1
|
Wang J, Wang M, Wen Y, Teng P, Li C, Zhao C. N-Heterocyclic Carbene-Catalyzed Highly Enantioselective Macrolactonization to Access Planar-Chiral Macrocycles. Org Lett 2024; 26:1040-1045. [PMID: 38295348 DOI: 10.1021/acs.orglett.3c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
An N-heterocyclic carbene (NHC)-catalyzed atroposelective macrolactonization has been disclosed. This approach affords planar-chiral macrocycles in high yields with excellent enantioselectivities over a broad substrate scope. Controlled experiments suggest that the enantioselectivity might arise from the cation-n interaction between the acyl azolium and the electron-rich moiety in the substrate. This mechanism is supported by density functional theory calculations, which also suggest an important π-π interaction in stabilizing the transition state.
Collapse
Affiliation(s)
- Jiaming Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yilu Wen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang 310058, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Lin P, Joshi C, McGinnis TM, Mallojjala SC, Sanford AB, Hirschi JS, Jarvo ER. Stereospecific Nickel-Catalyzed Cross-Electrophile Coupling Reaction of Alkyl Mesylates and Allylic Difluorides to Access Enantioenriched Vinyl Fluoride-Substituted Cyclopropanes. ACS Catal 2023; 13:4488-4499. [PMID: 37066042 PMCID: PMC10088041 DOI: 10.1021/acscatal.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Cross-electrophile coupling reactions involving direct C-O bond activation of unactivated alkyl sulfonates or C-F bond activation of allylic gem-difluorides remain challenging. Herein, we report a nickel-catalyzed cross-electrophile coupling reaction between alkyl mesylates and allylic gem-difluorides to synthesize enantioenriched vinyl fluoride-substituted cyclopropane products. These complex products are interesting building blocks with applications in medicinal chemistry. Density functional theory (DFT) calculations demonstrate that there are two competing pathways for this reaction, both of which initiate by coordination of the electron-deficient olefin to the low-valent nickel catalyst. Subsequently, the reaction can proceed by oxidative addition of the C-F bond of the allylic gem-difluoride moiety or by directed polar oxidative addition of the alkyl mesylate C-O bond.
Collapse
Affiliation(s)
- Patricia
C. Lin
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Chetan Joshi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Tristan M. McGinnis
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Amberly B. Sanford
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S. Hirschi
- Department
of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Elizabeth R. Jarvo
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Adili A, Webster JP, Zhao C, Mallojjala SC, Romero-Reyes MA, Ghiviriga I, Abboud KA, Vetticatt MJ, Seidel D. Mechanism of a Dually Catalyzed Enantioselective Oxa-Pictet-Spengler Reaction and the Development of a Stereodivergent Variant. ACS Catal 2023; 13:2240-2249. [PMID: 37711191 PMCID: PMC10501388 DOI: 10.1021/acscatal.2c05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes proceed under weakly acidic conditions utilizing a combination of two catalysts, an indoline HCl salt and a bisthiourea compound. Mechanistic investigations revealed the roles of both catalysts and confirmed the involvement of oxocarbenium ion intermediates, ruling out alternative scenarios. A stereochemical model was derived from density functional theory calculations, which provided the basis for the development of a highly enantioselective stereodivergent variant with racemic tryptophol derivatives.
Collapse
Affiliation(s)
- Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John-Paul Webster
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | - Moises A Romero-Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Blyth MT, Coote ML. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Phys Chem Chem Phys 2023; 25:375-383. [DOI: 10.1039/d2cp04507a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electric fields can be used to tune the nucleophilicity and electrophilicity of N-heterocyclic carbenes and enhance their catalytic activity.
