorenzi M, Morado DR, Gedda L, Wrede S, Mejias SH, Liu A, Senger M, Glover S, Edwards K, Berggren G, Tian H. Polymer Dots as Photoactive Membrane Vesicles for [FeFe]-Hydrogenase Self-Assembly and Solar-Driven Hydrogen Evolution. J Am Chem Soc 2022; 144:13600-13611. [PMID: 35863067 PMCID: PMC9354254 DOI: 10.1021/jacs.2c03882] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 μmolH2·gH2ase-1·h-1). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Marco Lorenzi
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Lars Gedda
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sina Wrede
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sara H Mejias
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Aijie Liu
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Moritz Senger
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Starla Glover
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Katarina Edwards
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| |
Collapse
|
40
|
Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules 2022; 27:molecules27134099. [PMID: 35807347 PMCID: PMC9268387 DOI: 10.3390/molecules27134099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent “turn-off” probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1–160 µM, and recovery of 83.47–106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4–85 µM. Recovery of L-Cys in amino acid beverage was 87.08–122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.
Collapse
|
41
|
Folic Acid-Modified Cerium-Doped Carbon Dots as Photoluminescence Sensors for Cancer Cells Identification and Fe(III) Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) are a new class of carbon-based luminescence materials with fascinating properties. They have been given great expectations on superseding traditional semiconductor quantum dots due to their good dispersity and stability, relatively low toxicity, superior resistance to photobleaching, and excellent biocompatibility. The diversified luminescence properties of CDs are largely due to the synthetic strategies and precursors. In view of those described above, this study has explored the possibility to establish a facile one-step hydrothermal method for the one-pot synthesis of folic acid-modified cerium-doped CDs (Ce-CDs-FA), which could be further utilized as a sensitive fluorescent nanoprobe for biosensing. This investigation demonstrates that the Ce-CDs-FA nanocomposites have nice biocompatibility and bright fluorescent properties, which can be readily utilized to detect cancer cells through recognizing overexpressing folate receptors by virtue of folic acid. Meanwhile, it is noted that the Fe3+ ion can actualize a specific and hypersensitive quenching effect for these Ce-CDs-FA nanocomposites, which can be further explored for special ion recognition, including iron ions. It raises the possibility that the as-prepared Ce-CDs-FA nanocomposites could be extended as a dual fluorescence sensor for targeted cell imaging and Fe3+ ion detection.
Collapse
|
42
|
Huang C, Sun Y, Zhao Y, Li J, Qu L, Yang R, Li Z. Visual Monitoring of Nucleic Acid Dynamic Structures during Cellular Ferroptosis Using Rationally Designed Carbon Dots with Robust Anti-Interference Ability to Reactive Oxygen Species. ACS APPLIED BIO MATERIALS 2022; 5:2703-2711. [PMID: 35648103 DOI: 10.1021/acsabm.2c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis triggered by an iron-dependent accumulation of lipid reactive oxygen species (ROS) has drawn widespread attention. Directly visualizing the dynamic structures of nucleic acids during the ferroptosis of cells is of great importance considering their vital roles in numerous biological functions. However, direct imaging remains challenging, largely due to the extremely high concentrations of ROS generated during ferroptosis, which can affect the imaging of nucleic acid targeted fluorescent probes. To overcome this challenge, nucleic acid-responsive carbon dots (CDs) providing favorable optical properties together with high chemical stability were synthesized. Furthermore, the CDs penetrated the cell membrane quickly and accumulated in the nuclei of cells. The robust anti-interference ability to ROS allows the CDs to visualize the dynamic structures of nucleic acids during ferroptosis. Moreover, the CDs were successfully employed in the imaging of nucleic acids during cell division. The nuclei-targeting CDs show great potential as a powerful tool for imaging nuclei in ferroptosis-related biological and clinical research.
