1
|
Bryan C, Cepeda J, Li B, Yang K. DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions. Chem Res Toxicol 2025. [PMID: 40387817 DOI: 10.1021/acs.chemrestox.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Covalent DNA-protein cross-links (DPCs), if not resolved, can block DNA replication and transcription, resulting in genome instability. Compared to other types of DNA damage, how DPCs are formed and repaired is less understood. This review focuses on recent findings concerning DPCs derived from two types of abasic DNA lesions, apurinic/apyrimidinic sites and 3'-phospho-α,β-unsaturated aldehydes. It summarizes the newly reported DPCs and their identification by liquid chromatography tandem mass spectrometry. It also reviews the approaches for synthesizing stable and site-specific DPCs, and their applications for discovering the corresponding repair mechanisms. Finally, it discusses the future directions to better understand the mechanistic formation and repair of those DPCs.
Collapse
Affiliation(s)
- Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel Cepeda
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bingru Li
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Yudkina AV, Novikova AA, Stolyarenko AD, Makarova AV, Zharkov DO. Bypass of Methoxyamine-Adducted Abasic Sites by Eukaryotic Translesion DNA Polymerases. Int J Mol Sci 2025; 26:642. [PMID: 39859356 PMCID: PMC11766430 DOI: 10.3390/ijms26020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The apurinic/apyrimidinic site (AP site) is a highly mutagenic and cytotoxic DNA lesion. Normally, AP sites are removed from DNA by base excision repair (BER). Methoxyamine (MOX), a BER inhibitor currently under clinical trials as a tumor sensitizer, forms adducts with AP sites (AP-MOX) resistant to the key BER enzyme, AP endonuclease. As AP-MOX remains unrepaired, translesion DNA synthesis is expected to be the main mechanism of cellular response to this lesion. However, the mutagenic potential of AP-MOX is still unclear. Here, we compare the blocking and mutagenic properties of AP-MOX and the natural AP site for major eukaryotic DNA polymerases involved in translesion synthesis: DNA polymerases η, ι, ζ, Rev1, and primase-polymerase PrimPol. The miscoding properties of both abasic lesions remained mostly the same for each studied enzyme. In contrast, the blocking properties of AP-MOX compared to the AP site were DNA polymerase specific. Pol η and PrimPol bypassed both lesions with the same efficiency. The bypass of AP-MOX by Pol ι was 15-fold lower than that of the AP site. On the contrary, Rev1 bypassed AP-MOX 5-fold better than the AP site. Together, our data suggest that Rev1 is best suited to support synthesis across AP-MOX in human cells.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna A. Novikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Anastasia D. Stolyarenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Xue CY, Liu YH, Yu Y, Liu Y, Zhou YL, Zhang XX. Ultrasensitive mass spectrometric quantitation of apurinic/apyrimidinic sites in genomic DNA of mammalian cell lines exposed to genotoxic reagents. Anal Chim Acta 2024; 1329:343238. [PMID: 39396301 DOI: 10.1016/j.aca.2024.343238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The apurinic/apyrimidinic (AP) site is an important intermediate in the DNA base excision repair (BER) pathway, having the potential of being a biomarker for DNA damage. AP sites could lead to the stalling of polymerases, the misincorporation of bases and DNA strand breaks, which might affect physiological function of cells. However, the abundance of AP sites in genomic DNA is very low (less than 2 AP sites/106 nts), which requires a sensitive and accurate method to meet its detection requirements. Here, we described an ultrasensitive quantification method based on a hydrazine-s-triazine reagent (i-Pr2N) labeling for AP sites combining with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limit of detection reached an ultralow level (40 amol), realizing the most sensitive MS-based quantification for the AP site. To guarantee the accuracy of the quantitative results, the labeling reaction was carried out directly on DNA strands instead of labeling after DNA enzymatic digestion to reduce artifacts that might be produced during the enzymatic process of DNA strands. And selective detection was realized by MS to avoid introducing the false-positive signals from other aldehyde species, which could also react with i-Pr2N. Genomic DNA samples from different mammalian cell lines were successfully analyzed using this method. There were 0.4-0.8 AP sites per 106 nucleotides, and the values would increase 16.1 and 2.75 times when cells were treated with genotoxic substances methyl methanesulfonate and 5-fluorouracil, respectively. This method has good potential in the analysis of a small number of cell samples and clinical samples, is expected to be useful for evaluating the damage level of DNA bases, the genotoxicity of compounds and the drug resistance of cancer cells, and provides a new tool for cell function research and clinical precise treatment.
Collapse
Affiliation(s)
- Chen-Yu Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100191, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Yu
- Qilu Pharmaceutical Co., Ltd, Jinan, 250104, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Lebedeva NA, Dyrkheeva NS, Rechkunova NI, Lavrik OI. Apurinic/apyrimidinic endonuclease 1 has major impact in prevention of suicidal covalent DNA-protein crosslink with apurinic/apyrimidinic site in cellular extracts. IUBMB Life 2024; 76:987-996. [PMID: 38963041 DOI: 10.1002/iub.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.
Collapse
Affiliation(s)
- Natalia A Lebedeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
8
|
Gusti Ngurah Putu EP, Cattiaux L, Lavergne T, Pommier Y, Bombard S, Granzhan A. Unprecedented reactivity of polyamines with aldehydic DNA modifications: structural determinants of reactivity, characterization and enzymatic stability of adducts. Nucleic Acids Res 2023; 51:10846-10866. [PMID: 37850658 PMCID: PMC10639052 DOI: 10.1093/nar/gkad837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.
