1
|
Llamosi A, Danylyuk O, Szumna A. Facile and Versatile Mechanochemical Synthesis of Indigoid Photoswitches. CHEMSUSCHEM 2025; 18:e202402503. [PMID: 39804174 DOI: 10.1002/cssc.202402503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Indexed: 01/25/2025]
Abstract
We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles. For selected examples, reversible visible-light photoswiching properties have been demonstrated.
Collapse
Affiliation(s)
- Arturo Llamosi
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
2
|
Wang Y, Dou K, Liu J, Zhang L, Hu L, Pang S. A Reversible Nitroamino-Based Switch Modulates Hydrogen-Bonding Networks in Energetic Materials. Chemistry 2025; 31:e202500884. [PMID: 40166892 DOI: 10.1002/chem.202500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
The regulation of hydrogen-bonding networks in molecular switches is critical for adaptive materials. However, most of the reported molecular switches are not capable of modulating hydrogen-bonding networks in energetic materials, limiting high-demand applications in explosives. In this work, the first high-energy nitroamino-based molecular switch is reported. It can control the complex hydrogen-bonding systems of energetic materials by reversible cycling for property modulation. Through alkali-acid stimulation, the nitroamino-based switch undergoes dynamic transitions, which reconfigure H-bond networks and separate twin crystals (in x-ray verification). Supported by crystallography and theoretical modeling (e.g., the density of states), this switching mechanism modulates molecular planarity (Δθ > 60°) and optimizes the energy-stability balance, obtaining a compound 6-β with comprehensive properties comparable to classical explosives (e.g., RDX and HMX). By linking hydrogen-bonding engineering and energetic materials science through the nitroamino-based molecular switch, it facilitates superior energetic compounds that can be applied to defense equipment. In addition, our work establishes the nitroamino-based switch as a generalized tool for molecular engineering, bridging dynamic hydrogen-bonding control and self-assembly materials design.
Collapse
Affiliation(s)
- Yaxi Wang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Kaile Dou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Junliang Liu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Lu Hu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Wang W, Cheng Y, Xie X. Design and applications of photochromic compounds for quantitative chemical analysis and sensing. Chem Commun (Camb) 2025. [PMID: 40377371 DOI: 10.1039/d5cc01830g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Photochromic compounds, capable of reversibly switching between distinct molecular states upon light irradiation, have emerged as powerful tools for quantitative chemical analysis and sensing. This feature reviews recent advancements in this developing field, focusing on the design principles and applications of photoswitchable sensors. We begin with a concise overview of the fundamental photophysics and photochromism of key compound classes, and then discuss the mechanisms of analyte recognition and signal transduction, showcasing how light-induced isomerization modulates analyte binding and enhances signal contrast compared to conventional optical sensors. The unique sensitivity of the photoswitching process to the microenvironment is also explored. Finally, we outline future research directions and challenges for realizing the full potential of photochromic compounds in analytical chemistry related fields, including diagnostics, environmental monitoring, and materials science.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 510085, China
| | - Xiaojiang Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Gernet A, Balivet L, El Rhaz A, Pagès L, Laurent G, Maurel F, Jean L. Synthesis and Evaluation of the Photochemical Properties of Heterocyclic Hemiindigos. Chemistry 2025; 31:e202500803. [PMID: 40115998 PMCID: PMC12057614 DOI: 10.1002/chem.202500803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
This study reports a series of novel heterocyclic hemiindigos (Het-HI) synthesized via the condensation of indoxyl acetate with various heteroaromatic aldehydes. The influence of electron-rich and electron-poor heterocycles on the photochemical and photophysical properties of these compounds has been investigated. Our findings reveal that several Het-HIs exhibit noteworthy photoswitching behavior, including enhanced absorption at the visible region. Notably, certain derivatives respond efficiently to green and red light, achieving good conversions to the metastable E-isomer and displaying prolonged half-lives of up to 53 days in a polar solvent. The results highlight the potential of these photoswitches for applications in molecular devices and responsive materials.
Collapse
Affiliation(s)
| | | | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Lucas Pagès
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Guillaume Laurent
- Université Paris‐Saclay, ENS Paris‐Saclay, CNRS, PPSMGif‐sur‐YvetteFrance
| | | | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| |
Collapse
|
5
|
Quindt MI, Jo T, Kumar A, Steen JD, D'Amario L, Ott S, Crespi S. The Effect of Aldehyde and Carboxylic Acid Substitution on the Isomerization of Hemithioindigo Photoswitches. Chemistry 2025:e202501108. [PMID: 40243361 DOI: 10.1002/chem.202501108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Hemithioindigo (HTI) photoswitches exhibit robust photoisomerization under visible light and relatively high thermal bistability. In this work, we report various modifications of the HTI core, namely the introduction of aldehydes and carboxylic acids at the para position of the stilbene fragment with different oxidation states of the sulfur center, and the incorporation of a Schiff base moiety. These modifications allowed tuning of the absorption properties, quantum yields of isomerization, and thermal stability of the metastable E-isomers. Notably, the formyl- and carboxyl-substituted HTI switches achieved high yields of isomerization under visible light in various solvents, while sulfur oxidation enhanced quantum yields but reduced photochromism. Schiff base formation led to red-shifted absorption and increased thermal stability. Finally, by leveraging the carboxyl substituents, we incorporated an HTI chromophore into the NU-1000 metal-organic framework (MOF), and demonstrated solid-state photoisomerization. These findings highlight key structural modifications that expand the applicability of HTI photoswitches for molecular switching in solution and solid-state environments.