Collapse
Affiliation(s)
- Changsheng Huang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yanmin Zhao
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jinquan Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry, Zhengzhou 450000, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
43
|
Qiao L, Zhou M, Shi G, Cui Z, Zhang X, Fu P, Liu M, Qiao X, He Y, Pang X. Ultrafast Visible-Light-Induced ATRP in Aqueous Media with Carbon Quantum Dots as the Catalyst and Its Application for 3D Printing. J Am Chem Soc 2022; 144:9817-9826. [PMID: 35617524 DOI: 10.1021/jacs.2c02303] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoinduced atom transfer radical polymerization (ATRP) has been proved to be a versatile technique for polymer network formation. However, the slow polymerization rates of typical ATRP limited its application in the field of additive manufacturing (3D printing). In this work, we introduced carbon quantum dots (CQDs) for the first time to the ATRP in aqueous media and developed an ultrafast visible-light-induced polymerization system. After optimization, the polymerization could achieve a high monomer conversion (>90%) within 1 min, and the polydispersity index (PDI) of the polymer was lower than 1.25. This system was then applied as the first example of ATRP for the 3D printing of hydrogel through digital light processing (DLP), and the printed object exhibited good dimensional accuracy. Additionally, the excellent and stable optical properties of CQDs also provided interesting photoluminescence capabilities to the printed objects. We deduce this ATRP mediated 3D printing process would provide a new platform for the preparation of functional and stimuli-responsive hydrogel materials.
Collapse
Affiliation(s)
- Liang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.,College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
44
|
Liang S, Gao P, Wang A, Zeng C, Bao G, Tian D. Insights into the influence of functional groups on the properties of graphene from first‐principles calculations. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sihao Liang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming China
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology Kunming China
| | - Peng Gao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming China
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology Kunming China
| | - An Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming China
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology Kunming China
| | - Chunhua Zeng
- Faculty of Science Kunming University of Science and Technology Kunming China
| | - Guirong Bao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming China
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology Kunming China
| | - Dong Tian
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming China
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology Kunming China
| |
Collapse
|
45
|
Selim A, Sharma R, Arumugam SM, Elumalai S, Jayamurugan G. Sulphonated Carbon Dots Synthesized Through a One‐Pot, Facile and Scalable Protocol Facilitates the Preparation of Renewable Precursors Using Glucose/Levulinic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202104448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abdul Selim
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Raina Sharma
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Senthil Murugan Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| |
Collapse
|
46
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
47
|
Tavakkoli Yaraki M, Liu B, Tan YN. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. NANO-MICRO LETTERS 2022; 14:123. [PMID: 35513555 PMCID: PMC9072609 DOI: 10.1007/s40820-022-00856-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
| |
Collapse
|
48
|
Saengsrichan A, Saikate C, Silasana P, Khemthong P, Wanmolee W, Phanthasri J, Youngjan S, Posoknistakul P, Ratchahat S, Laosiripojana N, Wu KCW, Sakdaronnarong C. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. Int J Mol Sci 2022; 23:ijms23095001. [PMID: 35563393 PMCID: PMC9100793 DOI: 10.3390/ijms23095001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L−1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L−1 (R2 = 0.9933).
Collapse
Affiliation(s)
- Aphinan Saengsrichan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Chaiwat Saikate
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Peeranut Silasana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan;
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
- Correspondence: ; Tel.: +66-28892138 (ext. 6101-2); Fax: +662-4419731
| |
Collapse
|
49
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
50
|
Mondal S, Das SR, Sahoo L, Dutta S, Gautam UK. Light-Induced Hypoxia in Carbon Quantum Dots and Ultrahigh Photocatalytic Efficiency. J Am Chem Soc 2022; 144:2580-2589. [PMID: 35104402 DOI: 10.1021/jacs.1c10636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon quantum dots (CQDs) represent a class of carbon materials exhibiting photoresponse and many potential applications. Here, we present a unique property that dissolved CQDs capture large amounts of molecular oxygen from the air, the quantity of which can be controlled by light irradiation. The O2 content can be varied between a remarkable 1 wt % of the CQDs in the dark to nearly half of it under illumination, in a reversible manner. Moreover, O2 depletion enhances away from the air-solution interface as the nearby CQDs quickly regain them from the air, creating a pronounced concentration gradient in the solution. We elucidate the role of the CQD functional groups and show that excitons generated under light are responsible for their tunable adsorbed-oxygen content. Because of O2 enrichment, the photocatalytic efficiency of the CQDs toward oxidation of benzylamines in the air is the same as under oxygen flow and far higher than the existing photocatalysts. The findings should encourage the development of a new class of oxygen-enricher materials and air as a sustainable oxidant in chemical transformations.
Collapse
Affiliation(s)
- Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|