Collapse
Affiliation(s)
- Eka Putra Gusti Ngurah Putu
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Laurent Cattiaux
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Thomas Lavergne
- DCM, CNRS UMR5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, CCR-NCI, NIH, Bethesda, MD 20892, USA
| | - Sophie Bombard
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
9
|
Liu C, Le BH, Xu W, Yang CH, Chen YH, Zhao L. Dual chemical labeling enables nucleotide-resolution mapping of DNA abasic sites and common alkylation damage in human mitochondrial DNA. Nucleic Acids Res 2023; 51:e73. [PMID: 37293974 PMCID: PMC10359467 DOI: 10.1093/nar/gkad502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Ching-Hsin Yang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Yin J, Gates KS, Wang Y. N-Methyl- N-nitrosourea Induced 3'-Glutathionylated DNA-Cleavage Products in Mammalian Cells. Anal Chem 2022; 94:15595-15603. [PMID: 36332130 PMCID: PMC9869666 DOI: 10.1021/acs.analchem.2c02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated β-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,β-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
11
|
Harenberg JH, Reddy Annapureddy R, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022; 61:e202203807. [PMID: 35416397 PMCID: PMC9400861 DOI: 10.1002/anie.202203807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/14/2022]
Abstract
We report a lateral sodiation of alkyl(hetero)arenes using on-demand generated hexane-soluble (2-ethylhexyl)sodium (1) in the presence of TMEDA. (2-Ethylhexyl)sodium (1) is prepared via a sodium packed-bed reactor and used for metalations at ambient temperature in batch as well as in continuous flow. The resulting benzylic sodium species are subsequently trapped with various electrophiles including carbonyl compounds, epoxides, oxetane, allyl/benzyl chlorides, alkyl halides and alkyl tosylates. Wurtz-type couplings with secondary alkyl halides and tosylates proceed under complete inversion of stereochemistry. Furthermore, the utility of this lateral sodiation is demonstrated in the synthesis of pharmaceutical relevant compounds. Thus, fingolimod is prepared from p-xylene applying the lateral sodiation twice. In addition, 7-fold isotopically labeled salmeterol-d7 and fenpiprane as well as precursors to super linear alkylbenzene (SLAB) surfactants are prepared.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | | | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
12
|
Jha JS, Yin J, Haldar T, Wang Y, Gates KS. Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3'-Glutathionylation. J Am Chem Soc 2022; 144:10471-10482. [PMID: 35612610 DOI: 10.1021/jacs.2c02703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo β-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,β-unsaturated aldehyde end group─may be the true strand cleavage product arising from β-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Collapse
|
13
|
Yang K, Wei X, Le J, Rodriguez N. Human TREX1 Repairs 3'-End DNA Lesions in Vitro. Chem Res Toxicol 2022; 35:935-939. [PMID: 35537036 DOI: 10.1021/acs.chemrestox.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human three-prime repair exonuclease 1 (TREX1) is the major 3' to 5' exonuclease that functions to deplete the cytosolic DNA to prevent the autoimmune response. TREX1 is upregulated and translocates from cytoplasm to the nucleus in response to genotoxic stress, but the function of nuclear TREX1 is not well understood. Herein, we wish to report our in vitro finding that TREX1 efficiently excises 3'-phospho-α,β-unsaturated aldehyde and 3'-deoxyribose phosphate that are commonly produced as base excision repair intermediates and also from the nonenzymatic strand incision at abasic sites.
Collapse
Affiliation(s)
- Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer Le
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nestor Rodriguez
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Harenberg JH, Annapureddy RR, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
15
|
Jha JS, Nel C, Haldar T, Peters D, Housh K, Gates KS. Products Generated by Amine-Catalyzed Strand Cleavage at Apurinic/Apyrimidinic Sites in DNA: New Insights from a Biomimetic Nucleoside Model System. Chem Res Toxicol 2022; 35:203-217. [PMID: 35124963 PMCID: PMC9477562 DOI: 10.1021/acs.chemrestox.1c00408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abasic sites are common in cellular and synthetic DNA. As a result, it is important to characterize the chemical fate of these lesions. Amine-catalyzed strand cleavage at abasic sites in DNA is an important process in which conversion of small amounts of the ring-opened abasic aldehyde residue to an iminium ion facilitates β-elimination of the 3'-phosphoryl group. This reaction generates a trans-α,β-unsaturated iminium ion on the 3'-terminus of the strand break as an obligate intermediate. The canonical product expected from amine-catalyzed cleavage at an AP site is the corresponding trans-α,β-unsaturated aldehyde sugar remnant resulting from hydrolysis of this iminium ion. Interestingly, a handful of studies have reported noncanonical 3'-sugar remnants generated by amine-catalyzed strand cleavage, but the formation and properties of these products are not well-understood. To address this knowledge gap, a nucleoside system was developed that enabled chemical characterization of the sugar remnants generated by amine-catalyzed β-elimination in the 2-deoxyribose system. The results predict that amine-catalyzed strand cleavage at an AP site under physiological conditions has the potential to reversibly generate noncanonical cleavage products including cis-alkenal, 3-thio-2,3-dideoxyribose, and 2-deoxyribose groups alongside the canonical trans-alkenal residue on the 3'-terminus of the strand break. Thus, the model reactions provide evidence that the products generated by amine-catalyzed strand cleavage at abasic sites in cellular DNA may be more complex that commonly thought, with trans-α,β-unsaturated iminium ion intermediates residing at the hub of interconverting product mixtures. The results expand the list of possible 3'-sugar remnants arising from amine-catalyzed cleavage of abasic sites in DNA that must be chemically or enzymatically removed for the completion of base excision repair and single-strand break repair in cells.