Collapse
Affiliation(s)
- Matías I Quindt
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Taegeun Jo
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Amol Kumar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Jorn D Steen
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Luca D'Amario
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University, Regementsvägen 10, Uppsala, 751 20, Sweden
| |
Collapse
|
6
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
7
|
Gu Y, Niu Q, Cao Q, Zhou X, Zhao W, Hu Z, Fan S, Yao X, Zhang Y. Biodegradable silk fibroin-based triboelectric nanogenerator with enhanced output regulated by interfacial and ionic polarization. Int J Biol Macromol 2025; 304:140832. [PMID: 39929453 DOI: 10.1016/j.ijbiomac.2025.140832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Bio-based triboelectric nanogenerators (TENGs) are expected to power medical device and detect real-time human motion behavior due to eco-friendliness and biocompatibility. However, the output performance of the TENGs needs to be boosted. In this study, a biodegradable silk fibroin-based TENG with enhanced output performance regulated by interfacial and ionic polarization is proposed. The friction layers, regenerated silk fibroin (RSF) film and silk nanoribbon (SNR) film, are functionalized through the induction of histidine with imidazolyl and lithium chloride, respectively, thus increasing the dielectric constant and triboelectric properties of friction layers. The enhancement is attributed to the enlarged difference of electron-absorbing ability and electron-donating ability of the two friction layers. The total silk fibroin-based TENG shows a maximum voltage of 63.0 V, and a current of 2.4 μA. Moreover, the obtained maximum power density of 828.8 mW m-2 is 9.5 times higher than that of the counterpart without functionalization. And the output power density is much higher than that of existing fully degradable bio-based TENGs reported previously. The components of the silk fibroin-based TENG can gradually degrade in vitro. As a wearable device, the silk fibroin-based TENG can precisely monitor real-time human motion due to its high sensitivity, which can realize self-powered supply and simultaneous sensing. Moreover, the unencapsulated TENG is successfully used as a self-powered humidity sensor. The bio-based TENGs with enhanced performance highlight their application potential in wearable and implantable fields.
Collapse
Affiliation(s)
- Yuchen Gu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qianqian Niu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Qunxiang Cao
- Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan, PR China
| | - Xinglu Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Weikun Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhanao Hu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Suna Fan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiang Yao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
8
|
Kohl F, Vogl T, Hampel F, Dube H. Hemiphosphoindigos as a platform for chiroptical or water soluble photoswitching. Nat Commun 2025; 16:1760. [PMID: 39971955 PMCID: PMC11840110 DOI: 10.1038/s41467-025-56942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.
Collapse
Affiliation(s)
- Fabien Kohl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Theresa Vogl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
9
|
Sacherer M, Dube H. Combined Photopolymerization and Localized Photochromism by Aza-Diarylethene and Hemiindigo Synergy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411223. [PMID: 39573834 PMCID: PMC11756035 DOI: 10.1002/adma.202411223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Molecular photoswitches produce light-controlled changes at the nanometer scale and can therefore be used to alter the states and behavior of materials in a truly bottom-up fashion. Here an escalating photonic complexity of material property control with light is shown using a recently developed aza-diarylethene in combination with hemiindigo (HI) photoswitches. First, aza-diarylethene can be used as a photoswitch in polystyrene (PS) to reversibly inscribe relief-type 3D structures into PS. Second, aza-diarylethene can further be used as a photoinitiator for light-induced polymerization of methyl acrylate (MA), demonstrating for the first time light-controlled chemical reactivity control with its zwitterionic switching state. Third, aza-diarylethene and HIs are implemented into aza-diarylethene polymerized MA, generating photochromic polymers. At the fourth level, a binary mixture allows to synergize aza-diarylethene-induced photopolymerization with localized photochromism changes of the simultaneously entrapped functional HI. With such multilevel light response, the utility of this particular photoswitch combination for applications in advanced photonic materials is demonstrated.