Collapse
Affiliation(s)
- Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
5
|
Kelty ML, McNeece AJ, Kurutz JW, Filatov AS, Anderson JS. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chem Sci 2022; 13:4377-4387. [PMID: 35509471 PMCID: PMC9007067 DOI: 10.1039/d1sc04277g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced rates and selectivity in enzymes are enabled in part by precisely tuned electric fields within active sites. Analogously, the use of charged groups to leverage electrostatics in molecular systems is a promising strategy to tune reactivity. However, separation of the through space and through bond effects of charged functional groups is a long standing challenge that limits the rational application of electric fields in molecular systems. To address this challenge we developed a method using the phosphorus selenium coupling value (J P-Se) of anionic phosphine selenides to quantify the electrostatic contribution of the borate moiety to donor strength. In this analysis we report the synthesis of a novel anionic phosphine, PPh2CH2BF3K, the corresponding tetraphenyl phosphonium and tetraethyl ammonium selenides [PPh4][SePPh2CH2BF3] and [TEA][SePPh2CH2BF3], and the Rh carbonyl complex [PPh4][Rh(acac)(CO)(PPh2(CH2BF3))]. Solvent-dependent changes in J P-Se were fit using Coulomb's law and support up to an 80% electrostatic contribution to the increase in donor strength of [PPh4][SePPh2CH2BF3] relative to SePPh2Et, while controls with [TEA][SePPh2CH2BF3] exclude convoluting ion pairing effects. Calculations using explicit solvation or point charges effectively replicate the experimental data. This J P-Se method was extended to [PPh4][SePPh2(2-BF3Ph)] and likewise estimates up to a 70% electrostatic contribution to the increase in donor strength relative to SePPh3. The use of PPh2CH2BF3K also accelerates C-F oxidative addition reactivity with Ni(COD)2 by an order of magnitude in comparison to the comparatively donating neutral phosphines PEt3 and PCy3. This enhanced reactivity prompted the investigation of catalytic fluoroarene C-F borylation, with improved yields observed for less fluorinated arenes. These results demonstrate that covalently bound charged functionalities can exert a significant electrostatic influence under common solution phase reaction conditions and experimentally validate theoretical predictions regarding electrostatic effects in reactivity.
Collapse
Affiliation(s)
- Margaret L Kelty
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Josh W Kurutz
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| |
Collapse
|
6
|
Li Y, Zhang J, Zhao X, Wang Y. Exploring the chemistry of E/Z configuration in gold-catalyzed domino cyclization: Insights on the stereoselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Liu SL, Liu X, Wang Y, Wei D. Unraveling the mechanism and substituent effects on the N-heterocyclic carbene-catalyzed transformation reaction of enals and imines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Osminski WEG, Lu Z, Zhao W, Mohammadlou A, Yin X, Matthews EC, Canestraight VM, Staples RJ, Allen CJ, Hirschi JS, Wulff WD. Probing Catalyst Function - Electronic Modulation of Chiral Polyborate Anionic Catalysts. J Org Chem 2021; 86:17762-17773. [PMID: 34852456 DOI: 10.1021/acs.joc.1c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boroxinate complexes of VAPOL and VANOL are a chiral anionic platform that can serve as a versatile staging arena for asymmetric catalysis. The structural underpinning of the platform is a chiral polyborate core that covalently links together alcohols (or phenols) and vaulted biaryl ligands. The polyborate platform is assembled in situ by the substrate of the reaction, and thus a multiplex of chiral catalysts can be rapidly assembled from various alcohols (or phenols) and bis-phenol ligands for screening of catalyst activity. In the present study, variations in the steric and electronic properties of the phenol/alcohol component of the boroxinate catalyst are probed to reveal their effects on the asymmetric induction in the catalytic asymmetric aziridination reaction. A Hammett study is consistent with a mechanism in which the two substrates are hydrogen-bonded to the boroxinate core in the enantiogenic step. The results of the Hammett study are supported by a computational study in which it is found that the H-O distance of the protonated imine hydrogen bonded to the anionic boroxinate core decreases with an increase in the electron releasing ability of the phenol unit incorporated into the boroxinate. The results are not consistent with a mechanism in which the boroxinate catalyst functions as a Lewis acid and activates the imine by a Lewis acid/Lewis base interaction.