Collapse
Affiliation(s)
- Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Daniel Peters
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Corresponding Author: Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; Phone: (573) 882-6763;
| |
Collapse
|
16
|
Haldar T, Jha JS, Yang Z, Nel C, Housh K, Cassidy OJ, Gates KS. Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chem Res Toxicol 2022; 35:218-232. [PMID: 35129338 PMCID: PMC9482271 DOI: 10.1021/acs.chemrestox.1c00409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the β-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,β-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,β-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Collapse
Affiliation(s)
- Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Orla J. Cassidy
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Address correspondence to Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; ORCHID ID: 0000-0002-4218-7411; Phone: (573) 882-6763;
| |
Collapse
|
17
|
Yudkina AV, Zharkov DO. Miscoding and DNA Polymerase Stalling by Methoxyamine-Adducted Abasic Sites. Chem Res Toxicol 2022; 35:303-314. [PMID: 35089032 DOI: 10.1021/acs.chemrestox.1c00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apurinic/apyrimidinic (AP) sites appear in DNA spontaneously and as intermediates of base excision DNA repair. AP sites are noninstructive lesions: they strongly block DNA polymerases, and if bypassed, the nature of the incorporated dNMP is mostly guided by the interactions within the polymerase-DNA active site. Many DNA polymerases follow the "A-rule", preferentially incorporating dAMP opposite to natural AP sites. Methoxyamine (MX), a small molecule, efficiently reacts with the aldehyde moiety of natural AP sites, thereby preventing their cleavage by APEX1, the major human AP endonuclease. MX is currently regarded as a possible sensitizer of cancer cells toward DNA-damaging drugs. To evaluate the mutagenic potential of MX, we have studied the utilization of various dNTPs by five DNA polymerases of different families encountering MX-AP adducts in the template in comparison with the natural aldehydic AP site. The Klenow fragment of Escherichia coli DNA polymerase I strictly followed the A-rule with both natural AP and MX-adducted AP sites. Phage RB69 DNA polymerase, a close relative of human DNA polymerases δ and ε, efficiently incorporated both dAMP and dGMP. DNA polymerase β mostly incorporated dAMP and dCMP, preferring dCMP opposite to the natural AP site and dAMP opposite to the MX-AP site, while DNA polymerase λ was selective for dGMP, apparently via the primer misalignment mechanism. Finally, translesion DNA polymerase κ also followed the A-rule for MX-AP and additionally incorporated dCMP opposite to a natural AP site. Overall, the MX-AP site, despite structural differences, was similar to the natural AP site in terms of the dNMP misincorporation preference but was bypassed less efficiently by all polymerases except for Pol κ.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Wei X, Wang Z, Hinson C, Yang K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3638-3657. [PMID: 35349719 PMCID: PMC9023300 DOI: 10.1093/nar/gkac185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Caroline Hinson
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kun Yang
- To whom correspondence should be addressed. Tel: +1 512 471 4843;
| |
Collapse
|
19
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomic Decarboxylation of 5-Carboxy-2'-deoxycytidine. Angew Chem Int Ed Engl 2021; 60:23207-23211. [PMID: 34432359 PMCID: PMC8596745 DOI: 10.1002/anie.202109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Cellular DNA is composed of four canonical nucleosides (dA, dC, dG and T), which form two Watson-Crick base pairs. In addition, 5-methylcytosine (mdC) may be present. The methylation of dC to mdC is known to regulate transcriptional activity. Next to these five nucleosides, the genome, particularly of stem cells, contains three additional dC derivatives, which are formed by stepwise oxidation of the methyl group of mdC with the help of Tet enzymes. These are 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). It is believed that fdC and cadC are converted back into dC, which establishes an epigenetic control cycle that starts with methylation of dC to mdC, followed by oxidation and removal of fdC and cadC. While fdC was shown to undergo intragenomic deformylation to give dC directly, a similar decarboxylation of cadC was postulated but not yet observed on the genomic level. By using metabolic labelling, we show here that cadC decarboxylates in several cell types, which confirms that both fdC and cadC are nucleosides that are directly converted back to dC within the genome by C-C bond cleavage.
Collapse
Affiliation(s)
- Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Andreas Reichl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
20
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomische Decarboxylierung von 5‐Carboxy‐2′‐desoxycytidin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewelina Kamińska
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Andreas Reichl
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
21
|
Housh K, Jha JS, Yang Z, Haldar T, Johnson KM, Yin J, Wang Y, Gates KS. Formation and Repair of an Interstrand DNA Cross-Link Arising from a Common Endogenous Lesion. J Am Chem Soc 2021; 143:15344-15357. [PMID: 34516735 DOI: 10.1021/jacs.1c06926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,β-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jay S Jha
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Tuhin Haldar
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jiekai Yin
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States.,University of Missouri Department of Biochemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Kim DV, Kulishova LM, Torgasheva NA, Melentyev VS, Dianov GL, Medvedev SP, Zakian SM, Zharkov DO. Mild phenotype of knockouts of the major apurinic/apyrimidinic endonuclease APEX1 in a non-cancer human cell line. PLoS One 2021; 16:e0257473. [PMID: 34529719 PMCID: PMC8445474 DOI: 10.1371/journal.pone.0257473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
The major human apurinic/apyrimidinic (AP) site endonuclease, APEX1, is a central player in the base excision DNA repair (BER) pathway and has a role in the regulation of DNA binding by transcription factors. In vertebrates, APEX1 knockouts are embryonic lethal, and only a handful of knockout cell lines are known. To facilitate studies of multiple functions of this protein in human cells, we have used the CRISPR/Cas9 system to knock out the APEX1 gene in a widely used non-cancer hypotriploid HEK 293FT cell line. Two stable knockout lines were obtained, one carrying two single-base deletion alleles and one single-base insertion allele in exon 3, another homozygous in the single-base insertion allele. Both mutations cause a frameshift that leads to premature translation termination before the start of the protein's catalytic domain. Both cell lines totally lacked the APEX1 protein and AP site-cleaving activity, and showed significantly lower levels of the APEX1 transcript. The APEX1-null cells were unable to support BER on uracil- or AP site-containing substrates. Phenotypically, they showed a moderately increased sensitivity to methyl methanesulfonate (MMS; ~2-fold lower EC50 compared with wild-type cells), and their background level of natural AP sites detected by the aldehyde-reactive probe was elevated ~1.5-2-fold. However, the knockout lines retained a nearly wild-type sensitivity to oxidizing agents hydrogen peroxide and potassium bromate. Interestingly, despite the increased MMS cytotoxicity, we observed no additional increase in AP sites in knockout cells upon MMS treatment, which could indicate their conversion into more toxic products in the absence of repair. Overall, the relatively mild cell phenotype in the absence of APEX1-dependent BER suggests that mammalian cells possess mechanisms of tolerance or alternative repair of AP sites. The knockout derivatives of the extensively characterized HEK 293FT cell line may provide a valuable tool for studies of APEX1 in DNA repair and beyond.