Collapse
Affiliation(s)
- Maximilian Sacherer
- Friedrich‐Alexander‐Universität Erlangen‐NürnbergDepartment of Chemistry and PharmacyNikolaus‐Fiebiger‐Str. 1091058ErlangenGermany
| | - Henry Dube
- Friedrich‐Alexander‐Universität Erlangen‐NürnbergDepartment of Chemistry and PharmacyNikolaus‐Fiebiger‐Str. 1091058ErlangenGermany
| |
Collapse
|
10
|
Sil S, Hussain A, Das Sarma J, Gupta P. Cyclometalated Iridium(III) Complex with Substituted Benzimidazole: pH Directed Organelle-Specific Localization Within Lysosome. Chembiochem 2024; 25:e202400597. [PMID: 39285747 DOI: 10.1002/cbic.202400597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Indexed: 11/06/2024]
Abstract
We report the synthesis and pH dependent emission spectral behaviour of four emissive iridium(III) complexes (Ir1-Ir4) with two isomeric pairs of bis-trifluoromethyl appended benzimidazole ligands. The imidazolyl hydrogen(N-H) has been replaced by phenyl groups (N-Ph) in two ligands to understand the impact of hydrogen bonding on the photophysical properties of the complexes and it indeed plays interesting role in the charge-transfer dynamics. The pH dependent electronic spectral change is observed for two of the complexes. The enhancement of emission intensity is observed at different wavelength for pH<7 and pH>7 for Ir1 and Ir3. The emission sensing of biogenic amines with pka values ranging from 5.80-9.74 is reported along with cellular imaging. The complex Ir1 specifically localizes within lysosome (pH=4.5-5) and thus image this organelle with great precision. The detail electronic spectra and electrochemical behaviour were reported here along with TDDFT results.
Collapse
Affiliation(s)
- Subhra Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Afaq Hussain
- Bio-inspired Innovation Private Limited (RISE Foundation IISER, The Incubation Center of IISER Kolkata), Mohanpur, West Bengal, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
11
|
Lvov AG, Berdnikova DV. Rubizhne Institute - A Birthplace of Photochromic Molecules. CHEM REC 2024; 24:e202400143. [PMID: 39491506 DOI: 10.1002/tcr.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Indexed: 11/05/2024]
Abstract
We introduce the community to the remarkable fact that two significant discoveries in the field of organic photoswitches are associated to the Rubizhne (Rubezhnoe) branch of the Research Institute of Organic Intermediates and Dyes during the last century. The institute in Rubizhne was a place where researchers of various nationalities carried out studies of organic dyes for printing and textiles. These efforts resulted in the discoveries of photoswitchable hemithioindigos by M. A. Mostoslavskii and peri-aryloxyquinones by Yu. E. Gerasimenko. Herein, based on the available literature, we reconstruct the circumstances surrounding these outstanding findings and highlight the unique role of the Rubizhne institute as a research center. Furthermore, we demonstrate the impact of the results of the Rubizhne researchers on the field of photoswitchable molecules.
Collapse
Affiliation(s)
- Andrey G Lvov
- Laboratory of photoactive compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
| | - Daria V Berdnikova
- Organische Chemie II, Universität Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
12
|
Schäfer V, Pianowski ZL. Heterocyclic Hemipiperazines: Multistimuli-Responsive Switches and Sensors for Zinc or Cadmium Ions. Chemistry 2024; 30:e202402005. [PMID: 38980960 DOI: 10.1002/chem.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Advance in the design of molecular photoswitches - adapters that convert light into changes at molecular level - opens up exciting possibilities in preparing smart polymers, drugs photoactivated inside humans, or light-fueled nanomachines that might in the future operate in our bloodstream. Hemipiperazines are recently reported biocompatible molecular photoswitches based on cyclic dipeptides. Here we report a multistimuli-responsive hemipiperazine-based switch that reacts on light, solvents, acidity, or metal ions. Its photoequilibration is controlled by the intramolecular hydrogen bonding pattern. The compound can be used as a mid-nanomolar photoswitchable fluorescent sensor for zinc and cadmium ions, applicable to monitor environmental pollution in real time.