Collapse
Affiliation(s)
- Wynter E G Osminski
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhenjie Lu
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Wenjun Zhao
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aliakbar Mohammadlou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaopeng Yin
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Emily C Matthews
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Virginia M Canestraight
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor J Allen
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - William D Wulff
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Léonard NG, Dhaoui R, Chantarojsiri T, Yang JY. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal 2021; 11:10923-10932. [DOI: 10.1021/acscatal.1c02084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia G. Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Rakia Dhaoui
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
10
|
Pareek M, Reddi Y, Sunoj RB. Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: then and now. Chem Sci 2021; 12:7973-7992. [PMID: 34194690 PMCID: PMC8208132 DOI: 10.1039/d1sc01910d] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
N-Heterocyclic carbenes (NHCs) belong to the popular family of organocatalysts used in a wide range of reactions, including that for the synthesis of complex natural products and biologically active compounds. In their organocatalytic manifestation, NHCs are known to impart umpolung reactivity to aldehydes and ketones, which are then exploited in the generation of homoenolate, acyl anion, and enolate equivalents suitable for a plethora of reactions such as annulation, benzoin, Stetter, Claisen rearrangement, cycloaddition, and C-C and C-H bond functionalization reactions and so on. A common thread that runs through these NHC catalyzed reactions is the proposed involvement of an enaminol, also known as the Breslow intermediate, formed by the nucleophilic addition of an NHC to a carbonyl group of a suitable electrophile. In the emerging years of NHC catalysis, enaminol remained elusive and was largely considered a putative intermediate owing to the difficulties encountered in its isolation and characterization. However, in the last decade, synergistic efforts utilizing an array of computational and experimental techniques have helped in gaining important insights into the formation and characterization of Breslow intermediates. Computational studies have suggested that a direct 1,2-proton transfer within the initial zwitterionic intermediate, generated by the action of an NHC on the carbonyl carbon, is energetically prohibitive and hence the participation of other species capable of promoting an assisted proton transfer is more likely. The proton transfer assisted by additives (such as acids, bases, other species, or even a solvent) was found to ease the kinetics of formation of Breslow intermediates. These important details on the formation, in situ detection, isolation, and characterization of the Breslow intermediate are scattered over a series of reports spanning well over a decade, and we intend to consolidate them in this review and provide a critical assessment of these developments. Given the central role of the Breslow intermediate in organocatalytic reactions, this treatise is expected to serve as a valuable source of knowledge on the same.
Collapse
Affiliation(s)
- Monika Pareek
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Yernaidu Reddi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
11
|
Gerosa GG, Schwengers SA, Maji R, De CK, List B. Homologisierung der Fischer‐Indol‐Synthese: Chinoline via Homo‐Diaza‐Cope‐Umlagerung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
12
|
Gerosa GG, Schwengers SA, Maji R, De CK, List B. Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo-Diaza-Cope Rearrangement. Angew Chem Int Ed Engl 2020; 59:20485-20488. [PMID: 32621795 PMCID: PMC7693176 DOI: 10.1002/anie.202005798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Indexed: 12/23/2022]
Abstract
We disclose a new Brønsted acid promoted quinoline synthesis, proceeding via homo-diaza-Cope rearrangement of N-aryl-N'-cyclopropyl hydrazines. Our strategy can be considered a homologation of Fischer's classical indole synthesis and delivers 6-membered N-heterocycles, including previously inaccessible pyridine derivatives. This approach can also be used as a pyridannulation methodology toward constructing polycyclic polyheteroaromatics. A computational analysis has been employed to probe plausible activation modes and to interrogate the role of the catalyst.
Collapse
Affiliation(s)
| | | | - Rajat Maji
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Chandra Kanta De
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Benjamin List
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
13
|
Jain S, Vanka K. The Effect of Solvent-Substrate Noncovalent Interactions on the Diastereoselectivity in the Intramolecular Carbonyl-Ene and the Staudinger [2 + 2] Cycloaddition Reactions. J Phys Chem A 2020; 124:8019-8028. [PMID: 32894951 DOI: 10.1021/acs.jpca.0c05738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncovalent interactions (NCIs) have been identified as important contributing factors for determining selectivity in organic transformations. However, cases where NCIs between solvents and substrates are responsible for a major extent for determining selectivity are rare. The current computational study with density functional theory identifies two important transformations where this is the case: the intramolecular carbonyl-ene reaction and the Staudinger [2 + 2] cycloaddition reaction. In both cases, the role of explicit solvent molecules interacting noncovalently with the substrate has been taken into account. Calculations indicate that the diastereomeric ratio would be 95.0:5.0 for the formation of tricyclic tetrahydrofuran diastereomers via the intramolecular carbonyl-ene reaction and 94.0:6.0 for the formation of the triflone diastereomers via the Staudinger [2 + 2] cycloaddition reaction, which corroborates with the experiment. Interestingly, in both the cases, the calculations indicate that noninclusion of explicit solvent molecules would lead to only a small difference between the competing transition states, which leads to the conclusion that solvent-substrate NCIs are the major cause for diastereoselectivity in both the cases considered.