Collapse
Affiliation(s)
- Daria V. Kim
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Liliya M. Kulishova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - Vasily S. Melentyev
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Grigory L. Dianov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Suren M. Zakian
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
23
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylation of 5-Formylcytidine in Different Cell Types. Angew Chem Int Ed Engl 2021; 60:16869-16873. [PMID: 34110681 PMCID: PMC8362038 DOI: 10.1002/anie.202107089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic programming of cells requires methylation of deoxycytidines (dC) to 5-methyl-dC (mdC) followed by oxidation to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). Subsequent transformation of fdC and cadC back to dC by various pathways establishes a chemical intra-genetic control circle. One of the discussed pathways involves the Tdg-independent deformylation of fdC directly to dC. Here we report the synthesis of a fluorinated fdC feeding probe (F-fdC) to study direct deformylation to F-dC. The synthesis was performed along a novel pathway that circumvents any F-dC as a reaction intermediate to avoid contamination interference. Feeding of F-fdC and observation of F-dC formation in vivo allowed us to gain insights into the Tdg-independent removal process. While deformylation was shown to occur in stem cells, we here provide data that prove deformylation also in different somatic cell types. We also investigated active demethylation in a non-dividing neurogenin-inducible system of iPS cells that differentiate into bipolar neurons.
Collapse
Affiliation(s)
- Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
24
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylierung von 5‐Formylcytidin in unterschiedlichen Zelltypen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Korytiaková
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Ewelina Kamińska
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
25
|
Schelter F, Kirchner A, Traube FR, Müller M, Steglich W, Carell T. 5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks. Chemistry 2021; 27:8100-8104. [PMID: 33769637 PMCID: PMC8252671 DOI: 10.1002/chem.202100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/20/2023]
Abstract
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
Collapse
Affiliation(s)
- Florian Schelter
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Angie Kirchner
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeCB2 0REUK
| | | | - Markus Müller
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Wolfgang Steglich
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thomas Carell
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
26
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
27
|
Heiss M, Hagelskamp F, Marchand V, Motorin Y, Kellner S. Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo. Nat Commun 2021; 12:389. [PMID: 33452242 PMCID: PMC7810713 DOI: 10.1038/s41467-020-20576-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, studies about RNA modification dynamics in human RNAs are among the most controversially discussed. As a main reason, we identified the unavailability of a technique which allows the investigation of the temporal processing of RNA transcripts. Here, we present nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) for efficient, monoisotopic stable isotope labeling in both RNA and DNA in standard cell culture. We design pulse chase experiments and study the temporal placement of modified nucleosides in tRNAPhe and 18S rRNA. In existing RNAs, we observe a time-dependent constant loss of modified nucleosides which is masked by post-transcriptional methylation mechanisms and thus undetectable without NAIL-MS. During alkylation stress, NAIL-MS reveals an adaptation of tRNA modifications in new transcripts but not existing ones. Overall, we present a fast and reliable stable isotope labeling strategy which allows in-depth study of RNA modification dynamics in human cell culture.
Collapse
Affiliation(s)
- Matthias Heiss
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Felix Hagelskamp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA, F-54000, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA, F-54000, Nancy, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str, 9, 60438, Frankfurt, Germany.
| |
Collapse
|
28
|
Kellum AH, Qiu DY, Voehler MW, Martin W, Gates KS, Stone MP. Structure of a Stable Interstrand DNA Cross-Link Involving a β- N-Glycosyl Linkage Between an N6-dA Amino Group and an Abasic Site. Biochemistry 2020; 60:41-52. [PMID: 33382597 DOI: 10.1021/acs.biochem.0c00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and β configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the β configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David Y Qiu
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - William Martin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, Missouri 65221, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
29
|
Spada F, Schiffers S, Kirchner A, Zhang Y, Arista G, Kosmatchev O, Korytiakova E, Rahimoff R, Ebert C, Carell T. Active turnover of genomic methylcytosine in pluripotent cells. Nat Chem Biol 2020; 16:1411-1419. [PMID: 32778844 DOI: 10.1038/s41589-020-0621-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known, and the underlying pathways are poorly understood. Here we use metabolic labeling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic 5-methyl-2'-deoxycytidine (mdC), 5-hydroxymethyl-2'-deoxycytidine (hmdC) and 5-formyl-2'-deoxycytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells, the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on ten-eleven translocation (Tet)-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage-committed cells. Thus, in pluripotent cells, active mdC turnover involves both mdC oxidation-dependent and oxidation-independent processes.