Collapse
Affiliation(s)
- Valentin Schäfer
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Biological and Chemical Systems - Functional Molecular Systems IBCS-FMS KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
13
|
Nakashima K, Yordanov D, Matsushima Y, Hirashima SI, Miura T, Georgiev A. Rearrangement of C2-Spirooxindoles: Conversion to the 2-Hydroxyhemi-Indigo and Chromenoindole. J Org Chem 2024; 89:12401-12409. [PMID: 39190852 DOI: 10.1021/acs.joc.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
This study demonstrates the rearrangement of C2-spirooxindoles to the 2-hydroxyhemi-indigo and chromenoindole. The N-H-spirooxindole exhibits double proton translocation and its conversion to the (Z)-2-hydroxyhemi-indigo photoswitch with trifluoroacetic acid, while the N-methyl-spirooxindole undergoes structural rearrangement to the chromenoindole. The mechanism of the reactions was proposed, and the structure of the products was confirmed by one-dimensional (1D) and two-dimensional (2D) NMR spectra and X-ray structure analysis. The photoswitching performance of (Z)-2-hydroxyhemi-indigo, which allows the stabilization of the E-switched form by intramolecular hydrogen bonding, has been studied in solvents of different polarities. It was found that in the less polar solvents, the E-switched metastable isomer is characterized by high stability.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| | - Dancho Yordanov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Street Kliment Ohridski Blvd., Sofia 1756, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Avenue, Bldg. 9, Sofia 1113, Bulgaria
| | - Yasuyuki Matsushima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| | - Anton Georgiev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Street Kliment Ohridski Blvd., Sofia 1756, Bulgaria
| |
Collapse
|
14
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Zhang W, Lu Y, Cheng Y, Wang Y, Wu Z, Zhai J, Xie X. Ion-selective response of visible light photoswitchable indole-hemithioindigo: toward chemical sensing of fluoride and hydroxide. Chem Commun (Camb) 2024; 60:4202-4205. [PMID: 38517126 DOI: 10.1039/d4cc00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The chemical sensing of hydrophilic anions such as F- and OH- is of significant importance but also presents considerable challenges. Herein, the thermal E to Z isomerization of a visible-light-responsive photoswitch (HTI-In) is utilized to address this challenge for the first time. The isomerization of HTI-In is dependent on the concentration of F- and OH-, and exhibits excellent selectivity toward F- and OH- over other common anions and cations. Unlike irreversible chemodosimeters and other conventional fluorescent probes, the photodynamic sensing of F- and OH- (demonstrated in solvents and polyurethane hydrogels) is based on a non-equilibrium chemical kinetics and can be operated fully reversibly.
Collapse
Affiliation(s)
- Weian Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yi Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yifu Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zeying Wu
- School of Chemical Engineering and Material Science, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Li L, Li C, Zhang S, Wang X, Fu P, Wang Y. Catalytic Asymmetric Synthesis of 3,4'-Piperidinoyl Spirooxindoles via [3 + 3] Annulation of 3-Aminobenzofurans and Isatin-Derived Enals. J Org Chem 2024; 89:5170-5180. [PMID: 38545893 DOI: 10.1021/acs.joc.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A chiral NHC-catalyzed [3 + 3] cycloaddition reaction of 3-aminobenzofurans with isatin-derived enals has been documented, furnishing 3,4'-piperidinoyl spirooxindoles bearing a quaternary stereocenter with good yields and excellent enantioselectivities. Further gram-scale preparation and synthetic transformation of the cycloadducts to δ-amino acid derivative demonstrated good practicality and applicability of this reaction.
Collapse
Affiliation(s)
- Lesong Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Congyang Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shuting Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xuerui Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peng Fu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
17
|
Ding K, Gong Q, Wang G, Cui C, Liu F. What Happens to a Pyrrole Hemithioindigo Photoswitch Trapped in a Fluorescent Protein? J Phys Chem B 2024; 128:1161-1169. [PMID: 38279080 DOI: 10.1021/acs.jpcb.3c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Artificial molecular photoswitches that can be reversibly controlled into different configurations by external light stimulation have broad application prospects in various fields, such as materials and chemical biology. Among them, the pyrrole hemithioindigo (PHT) photoswitch has a geometric structure similar to that of the fluorescent protein chromophore. What happens when the chromophore is replaced by PHT, and does it achieve similar functions to the original one? To answer these questions, we carried out ONIOM(QM/MM) and classical molecular dynamics studies on the photoisomerization mechanism and spectroscopic properties of PHT in the fluorescent protein. The results showed that in the protein environment, the fate of excited PHT is governed by the competition between fluorescence emission and hula-twist isomerization. Due to the strong steric hindrance effects caused by the interlacing residues in the protein that restrict the PHT conformation transformation, the cis-to-trans isomerization process of PHT needs to overcome a barrier of at least 4.9 kcal/mol; thus, fluorescence emission is more dominant in competition. It is also found that the intermolecular interaction between LYS67 and the carbonyl oxygen of PHT has a significant effect on the fluorescence emission. These results revealed the photochemical reaction mechanism of a light-driven molecular switch in the fluorescent protein and provided further theoretical support for the field of chemical biology.