Collapse
Affiliation(s)
- Shailja Jain
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Laconsay CJ, Seguin TJ, Wheeler SE. Modulating Stereoselectivity through Electrostatic Interactions in a SPINOL-Phosphoric Acid-Catalyzed Synthesis of 2,3-Dihydroquinazolinones. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Trevor J. Seguin
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Kennedy CR, Choi BY, Reeves MGR, Jacobsen EN. Enantioselective Catalysis of an Anionic Oxy-Cope Rearrangement Enabled by Synergistic Ion Binding. Isr J Chem 2020; 60:461-474. [PMID: 33132416 PMCID: PMC7592710 DOI: 10.1002/ijch.201900168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/20/2020] [Indexed: 01/09/2023]
Abstract
Charge-accelerated rearrangements present interesting challenges to enantioselective catalysis, due in large part to the competing requirements for maximizing reactivity (ion-pair separation) and stereochemical communication. Herein, we describe application of a synergistic ion-binding strategy to catalyze the anionic oxy-Cope rearrangement of a symmetric bis-styrenyl allyl alcohol in up to 75:25 e.r. Structure-reactivity-selectivity relationship studies, including linear free-energy-relationship analyses, with bifunctional urea catalysts indicate that H-bonding and cation-binding interactions act cooperatively to promote the chemo- and enantioselective [3,3]-rearrangement. Implications for catalyst designs applicable to other transformations involving oxyanionic intermediates are discussed.
Collapse
Affiliation(s)
- C Rose Kennedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Bo Young Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Mary-Grace R Reeves
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
16
|
Li Y, Zhao X. Gold-catalyzed domino cyclization enabling construction of diverse fused azaspiro tetracyclic scaffolds: a cascade catalysis mechanism due to a substrate and counterion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to diverse fused azaspiro tetracyclic scaffolds by cooperative dual catalysis and cascade catalysis are systematically studied.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| |
Collapse
|
17
|
Kang K, Fuller J, Reath AH, Ziller JW, Alexandrova AN, Yang JY. Installation of internal electric fields by non-redox active cations in transition metal complexes. Chem Sci 2019; 10:10135-10142. [PMID: 32015820 PMCID: PMC6968733 DOI: 10.1039/c9sc02870f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/07/2019] [Indexed: 01/26/2023] Open
Abstract
Local electric fields contribute to the high selectivity and catalytic activity in enzyme active sites and confined reaction centers in zeolites by modifying the relative energy of transition states, intermediates and/or products. Proximal charged functionalities can generate equivalent internal electric fields in molecular systems but the magnitude of their effect and impact on electronic structure has been minimally explored. To generate quantitative insight into installing internal fields in synthetic systems, we report an experimental and computational study using transition metal (M1) Schiff base complexes functionalized with a crown ether unit containing a mono- or dicationic alkali or alkaline earth metal ion (M2). The synthesis and characterization of the complexes M1 = Ni(ii) and M2 = Na+ or Ba2+ are reported. The electronic absorption spectra and density functional theory (DFT) calculations establish that the cations generate a robust electric field at the metal, which stabilizes the Ni-based molecular orbitals without significantly changing their relative energies. The stabilization is also reflected in the experimental Ni(ii/i) reduction potentials, which are shifted 0.12 V and 0.34 V positive for M2 = Na+ and Ba2+, respectively, compared to a complex lacking a proximal cation. To compare with the cationic Ni complexes, we also synthesized a series of Ni(salen) complexes modified in the 5' position with electron-donating and -withdrawing functionalities (-CF3, -Cl, -H, -tBu, and -OCH3). Data from this series of compounds provides further evidence that the reduction potential shifts observed in the cationic complexes are not due to inductive ligand effects. DFT studies were also performed on the previously reported monocationic and dicatonic Fe(ii)(CH3CN) and Fe(iii)Cl analogues of this system to analyze the impact of an anionic chloride on the electrostatic potential and electronic structure of the Fe site.
Collapse
Affiliation(s)
- Kevin Kang
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Jack Fuller
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , CA 90095 , USA .
| | - Alexander H Reath
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine 92697 , USA .
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , CA 90095 , USA .