Collapse
Affiliation(s)
- Fabio Spada
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| | - Sarah Schiffers
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Angie Kirchner
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yingqian Zhang
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- State Key Laboratory of Elemento-organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Gautier Arista
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Olesea Kosmatchev
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Eva Korytiakova
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - René Rahimoff
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Department of Chemistry, University of California, Los Angeles, Berkeley, CA, USA
| | - Charlotte Ebert
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| |
Collapse
|
30
|
Guo J, Chen H, Upadhyaya P, Zhao Y, Turesky RJ, Hecht SS. Mass Spectrometric Quantitation of Apurinic/Apyrimidinic Sites in Tissue DNA of Rats Exposed to Tobacco-Specific Nitrosamines and in Lung and Leukocyte DNA of Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2475-2486. [PMID: 32833447 PMCID: PMC7574376 DOI: 10.1021/acs.chemrestox.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) results in formation of reactive electrophiles that modify DNA to produce a variety of products including methyl, 4-(3-pyridyl)-4-oxobutyl (POB)-, and 4-(3-pyridyl)-4-hydroxybutyl adducts. Among these are adducts such as 7-POB-deoxyguanosine (N7POBdG) which can lead to apurinic/apyrimidinic (AP) sites by facile hydrolysis of the base-deoxyribonucleoside bond. In this study, we used a recently developed highly sensitive mass spectrometric method to quantitate AP sites by derivatization with O-(pyridin-3-yl-methyl)hydroxylamine (PMOA) (detection limit, 2 AP sites per 108 nucleotides). AP sites were quantified in DNA isolated from tissues of rats treated with NNN and NNK and from human lung tissue and leukocytes of cigarette smokers and nonsmokers. Rats treated with 5 or 21 mg/kg bw NNK for 4 days by s.c. injection had 2-6 and 2-17 times more AP sites than controls in liver and lung DNA (p < 0.05). Increases in AP sites were also found in liver DNA of rats exposed for 10 and 30 weeks (p < 0.05) but not for 50 and 70 weeks to 5 ppm of NNK in their drinking water. Levels of N7POBG were significantly correlated with AP sites in rats treated with NNK. In rats treated with 14 ppm (S)-NNN in their drinking water for 10 weeks, increased AP site formation compared to controls was observed in oral and nasal respiratory mucosa DNA (p < 0.05). No significant increase in AP sites was found in human lung and leukocyte DNA of cigarette smokers compared to nonsmokers, although AP sites in leukocyte DNA were significantly correlated with urinary levels of the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). This is the first study to use mass spectrometry based methods to examine AP site formation by carcinogenic tobacco-specific nitrosamines in laboratory animals and to evaluate AP sites in DNA of smokers and nonsmokers.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haoqing Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analyse des aktiven Deformylierungsmechanismus von 5‐Formyl‐2′‐Desoxycytidin in Stammzellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander Schön
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Ewelina Kaminska
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Florian Schelter
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eveliina Ponkkonen
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
32
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analysis of an Active Deformylation Mechanism of 5-Formyl-deoxycytidine (fdC) in Stem Cells. Angew Chem Int Ed Engl 2020; 59:5591-5594. [PMID: 31999041 PMCID: PMC7155088 DOI: 10.1002/anie.202000414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/30/2022]
Abstract
The removal of 5‐methyl‐deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5‐hydroxymethyl‐deoxycytidine (hmdC) and further on to 5‐formyl‐deoxycytidine (fdC) and 5‐carboxy‐deoxycytidine (cadC) with the help of α‐ketoglutarate‐dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C−C bond cleavage that converts fdC directly into dC. A 6‐aza‐5‐formyl‐deoxycytidine (a‐fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2′‐fluorinated fdC analogue (F‐fdC). While deformylation of F‐fdC was clearly observed in vivo, it did not occur with a‐fdC, thus suggesting that the C−C bond‐cleaving deformylation is initiated by nucleophilic activation.
Collapse
Affiliation(s)
- Alexander Schön
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ewelina Kaminska
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Florian Schelter
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eveliina Ponkkonen
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eva Korytiaková
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Sarah Schiffers
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
33
|
Fleming AM, Burrows CJ. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J Am Chem Soc 2020; 142:1115-1136. [PMID: 31880930 PMCID: PMC6988379 DOI: 10.1021/jacs.9b11050] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living in an oxygen atmosphere demands an ability to thrive in the presence of reactive oxygen species (ROS). Aerobic organisms have successfully found solutions to the oxidative threats imposed by ROS by evolving an elaborate detoxification system, upregulating ROS during inflammation, and utilizing ROS as messenger molecules. In this Perspective, recent studies are discussed that demonstrate ROS as signaling molecules for gene regulation by combining two emergent properties of the guanine (G) heterocycle in DNA, namely, oxidation sensitivity and a propensity for G-quadruplex (G4) folding, both of which depend upon sequence context. In human gene promoters, this results from an elevated 5'-GG-3' dinucleotide frequency and GC enrichment near transcription start sites. Oxidation of DNA by ROS drives conversion of G to 8-oxo-7,8-dihydroguanine (OG) to mark target promoters for base excision repair initiated by OG-glycosylase I (OGG1). Sequence-dependent mechanisms for gene activation are available to OGG1 to induce transcription. Either OGG1 releases OG to yield an abasic site driving formation of a non-canonical fold, such as a G4, to be displayed to apurinic/apyrimidinic 1 (APE1) and stalling on the fold to recruit activating factors, or OGG1 binds OG and facilitates activator protein recruitment. The mechanisms described drive induction of stress response, DNA repair, or estrogen-induced genes, and these pathways are novel potential anticancer targets for therapeutic intervention. Chemical concepts provide a framework to discuss the regulatory or possible epigenetic potential of the OG modification in DNA, in which DNA "damage" and non-canonical folds collaborate to turn on or off gene expression. The next steps for scientific discovery in this growing field are discussed.
Collapse
Affiliation(s)
- Aaron M. Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J. Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
34
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
35
|
Abstract
DNA is constantly challenged by chemical modification and spontaneous loss of its bases, which results in apurinic sites (AP-sites). In addition to the direct route, modified bases may be converted into AP-sites through enzymatic removal of the base as part of the base excision repair pathway. Here we present the method AP-seq, which allows enriching and sequencing AP-sites genome-wide. Quantification of DNA recovery (AP-quant) allows for relative quantification of global AP-sites, and AP-site pulldown followed by qPCR (AP-qPCR) allows for site-specific damage assessment. Taking advantage of glycosylases that specifically excise modified bases also in vitro, this method allows not only to address the genomic distribution of AP-sites but also to detect base modifications, e.g., 8-oxo-7,8-dihydroguanine (8-oxoG). AP-quant, AP-qPCR, and AP-seq can be applied to investigate quantitatively the relative amount and genome specificity of DNA damage and repair, effects of radiation, as well as multiple other questions around AP-sites and base modifications.