Collapse
Affiliation(s)
- Kaiyue Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Qianqian Gong
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Chengxing Cui
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
18
|
Su H, Lin P, Li D, Chen Y. Reduced Graphene Oxide/Cellulose Sodium Aerogel-Supported Eutectic Phase Change Material Gel Demonstrating Superior Energy Conversion and Storage Capacity toward High-Performance Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3334-3347. [PMID: 38193700 DOI: 10.1021/acsami.3c15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
By virtue of their capacity to absorb and release energy during the phase change process, phase change materials (PCMs) are ideal for personal thermal management (PTM). The combination of reduced graphene oxide/cellulose sodium aerogel (rGCA) and lauric acid/myristic acid binary eutectic phase change gel (LMG) creates a composite phase change material that possesses outstanding photothermal conversion capabilities, electro-thermal conversion capabilities, energy storage capabilities, and shape-stable performance. The results showed that rGCA had a maximum adsorption efficiency of 99.7% with a melting latent heat of 124.6 J g-1. The high absorption rate of rGCA to LMG is a result of the capillary force, pore characteristics, hydrogen bonding, and the π-π interaction. Notably, rGCA and LMG composite material (rGCG) exhibited an excellent photothermal conversion efficiency of 96.5% and electro-thermal conversion of 82.3%. Results indicate that binary eutectic phase change materials are more suitable for temperature regulation than single phase change materials, making them more suitable for PTM. It is anticipated that the innovative thermal comfort solution, which provides thermal shielding, thermal energy storage, self-supporting characteristics, and wearability, will offer new possibilities for the next generation of wearable PTMs.
Collapse
Affiliation(s)
- Hua Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Donghai Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Duindam N, van Dongen M, Siegler MA, Wezenberg SJ. Monodirectional Photocycle Drives Proton Translocation. J Am Chem Soc 2023; 145:21020-21026. [PMID: 37712835 PMCID: PMC10540201 DOI: 10.1021/jacs.3c06587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/16/2023]
Abstract
Photoisomerization of retinal is pivotal to ion translocation across the bacterial membrane and has served as an inspiration for the development of artificial molecular switches and machines. Light-driven synthetic systems in which a macrocyclic component transits along a nonsymmetric axle in a specific direction have been reported; however, unidirectional and repetitive translocation of protons has not been achieved. Herein, we describe a unique protonation-controlled isomerization behavior for hemi-indigo dyes bearing N-heterocycles, featuring intramolecular hydrogen bonds. Light-induced isomerization from the Z to E isomer is unlocked when protonated, while reverse E → Z photoisomerization occurs in the neutral state. As a consequence, associated protons are displaced in a preferred direction with respect to the photoswitchable scaffold. These results will prove to be critical in developing artificial systems in which concentration gradients can be effectively generated using (solar) light energy.
Collapse
Affiliation(s)
- Nol Duindam
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Michelle van Dongen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
20
|
Gernet A, El Rhaz A, Jean L. Easily Accessible Substituted Heterocyclic Hemithioindigos as Bistable Molecular Photoswitches. Chemistry 2023; 29:e202301160. [PMID: 37357141 DOI: 10.1002/chem.202301160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Thioaurone chromophores, part of the indigoid family and commonly named hemithioindigos, have recently gained attention due to their interesting photoswitching properties. The study focuses on heterocyclic hemithioindigos (Het-HTIs) and investigates their synthesis using electron-rich and electron-poor heterocycles and modifications to the thioindigo moiety. Furthermore, it aims to evaluate the photoswitching performances of these synthesised compounds, with a particular emphasis on the influence of the heterocycles on the photoisomerization capabilities, which was found to be more prominent than the modifications made to the thioindigo moiety. Among the 44 Het-HTIs tested, several exhibited highly efficient photoswitchable properties, demonstrating Z-to-E photoisomerization in the blue region, and E-to-Z photoisomerization in the green or the red regions. Additionally, the metastable E-isomer displayed an impressive half-life of up to 54 days in a polar solvent (DMSO). These results suggest that heterocyclic hemithioindigos hold great promise as photoswitches for researchers interested in light-controlled molecular mechanisms.
Collapse
Affiliation(s)
- Aurélie Gernet
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| |
Collapse
|
21
|
Li J, Ma X, Wang Y, Cheng Y, Qin Y, Zhai J, Xie X. Proton-Coupled Photochromic Hemithioindigo: Toward Photoactivated Chemical Sensing and Imaging. Anal Chem 2023; 95:11664-11671. [PMID: 37495553 PMCID: PMC10414032 DOI: 10.1021/acs.analchem.3c01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
We report photoswitchable fluorescent hemithioindigos (HTIs) where the metastable E isomers were stabilized by the proton-bridged intramolecular hydrogen bond. Titration experiments and computational analysis indicated that the E isomers were much more basic than the Z isomers, which enabled photoactivated colorimetric and fluorescent pH response in solvents and polypropylene films. The HTIs exhibited reversibly switchable fluorescence with the Z isomers being the most fluorescent. Moreover, the HTIs were lysosomotropic and the kinetic fluorescence evolution during photoswitching was able to differentiate subcellular compartments with different pH. The combination of photoenhanced basicity, switchable fluorescence, and proton-coupled photochromism lay the groundwork for a broad range of chemical and biological applications.