- California NanoSystems Institute , Los Angeles , CA 90095 , USA
| | - Jenny Y Yang
- Department of Chemistry , University of California , Irvine 92697 , USA .
| |
Collapse
|
18
|
Zheng H, Sang Y, Houk KN, Xue XS, Cheng JP. Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations. J Am Chem Soc 2019; 141:16046-16056. [DOI: 10.1021/jacs.9b08243] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanliang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yueqian Sang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
19
|
Dhayalan V, Gadekar SC, Alassad Z, Milo A. Unravelling mechanistic features of organocatalysis with in situ modifications at the secondary sphere. Nat Chem 2019; 11:543-551. [DOI: 10.1038/s41557-019-0258-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/22/2019] [Indexed: 01/12/2023]
|
20
|
Li Y, Zhang Z. Mechanisms and Stereoselectivities of NHC-Catalyzed [3 + 4] Cycloaddition Reaction between Isatin-Derived Enal and N-(ortho
-Chloromethyl)aryl Amide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Li
- School of Chemical Engineering; University of Science and Technology Liaoning; 114051 Anshan P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering; University of Science and Technology Liaoning; 114051 Anshan P. R. China
| |
Collapse
|
21
|
Maji R, Ugale H, Wheeler SE. Understanding the Reactivity and Selectivity of Fluxional Chiral DMAP-Catalyzed Kinetic Resolutions of Axially Chiral Biaryls. Chemistry 2019; 25:4452-4459. [PMID: 30657217 DOI: 10.1002/chem.201806068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Fluxional chiral DMAP-catalyzed kinetic resolutions of axially chiral biaryls were examined using density functional theory. Computational analyses lead to a revised understanding of this reaction in which the interplay of numerous non-covalent interactions control the conformation and flexibility of the active catalyst, the preferred mechanism, and the stereoselectivity. Notably, while the DMAP catalyst itself is confirmed to be highly fluxional, electrostatically driven π⋅⋅⋅π+ interactions render the active, acylated form of the catalyst highly rigid, explaining its pronounced stereoselectivity.
Collapse
Affiliation(s)
- Rajat Maji
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Heena Ugale
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Steven E Wheeler
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.,Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
22
|
Noda H, Asada Y, Shibasaki M, Kumagai N. Neighboring Protonation Unveils Lewis Acidity in the B3NO2 Heterocycle. J Am Chem Soc 2019; 141:1546-1554. [DOI: 10.1021/jacs.8b10336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yasuko Asada
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
23
|
Zhu L, Mohamed H, Yuan H, Zhang J. The control effects of different scaffolds in chiral phosphoric acids: a case study of enantioselective asymmetric arylation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01420a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DFT calculations disclosed that the sign of enantioselectivity in chiral-phosphoric-acid catalyzed reactions can be tuned by BINOL- or SPINOL-derived backbones.
Collapse
Affiliation(s)
- Lihan Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hend Mohamed
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Haiyan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jingping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
24
|
Cao S, Yuan H, Zhang J. A mechanistic investigation into N-heterocyclic carbene (NHC) catalyzed umpolung of ketones and benzonitriles: is the cyano group better than the classical carbonyl group for the addition of NHC? Org Chem Front 2019. [DOI: 10.1039/c8qo01309h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cooperative participation of NHC-H2O-activated cyano carbon is more preferred than the classical NHC-activated carbonyl carbon.
Collapse
Affiliation(s)
- Shanshan Cao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry Northeast Normal University
- Changchun
- 130024 China
| | - Haiyan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry Northeast Normal University
- Changchun
- 130024 China
| | - Jingping Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry Northeast Normal University
- Changchun
- 130024 China
| |
Collapse
|
25
|
Abstract
We explored the influence of external electric fields (EEFs) on the stability of a glycine dipeptide model radical using high-level quantum chemical methods. Remotely located ions (Cl-/Na+) are used to implement EEF effects. The effects of these ions are reproduced using background point charges and oriented EEFs. Remote charges as far as 900 pm from the Cα radical center can be significantly stabilizing or destabilizing as a function of their relative orientation. The magnitude of these effects is also strongly dependent on the distance between the radical center and the charge location. After examining the strengths and weaknesses of some frequently used quantum mechanics methods in describing these effects properly, a comparison is made on the stability of dipeptide radicals bearing protonable or deprotonable side chains. In this group, the stability of the respective Cα radicals mainly depends on the preferred orientation of the charge-carrying side chain.