Collapse
Affiliation(s)
- Anna R Poetsch
- St. Anna Children's Cancer Research Institute, Vienna, Austria.
| |
Collapse
|
36
|
Feng B, Wang K, Yang Y, Wang G, Zhang H, Liu Y, Jiang K. Ultrasensitive recognition of AP sites in DNA at the single-cell level: one molecular rotor sequentially self-regulated to form multiple different stable conformations. Chem Sci 2019; 10:10373-10380. [PMID: 32110326 PMCID: PMC6988597 DOI: 10.1039/c9sc04140k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023] Open
Abstract
The AP site is a primary form of DNA damage. Its presence alters the genetic structure and eventually causes malignant diseases. AP sites generally present a high-speed dynamic change in the DNA sequence. Thus, precisely recognizing AP sites is difficult, especially at the single-cell level. To address this issue, we provide a broad-spectrum strategy to design a group of molecular rotors, that is, a series of nonfluorescent 2-(4-vinylbenzylidene)malononitrile derivatives (BMN-Fluors), which constantly display molecular rotation in a free state. Interestingly, after activating the relevant specific-recognition reaction (i.e., hydrolysis reaction of benzylidenemalononitrile) only in the AP-site cavity within a short time (approximately 300 s), each of these molecules can be fixed into this cavity and can sequentially self-regulate to form different stable conformations in accordance with the cavity size. The different stable conformations possess various HOMO-LUMO energy gaps in their excited state. This condition enables the AP site to emit different fluorescence signals at various wavelengths. Given the different self-regulation abilities of the conformations, the series of molecules, BMN-Fluors, can emit different types of signals, including an "OFF-ON" single-channel signal, a "ratio" double-channel signal, and even a precise multichannel signal. Among the BMN-Fluors derivatives, d1-BMN can sequentially self-regulate to form five stable conformations, thereby resulting in the emission of a five-channel signal for different AP sites in situ. Thus, d1-BMN can be used as a probe to ultrasensitively recognize the AP site with precise fluorescent signals at the single-cell level. This design strategy can be generalized to develop additional single-channel to multichannel signal probes to recognize other specific sites in DNA sequences in living organisms.
Collapse
Affiliation(s)
- Beidou Feng
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Kui Wang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Yonggang Yang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Ge Wang
- Xinxiang Medical University , Xinxiang 453000 , P. R. China
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Yufang Liu
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| | - Kai Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Environment , College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China .
| |
Collapse
|
37
|
Fang Y, Zou P. Genome-Wide Mapping of Oxidative DNA Damage via Engineering of 8-Oxoguanine DNA Glycosylase. Biochemistry 2019; 59:85-89. [PMID: 31618020 DOI: 10.1021/acs.biochem.9b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The occurrence of 8-oxo-7,8-dihydroguanine (OG) in the genome, as one of the major DNA oxidative damages, has been implicated in an array of biological processes, ranging from mutagenesis to transcriptional regulation. Genome-wide mapping of oxidative damages could shed light on the underlying cellular mechanism. In the present study, we engineered the hOGG1 enzyme, a primary 8-oxoguanine DNA glycosylase, into a guanine oxidation-profiling tool. Our method, called enTRAP-seq, successfully identified more than 1400 guanine oxidation sites in the mouse embryonic fibroblast genome. These OG peaks were enriched in open chromatin regions and regulatory elements, including promoters, 5' untranslated regions, and CpG islands. Collectively, we present a simple and generalizable approach for the genome-wide profiling of DNA damages with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yuxin Fang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China.,PKU-IDG/McGovern Institute for Brain Research , Peking University , Beijing 100871 , China
| |
Collapse
|
38
|
Han D, Schomacher L, Schüle KM, Mallick M, Musheev MU, Karaulanov E, Krebs L, von Seggern A, Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. eLife 2019; 8:49044. [PMID: 31566562 PMCID: PMC6768664 DOI: 10.7554/elife.49044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Base excision repair (BER) functions not only in the maintenance of genomic integrity but also in active DNA demethylation and epigenetic gene regulation. This dual role raises the question if phenotypic abnormalities resulting from deficiency of BER factors are due to DNA damage or impaired DNA demethylation. Here we investigate the bifunctional DNA glycosylases/lyases NEIL1 and NEIL2, which act in repair of oxidative lesions and in epigenetic demethylation. Neil-deficiency in Xenopus embryos and differentiating mouse embryonic stem cells (mESCs) leads to a surprisingly restricted defect in cranial neural crest cell (cNCC) development. Neil-deficiency elicits an oxidative stress-induced TP53-dependent DNA damage response, which impairs early cNCC specification. Epistasis experiments with Tdg-deficient mESCs show no involvement of epigenetic DNA demethylation. Instead, Neil-deficiency results in oxidative damage specific to mitochondrial DNA, which triggers a TP53-mediated intrinsic apoptosis. Thus, NEIL1 and NEIL2 DNA glycosylases protect mitochondrial DNA against oxidative damage during neural crest differentiation. The face of animals with a backbone is formed in great part by a group of cells called cranial neural crest cells. When too few of these cells are made, the skull and the face can become deformed. For example, the jaw- or cheekbones can be underdeveloped or there may be defects in the eyes or ears. These types of abnormalities are among the most common birth defects known in humans. NEIL1 and NEIL2 are mouse proteins with two roles. On the one hand, they help protect DNA from damage by acting as so-called ‘base excision repair enzymes’, meaning they remove damaged building blocks of DNA. On the other hand, they help remove a chemical group known as a methyl from DNA building blocks in a process called demethylation, which is involved both in development and disease. Previous research by Schomacher et al. in 2016 showed that, in frogs, the absence of a similar protein called Neil2, leads to deformities of the face and skull. Han et al. – who include some of the researchers involved in the 2016 study – have now used frog embryos and mouse embryonic stem cells to examine the role of the NEIL proteins in cranial neural crest cells. Stem cells can become any type of cell in the body, but when NEIL1 and NEIL2 are missing, these cells lose the ability to become cranial neural crest cells. To determine whether the effects of removing NEIL1 and NEIL2 were due to their role in DNA damage repair or demethylation, Han et al. removed two proteins, each involved in one of the two processes. Removing APEX1, which is involved in DNA damage repair, had similar effects to the removal of NEIL1 and NEIL2, while removing TDG, which only works in demethylation, did not. This indicates that NEIL1 and NEIL2’s role in DNA damage repair is likely necessary for stem cells to become cranial neural crest cells. Although NEIL1 and NEIL2 are part of the DNA repair machinery, Han et al. showed that when stem cells turn into cranial neural crest cells, these proteins are not protecting the cell’s genomic DNA. Instead, they are active in the mitochondria, the compartments of the cell responsible for producing energy, which have their own DNA. Mitochondria use oxygen to produce energy, but by-products of these reactions damage mitochondrial DNA, explaining why mitochondria need NEIL1 and NEIL2. These results suggest that antioxidants, which are molecules that protect the cells from the damaging oxygen derivatives, may help prevent deformities in the face and skull. This theory could be tested using mice that do not produce proteins involved in base excision repair, which could be derived from the cells lacking NEIL1 and NEIL2.