Collapse
Affiliation(s)
- Jing Li
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xueqing Ma
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yifu Wang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yu Cheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yuemin Qin
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Sacherer M, Hampel F, Dube H. Diaryl-hemiindigos as visible light, pH, and heat responsive four-state switches and application in photochromic transparent polymers. Nat Commun 2023; 14:4382. [PMID: 37474507 PMCID: PMC10359318 DOI: 10.1038/s41467-023-39944-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Photoswitches are indispensable tools for responsive chemical nanosystems and are used today in almost all areas of the natural sciences. Hemiindigo (HI) derivatives have recently been introduced as potent photoswitches, but their full applicability has been hampered by the limited possibilities of their functionalization and structural modification. Here we report on a short and easy to diversify synthesis yielding diaryl-HIs bearing one additional aromatic residue at the central double bond. The resulting chromophores offer an advantageous property profile combining red-light responsiveness, high thermal bistability, strong isomer accumulations in both switching directions, strong photochromism, tunable acid responsiveness, and acid gating. With this progress, a broader structural realm becomes accessible for HI photoswitches, which can now be synthetically tailored for advanced future applications, e.g., in research on molecular machines and switches, in studies of photoisomerization mechanisms, or in the generation of smart and addressable materials. To showcase the potential of these distinct light-responsive molecular tools, we demonstrate four-state switching, chemical fueling, and reversible inscription into transparent polymers using green and red light as well as acid/base stimuli, in addition to a comprehensive photochemical study of all compounds.
Collapse
Affiliation(s)
- Maximilian Sacherer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
23
|
Qiu Q, Sun Z, Joubran D, Li X, Wan J, Schmidt-Rohr K, Han GGD. Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angew Chem Int Ed Engl 2023; 62:e202300723. [PMID: 36688731 DOI: 10.1002/anie.202300723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Danielle Joubran
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
24
|
Gödtel P, Starrett J, Pianowski ZL. Heterocyclic Hemipiperazines: Water-Compatible Peptide-Derived Photoswitches. Chemistry 2023; 29:e202204009. [PMID: 36790823 DOI: 10.1002/chem.202204009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Hemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers. Efficient photoisomerization occurs under aqueous conditions, although with a need for organic co-solvent. Bidirectional switching with visible light is observed for an extended aromatic system.
Collapse
Affiliation(s)
- Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Jessica Starrett
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology KIT, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
25
|
Nakamura A, Rao F, Ukiya K, Matsunaga R, Ohira SI, Maegawa T. A concise synthesis of thioaurones via NBS-induced cyclization of MOM-protected 2'-mercaptochalcones. Org Biomol Chem 2023; 21:1134-1137. [PMID: 36484376 DOI: 10.1039/d2ob01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A mild and efficient approach for the synthesis of thioaurones via NBS-induced cyclization of methoxymethyl-protected mercapto-chalcones has been developed. This simple method is highly functional group tolerant and provides straightforward access to thioaurones in good to high yields.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kazuchika Ukiya
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Riko Matsunaga
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shin-Ichiro Ohira
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
26
|
Krell-Jørgensen M, Zulfikri H, Bonnevie MG, Bro FS, Dohn AO, Laraia L. Redshifted and thermally bistable one-way quantitative hemithioindigo-derived photoswitches enabled by isomer-specific excited state intramolecular proton transfer. Chem Commun (Camb) 2023; 59:563-566. [PMID: 36537010 DOI: 10.1039/d2cc05548a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report bistable indole-containing hemithioindigos (HTIs) with one-way quantitative photoswitching properties. Supported by state-averaged CASPT2/CASSCF calculations, we propose a mechanism for the observed one-way photoswitching that involves an isomer-specific excited state intramolecular proton transfer (ESIPT). Additionally, we developed a thermally bistable oligomer-inspired bipyrrole-containing HTI, which displays large band separation and bidirectional near-quantitative photoisomerization in the near-infrared, bio-optical window.
Collapse
Affiliation(s)
- Mikkel Krell-Jørgensen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Habiburrahman Zulfikri
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.,Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Magnus Grage Bonnevie
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Frederik Simonsen Bro
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.,Department of Physics, Technical University of Denmark, Fysikvej 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202210855. [PMID: 36040861 PMCID: PMC9826360 DOI: 10.1002/anie.202210855] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 01/11/2023]
Abstract
A survey of heterocyclic hemithioindigo photoswitches is presented identifying a number of structural motives with outstanding property profiles. The highly sought-after combination of pronounced color change, quantitative switching in both directions, exceptional high quantum yields, and tunable high thermal stability of metastable states can be realized with 4-imidazole, 2-pyrrole, and 3-indole-based derivatives. In the former, an unusual preorganization using isomer selective chalcogen- and hydrogen bonding allows to precisely control geometry changes and tautomerism upon switching. Heterocyclic hemithioindigos thus represent highly promising photoswitches with advanced capabilities that will be of great value to anyone interested in establishing defined and reversible control at the molecular level.