Collapse
Affiliation(s)
- Harish Jangra
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 München , Germany
| | - Hendrik Zipse
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 München , Germany
| |
Collapse
|
26
|
Wang Z, Pan D, Li T, Jin Z. N-Heterocyclic Carbene (NHC)-Organocatalyzed Kinetic Resolutions, Dynamic Kinetic Resolutions, and Desymmetrizations. Chem Asian J 2018; 13:2149-2163. [PMID: 29900699 DOI: 10.1002/asia.201800493] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/22/2018] [Indexed: 11/09/2022]
Abstract
The last couple of decades have witnessed tremendous development within N-heterocyclic carbene (NHC) organocatalysis. NHCs have been used as powerful organic catalysts in asymmetric synthesis. Although great achievements have been made in asymmetric NHC catalysis, their applications in kinetic resolution (KR), dynamic kinetic resolution (DKR), and desymmetrization processes have been relatively less developed. Moreover, limited activation modes have been involved in these processes. This review provides an overview of the NHC-organocatalyzed KR, DKR, and desymmetrization reactions in the preparation of chiral functional molecules. The aim is to highlight both the importance and elegance of these methods in the construction of challenging chiral compounds and to provide our own perspective on future development in this direction.
Collapse
Affiliation(s)
- Zhongyao Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Dingwu Pan
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
27
|
Bakr BW, Sherrill CD. Analysis of transition state stabilization by non-covalent interactions in organocatalysis: application of atomic and functional-group partitioned symmetry-adapted perturbation theory to the addition of organoboron reagents to fluoroketones. Phys Chem Chem Phys 2018; 20:18241-18251. [PMID: 29947381 DOI: 10.1039/c8cp02029a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work seeks to apply symmetry-adapted perturbation theory (SAPT) to the recent study of Hoveyda and co-workers [K. A. Lee et al., Nat. Chem. 2016, 8, 768] where an allyl addition to a ketone became enantioselective when the ketone was fluorinated. Through the application of atomic SAPT (A-SAPT) and functional-group SAPT (F-SAPT), the non-covalent interactions between specific atoms and functional groups in the transition states associated with the fluoroketone reactions can be quantified. Our A-SAPT analysis confirms that a HF contact thought to enhance stereoselectivity shows a strong preference for one of the transition states leading to the experimentally observed product enantiomer. Other key atom-atom contacts invoked to rationalize relative transition state energies are also found to behave as expected based on chemical intuition and contact distances. On the other hand, hypothesized steric clashes between substrate phenyl or ortho-methyl phenyl groups and the catalyst are not supported by F-SAPT computations, and indeed, these are actually favorable π-π interactions.
Collapse
Affiliation(s)
- Brandon W Bakr
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| | | |
Collapse
|
28
|
Liu B, Yan J, Huang R, Wang W, Jin Z, Zanoni G, Zheng P, Yang S, Chi YR. Kinetic Resolution of 1,2-Diols via NHC-Catalyzed Site-Selective Esterification. Org Lett 2018; 20:3447-3450. [DOI: 10.1021/acs.orglett.8b01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiekuan Yan
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ruoyan Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Weihong Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
29
|
Chantarojsiri T, Ziller JW, Yang JY. Incorporation of redox-inactive cations promotes iron catalyzed aerobic C-H oxidation at mild potentials. Chem Sci 2018; 9:2567-2574. [PMID: 29732136 PMCID: PMC5911827 DOI: 10.1039/c7sc04486k] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
The synthesis and characterization of the Schiff base complexes Fe(ii) (2M) and Fe(iii)Cl (3M), where M is a K+ or Ba2+ ion incorporated into the ligand, are reported. The Fe(iii/ii) redox potentials are positively shifted by 440 mV (2K) and 640 mV (2Ba) compared to Fe(salen) (salen = N,N'-bis(salicylidene)ethylenediamine), and by 70 mV (3K) and 230 mV (3Ba) compared to Fe(Cl)(salen), which is likely due to an electrostatic effect (electric field) from the cation. The catalytic activity of 3M towards the aerobic oxidation of allylic C-H bonds was explored. Prior studies on iron salen complexes modified through conventional electron-donating or withdrawing substituents found that only the most oxidizing derivatives were competent catalysts. In contrast, the 3M complexes, which are significantly less oxidizing, are both active. Mechanistic studies comparing 3M to Fe(salen) derivatives indicate that the proximal cation contributes to the overall reactivity in the rate determining step. The cationic charge also inhibits oxidative deactivation through formation of the corresponding Fe2-μ-oxo complexes, which were isolated and characterized. This study demonstrates how non-redox active Lewis acidic cations in the secondary coordination sphere can be used to modify redox catalysts in order to operate at milder potentials with a minimal impact on the reactivity, an effect that was unattainable by tuning the catalyst through traditional substituent effects on the ligand.