Collapse
Affiliation(s)
- Dandan Han
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | | - Laura Krebs
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
5-Formyl-2'-deoxycytidine (5fdC) is a naturally occurring nucleobase that is broadly distributed in genomic DNA. 5fdC is produced via the oxidation of 5-methylcytosine (5mdC) by ten-eleven translocation enzyme (TET) and can be further converted to 5-carboxylcytosine (5cadC) by TET. Both 5fdC and 5cadC can be restored to dC by TDG-mediated base excision repair and direct deformylation/decarboxylation. Thus, 5fdC is considered an intermediate in the TET-mediated DNA demethylation pathway. 5fdC also alters the structure and stability of genomic DNA and affects genetic expression. This review summarizes the recent research on 5fdC, detailing its formation, detection and distribution, biological functions and transformation in cells. The challenges and future prospects to further explore the function and metabolism of 5fdC are briefly discussed at the end.
Collapse
Affiliation(s)
- Yingqian Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
40
|
Liu ZJ, Martínez Cuesta S, van Delft P, Balasubramanian S. Sequencing abasic sites in DNA at single-nucleotide resolution. Nat Chem 2019; 11:629-637. [PMID: 31209299 PMCID: PMC6589398 DOI: 10.1038/s41557-019-0279-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/30/2019] [Indexed: 12/27/2022]
Abstract
In DNA, the loss of a nucleobase by hydrolysis generates an abasic site. Formed as a result of DNA damage, as well as a key intermediate during the base excision repair pathway, abasic sites are frequent DNA lesions that can lead to mutations and strand breaks. Here we present snAP-seq, a chemical approach that selectively exploits the reactive aldehyde moiety at abasic sites to reveal their location within DNA at single-nucleotide resolution. Importantly, the approach resolves abasic sites from other aldehyde functionalities known to exist in genomic DNA. snAP-seq was validated on synthetic DNA and then applied to two separate genomes. We studied the distribution of thymine modifications in the Leishmania major genome by enzymatically converting these modifications into abasic sites followed by abasic site mapping. We also applied snAP-seq directly to HeLa DNA to provide a map of endogenous abasic sites in the human genome.
Collapse
Affiliation(s)
- Zheng J Liu
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sergio Martínez Cuesta
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Chen H, Yao L, Brown C, Rizzo CJ, Turesky RJ. Quantitation of Apurinic/Apyrimidinic Sites in Isolated DNA and in Mammalian Tissue with a Reduced Level of Artifacts. Anal Chem 2019; 91:7403-7410. [PMID: 31055913 DOI: 10.1021/acs.analchem.9b01351] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The apurinic/apyrimidinic (AP) site is a common lesion of DNA damage. The levels of AP sites reported in the literature cover a wide range, which is primarily due to the artifactual generation or loss of AP sites during processing of the DNA. Herein, we have developed a method for quantitating AP sites with a largely reduced level of artifacts by derivatizing AP sites before DNA isolation. A rapid digestion of nuclear protein was performed to minimize enzymatic DNA repair, followed by direct derivatization of AP sites in the nuclear lysate with O-(pyridin-3-yl-methyl)hydroxylamine, yielding an oxime derivative that is stable through the subsequent DNA processing steps. Quantitation was done using highly selective and sensitive liquid chromatography-tandem mass spectrometry, with a limit of quantitation at 2.2 lesions per 108 nucleotides (nts, 0.9 fmol on column). The method was applied in vivo to measure AP sites in rats undergoing oxidative stress [liver, 3.31 ± 0.47/107 nts (dosed) vs 0.91 ± 0.06/107 nts (control); kidney, 1.60 ± 0.07/107 nts (dosed) vs 1.13 ± 0.12/107 nts (control)]. The basal AP level was significantly lower than literature values. The method was also used to measure AP sites induced by the chemotherapeutic nitrogen mustard in vitro.
Collapse
Affiliation(s)
- Haoqing Chen
- Masonic Cancer Center and Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Lihua Yao
- Masonic Cancer Center and Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christina Brown
- Masonic Cancer Center and Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Carmelo J Rizzo
- Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
42
|
Isotope-dilution mass spectrometry for exact quantification of noncanonical DNA nucleosides. Nat Protoc 2019; 14:283-312. [PMID: 30559375 DOI: 10.1038/s41596-018-0094-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA contains not only canonical nucleotides but also a variety of modifications of the bases. In particular, cytosine and adenine are frequently modified. Determination of the exact quantity of these noncanonical bases can contribute to the characterization of the state of a biological system, e.g., determination of disease or developmental processes, and is therefore extremely important. Here, we present a workflow that includes detailed description of critical sample preparation steps and important aspects of mass spectrometry analysis and validation. In this protocol, extraction and digestion of DNA by an optimized spin-column and enzyme-based method are described. Isotopically labeled standards are added in the course of DNA digestion, which allows exact quantification by isotope dilution mass spectrometry. To overcome the major bottleneck of such analyses, we developed a short (~14-min-per-sample) ultra-HPLC (UHPLC) and triple quadrupole mass spectrometric (QQQ-MS) method. Easy calculation of the modification abundance in the genome is possible with the provided evaluation sheets. Compared to alternative methods, the quantification procedure presented here allows rapid, ultrasensitive (low femtomole range) and highly reproducible quantification of different nucleosides in parallel. Including sample preparation and evaluation, quantification of DNA modifications can be achieved in less than a week.