Collapse
Affiliation(s)
- Verena Josef
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
28
|
Soundarya P, Sekar G. Cu-Catalyzed and iodine mediated synthesis of thioaurones via in situ C-S bond generation using xanthate as a sulfur surrogate. Org Biomol Chem 2022; 20:7405-7409. [PMID: 36098267 DOI: 10.1039/d2ob01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for synthesizing thioaurones has been developed using xanthate as an odorless sulfur surrogate. This reaction's key success lies in the use of iodine as a reagent, which promotes the α-iodination followed by cyclization of saturated ketones. This methodology has also been demonstrated with less reactive 2'-bromochalcones in good yield. Synthesis of the red isomer of indigo, i.e. a thia-analog of indirubin, was also achieved.
Collapse
Affiliation(s)
- Palanisamy Soundarya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
29
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
30
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Josef
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Frank Hampel
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Henry Dube
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen GERMANY
| |
Collapse
|
31
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
33
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
34
|
Shen ZN, Xu YX, Wang CY, Qiao B. Fine‐tuning the Thermal Relaxation Dynamics of Indigo‐based Photoswitches Using Selective Non‐covalent Interactions without Chemical Modification. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhen-Nan Shen
- ShanghaiTech University School of Physical Science and Technology shanghai,pudongShanghai 231567 Shanghai CHINA
| | - Yu-Xuan Xu
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Chen-Yu Wang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Bo Qiao
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia Road 201210 Shanghai CHINA
| |
Collapse
|
35
|
Wang Y, Han J, Liu Y, Zhang P, Wei W, Jian Y. “On water” Catalytic Michael Addition Between α,β-Unsaturated Ketone and Nitromethane. Catal Letters 2022. [DOI: 10.1007/s10562-021-03904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Shainyan BA, Sigalov MV. H-bonding-assisted transformations of cyclic chalcones: Z/E isomerization, self-association and unusual tautomerism. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Ma F, Zhang TT, Zhang ZH, Tong HX, Yi XY. Photorelease of nitric oxide in water-soluble diruthenium nitrosyl complexes with phosphonate substituted pyridylpyrrole. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
39
|
Bruekers JP, Bakker R, White PB, Tinnemans P, Elemans JA, Nolte RJ. Stabilization of thermally unstable photoisomers of pyridinium-functionalized hemithioindigo switches by host-guest complexation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Carrascosa E, Bull JN, Martínez-Núñez E, Scholz MS, Buntine JT, Bieske EJ. Photoisomerization of Linear and Stacked Isomers of a Charged Styryl Dye: A Tandem Ion Mobility Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2842-2851. [PMID: 34787413 PMCID: PMC8640989 DOI: 10.1021/jasms.1c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James N. Bull
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emilio Martínez-Núñez
- Departamento
de Química Física, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Michael S. Scholz
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jack T. Buntine
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J. Bieske
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
41
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
42
|
Thumser S, Köttner L, Hoffmann N, Mayer P, Dube H. All-Red-Light Photoswitching of Indirubin Controlled by Supramolecular Interactions. J Am Chem Soc 2021; 143:18251-18260. [PMID: 34665961 PMCID: PMC8867725 DOI: 10.1021/jacs.1c08206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Red-light responsiveness
of photoswitches is a highly desired property
for many important application areas such as biology or material sciences.
The main approach to elicit this property uses strategic substitution
of long-known photoswitch motives such as azobenzenes or diarylethenes.
Only very few photoswitches possess inherent red-light absorption
of their core chromophore structures. Here, we present a strategy
to convert the long-known purple indirubin dye into a prolific red-light-responsive
photoswitch. In a supramolecular approach, its photochromism can be
changed from a negative to a positive one, while at the same time,
significantly higher yields of the metastable E-isomer
are obtained upon irradiation. E- to Z-photoisomerization can then also be induced by red light of longer
wavelengths. Indirubin therefore represents a unique example of reversible
photoswitching using entirely red light for both switching directions.