Collapse
Affiliation(s)
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine , 92697 , USA .
| | - Jenny Y Yang
- Department of Chemistry , University of California , Irvine , 92697 , USA .
| |
Collapse
|
30
|
Athira C, Changotra A, Sunoj RB. Rhodium Catalyzed Asymmetric Hydroamination of Internal Alkynes with Indoline: Mechanism, Origin of Enantioselectivity, and Role of Additives. J Org Chem 2018; 83:2627-2639. [PMID: 29437393 DOI: 10.1021/acs.joc.7b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive mechanistic study on the title reaction by using DFT(B3LYP-D3) computational method is reported. Explicit consideration of mono- (m-xylylic) and dicarboxylic acid (phthalic) in the key transition states reveals active participation of the carboxylic acid, beginning with the generation of a monomeric Rh(I) active catalyst and in the ensuing catalytic steps. In the early catalytic event, uptake of alkyne is predicted to take place only after the oxidative addition of the Rh(I) active catalyst to the carboxylic acid. The hydrometalation of the alkyne bound to the Rh(III)-H intermediate then generates a Rh(III)-vinyl intermediate, which in turn converts to a Rh(III)-allyl species. The inclusion of m-xylylic acid results in a two-step pathway to Rh(III)-allyl species via Rh-allene intermediate. A number of weak noncovalent interactions (hydrogen bonding and C-H···π) between the catalyst and the substrates and that involving m-xylylic acid are found to have a direct impact on the regiochemical preference toward the branched product and the enantiocontrolling hydroamination step involving C-N bond formation leading to the major enantiomer (S-allylic amine). The chiral induction is enabled by cumulative effect of noncovalent interactions, which is an insight that could aid future developments of chiral ligands for asymmetric hydroamination.
Collapse
Affiliation(s)
- C Athira
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Xu H, Zhu Z, Guo Y, Liu C, Zhang W, Zhu Y, Wang Y, Tang M. A DFT study on N-heterocyclic carbene catalyzed [4+2] annulation reaction with in situ generated heterocyclic ortho-quinodimethane: Mechanism, origin of enantioselectivity and role of catalyst. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Sedenkova KN, Averina EB, Grishin YK, Kolodyazhnaya JV, Rybakov VB, Kuznetsova TS, Hughes A, Gomes GDP, Alabugin IV, Zefirov NS. Substituent effects on stereoselectivity of dihalocarbene reactions with cyclohexadiene and on the reactivity of bis-dihalocyclopropanes in electrophilic nitrations en route to pyrimidine N-oxides. Org Biomol Chem 2017; 15:9433-9441. [PMID: 29095467 DOI: 10.1039/c7ob02463k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tricyclic bis-adducts of cyclohexa-1,4-diene with bromofluorocarbene and non-symmetric adducts with both bromofluoro- and dichlorocarbenes were synthesised selectively. The treatment of the bis-adducts with nitrating reagents in acetonitrile affords the products of heterocyclization of a sole dihalogenocyclopropane into 4-fluoropyrimidine N-oxide. The difference in the reactivity of bis-cyclopropanes with different sets of halogen substituents leads to selective heterocyclization of bromofluorocyclopropanes without affecting the dichlorocyclopropane moiety.
Collapse
Affiliation(s)
- Kseniya N Sedenkova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia. and IPhAc RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Elena B Averina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia. and IPhAc RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Yuri K Grishin
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Julia V Kolodyazhnaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Victor B Rybakov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Tamara S Kuznetsova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Audrey Hughes
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Gabriel Dos Passos Gomes
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Igor V Alabugin
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Nikolay S Zefirov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia. and IPhAc RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| |
Collapse
|
33
|
Maji R, Champagne PA, Houk KN, Wheeler SE. Activation Mode and Origin of Selectivity in Chiral Phosphoric Acid-Catalyzed Oxacycle Formation by Intramolecular Oxetane Desymmetrizations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02993] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rajat Maji
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Pier Alexandre Champagne
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Center
for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|