Collapse
|
43
|
Wang Y, Zhang X, Zou G, Peng S, Liu C, Zhou X. Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Acc Chem Res 2019; 52:1016-1024. [PMID: 30666870 DOI: 10.1021/acs.accounts.8b00543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nucleic acids contain a variety of different base modifications, such as decoration at the fifth position of cytosine, which is one of the most important epigenetic modifications. Nucleic acid epigenetics mediate a wide variety of biological processes, including embryonic development and gene regulation, genomic imprinting, differentiation, and X-chromosome inactivation. Furthermore, the modification level can be aberrantly expressed in distinct sets of tissue that can indicate different tumor onsets and canceration. Thus, the analysis of modified nucleobases may contribute to the understanding of epigenetic modification-related biological processes and the correlation of modified nucleobase patterns with disease states for clinical diagnosis and treatment. In addition to 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine are found in organisms at a low content but are nevertheless extremely important chemical modifications, and 5-hydroxyuracil and 5-formyluracil compounds are also present. 5-Formyluracil is found in bacteriophages, prokaryotes, and mammalian cells. The 5-formyluracil content is higher in certain cancer tissues than in the normal tissues adjacent to the tumor. The content of 5-formyluracil in different cell tissues may have cell type specificity. With the continuous use of chemical tools, new detection technologies have greatly advanced the research on natural pyrimidine modifications. These modifications dynamically regulate the gene expression in eukaryotes and prokaryotes and provide mechanistic insights into the occurrence of diseases. Natural pyrimidine modifications act not only as intermediates for DNA demethylation or oxidative damage products but also as modulators of gene expression. Therefore, the development of more effective chemical tools will help us better understand the dynamic changes of natural pyrimidine modifications in vivo. In this Account, we summarize the recent advanced techniques for the detection of 5-formylpyrimidine (5-formylcytosine and 5-formyluracil) and highlight their great potential as biomarkers in biomedical applications. Focusing on the great urgency for the detection of epigenetic modifications, our group developed a series of methods for the qualitative and quantitative analysis of 5-formylpyrimidine in the past few years, aiming at facilitating the accurate detection and mapping of these epigenetic modifications. By the construction of probes, 5-formylpyrimidine can be selectively labeled. Using mass spectrometry, the epigenetic modifications can be quantified. Upon treatment under specific conditions, 5-formylcytosine can be recognized at single-base resolution. With this Account, we anticipate providing chemical and biological researchers with some insight to unlock the complex mechanism involved in 5-formylpyrimidine-related biological processes and stimulate more collaborative research interests from the different fields of materials, biological, medicine, and chemistry to promote the translational research of epigenetics in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
44
|
Hofer A, Liu ZJ, Balasubramanian S. Detection, Structure and Function of Modified DNA Bases. J Am Chem Soc 2019; 141:6420-6429. [DOI: 10.1021/jacs.9b01915] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zheng J. Liu
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cancer Research
UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
45
|
Caron C, Duong XNT, Guillot R, Bombard S, Granzhan A. Interaction of Functionalized Naphthalenophanes with Abasic Sites in DNA: DNA Cleavage, DNA Cleavage Inhibition, and Formation of Ligand–DNA Adducts. Chemistry 2019; 25:1949-1962. [DOI: 10.1002/chem.201805555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Coralie Caron
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Xuan N. T. Duong
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Régis Guillot
- CNRS UMR8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Sophie Bombard
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
46
|
Poetsch AR, Boulton SJ, Luscombe NM. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis. Genome Biol 2018; 19:215. [PMID: 30526646 PMCID: PMC6284305 DOI: 10.1186/s13059-018-1582-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA is subject to constant chemical modification and damage, which eventually results in variable mutation rates throughout the genome. Although detailed molecular mechanisms of DNA damage and repair are well understood, damage impact and execution of repair across a genome remain poorly defined. RESULTS To bridge the gap between our understanding of DNA repair and mutation distributions, we developed a novel method, AP-seq, capable of mapping apurinic sites and 8-oxo-7,8-dihydroguanine bases at approximately 250-bp resolution on a genome-wide scale. We directly demonstrate that the accumulation rate of apurinic sites varies widely across the genome, with hot spots acquiring many times more damage than cold spots. Unlike single nucleotide variants (SNVs) in cancers, damage burden correlates with marks for open chromatin notably H3K9ac and H3K4me2. Apurinic sites and oxidative damage are also highly enriched in transposable elements and other repetitive sequences. In contrast, we observe a reduction at chromatin loop anchors with increased damage load towards inactive compartments. Less damage is found at promoters, exons, and termination sites, but not introns, in a seemingly transcription-independent but GC content-dependent manner. Leveraging cancer genomic data, we also find locally reduced SNV rates in promoters, coding sequence, and other functional elements. CONCLUSIONS Our study reveals that oxidative DNA damage accumulation and repair differ strongly across the genome, but culminate in a previously unappreciated mechanism that safeguards the regulatory and coding regions of genes from mutations.
Collapse
Affiliation(s)
- Anna R Poetsch
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
47
|
Liu C, Luo X, Chen Y, Wu F, Yang W, Wang Y, Zhang X, Zou G, Zhou X. Selective Labeling Aldehydes in DNA. Anal Chem 2018; 90:14616-14621. [PMID: 30441892 DOI: 10.1021/acs.analchem.8b04822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A naphthalimide hydroxylamine probe has been designed and synthesized to selectively label the whole natural aldehydes present in DNAs including 5-formylcytosine, 5-formyluracil, and abasic sites. The fluorescence characteristics of the generated nucleosides have been examined in detail, and the reaction activities of hydroxylamine, amine groups toward aldehydes in DNA have been discussed with others, which will be a vital reference for designing chemicals for selective labeling of DNAs.
Collapse
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiaomeng Luo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| |
Collapse
|
48
|
Dietzsch J, Feineis D, Höbartner C. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification. FEBS Lett 2018; 592:2032-2047. [DOI: 10.1002/1873-3468.13058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Julia Dietzsch
- Institute of Organic Chemistry; University of Würzburg; Germany
| | - Doris Feineis
- Institute of Organic Chemistry; University of Würzburg; Germany
| | | |
Collapse
|
49
|
|
50
|
Carell T, Kurz MQ, Müller M, Rossa M, Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew Chem Int Ed Engl 2018; 57:4296-4312. [DOI: 10.1002/anie.201708228] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Matthias Q. Kurz
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Markus Müller
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Martin Rossa
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Fabio Spada
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|