Collapse
Affiliation(s)
- Stefan Thumser
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Laura Köttner
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Nadine Hoffmann
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Peter Mayer
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
43
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near-Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single-Cell Precision*. Angew Chem Int Ed Engl 2021; 60:23695-23704. [PMID: 34460143 PMCID: PMC8596636 DOI: 10.1002/anie.202104794] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/23/2021] [Indexed: 11/07/2022]
Abstract
We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Alexander Sailer
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Joyce C. M. Meiring
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Constanze Heise
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Linda N. Pettersson
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Anna Akhmanova
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Julia Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Oliver Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| |
Collapse
|
44
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near‐Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single‐Cell Precision**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alexander Sailer
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Joyce C. M. Meiring
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Constanze Heise
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Linda N. Pettersson
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Anna Akhmanova
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Julia Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Oliver Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| |
Collapse
|
45
|
Synthesis and spectroscopic properties of rotamers in the series of 2-(fluoroaryl)-4-substituted pyrroles. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul 01369 Republic of Korea
| |
Collapse
|
47
|
Bhattacharya A, Thirupathi A, Natarajan P, Peruncheralathan S. Chemoselective Ullmann Reaction of α-Trisubstituted Thioamides: Synthesis of Novel 2-Iminobenzothiolanes. ACS OMEGA 2021; 6:21169-21180. [PMID: 34423225 PMCID: PMC8375098 DOI: 10.1021/acsomega.1c03410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
New classes of unexplored benzo[b]thiolanes are synthesized from trisubstituted thioamides through copper-catalyzed intramolecular S-arylation of thioamides for the first time. This method provides good to excellent yields with fully controlled chemoselectivity. Unusually, iminobenzo[b]thiolanes are very stable under mild acidic conditions. A plausible mechanism is proposed for the chemoselective S-arylation process.
Collapse
|
48
|
Quintana-Romero OJ, Ariza-Castolo A. Complex molecular logic gates from simple molecules. RSC Adv 2021; 11:20933-20943. [PMID: 35479359 PMCID: PMC9034006 DOI: 10.1039/d1ra00930c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular logic gates (MLGs) are compounds that can solve Boolean logic operations to give an answer (OUTPUT) upon receiving a stimulus (INPUT). These derivatives can be used as biological sensors and are promising substitutes for the present logic gates. Although MLGs with complex molecular structures have been reported, they often show stability problems. To address this problem, we describe herein six stable pseudo-hemiindigo-derived MLGs capable of solving complex logic operations. MLGs 7, 8, 9, and 10 can solve a complex logic operation connecting 4 logic gates using 2 different wavelengths (445 nm and 400 nm) and the presence of p-TsOH and triethylamine (TEA) as inputs; MLG 11 solves a complex logic operation connecting 3 logic gates and uses 3 inputs, one wavelength of 445 nm and the presence of p-TsOH and TEA; and MLG 12 can only solve one logic operation (INH) and uses only the presence of p-TsOH and TEA as an input. Each operating method of the MLGs was evaluated with several techniques; proton interactions with MLGs were screened with NMR by titrating with p-TsOH, the photochemical properties were examined with absorption ultraviolet-visible (UV-Vis) spectroscopy, and the isomerization dynamics were examined with NMR using the two wavelengths for isomerization (photostationary isomer). The results indicate that the pseudo-hemiindigo-derived MLGs described herein can be applied as multiplexers or data selectors that are necessary for the transient flow of information for biological and computer systems. Finally, to design different MLGs and a system that can treat more information as complex logic gates (demultiplexers), two and three MLGs were mixed in different experiments. In both cases, four inputs were employed (445 nm, 400 nm, p-TsOH and TEA), yielding more outputs. Detailed information about the system dynamics was obtained from NMR experiments.
Collapse
Affiliation(s)
- Osvaldo J Quintana-Romero
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, San Pedro Zacatenco 07360, Ciudad de México Mexico
| | - Armando Ariza-Castolo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, San Pedro Zacatenco 07360, Ciudad de México Mexico
| |
Collapse
|
49
|
Clerc M, Stricker F, Ulrich S, Sroda M, Bruns N, Boesel LF, Read de Alaniz J. Promoting the Furan Ring-Opening Reaction to Access New Donor-Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angew Chem Int Ed Engl 2021; 60:10219-10227. [PMID: 33503292 PMCID: PMC8068666 DOI: 10.1002/anie.202100115] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/27/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are visible-light-responsive photoswitches with a variety of emerging applications in photoresponsive materials. Their two-step modular synthesis, centered on the nucleophilic ring opening of an activated furan, makes DASAs readily accessible. However, the use of less reactive donors or acceptors renders the process slow and low yielding, which has limited their development. We demonstrate here that 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) promotes the ring-opening reaction and stabilizes the open isomer, allowing greatly reduced reaction times and increased yields for known derivatives. In addition, it provides access to previously unattainable DASA-based photoswitches and DASA-polymer conjugates. The role of HFIP and the photochromic properties of a set of new DASAs is probed using a combination of 1 H NMR and UV/Vis spectroscopy. The use of sterically hindered, electron-poor amines enabled the dark equilibrium to be decoupled from closed-isomer half-lives for the first time.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Miranda Sroda
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
50
|
Clerc M, Stricker F, Ulrich S, Sroda M, Bruns N, Boesel LF, Read de Alaniz J. Promoting the Furan Ring‐Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michèle Clerc
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Department of Chemistry University of Fribourg 1700 Fribourg Switzerland
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Sebastian Ulrich
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Miranda Sroda
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Luciano F. Boesel
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|