1
|
Rao H, Yang T, Wang Y, Fei J, Bie LH, Gao J. Molecular dynamics simulation on the role of CL5D in accelerating the product dissociation of SIRT6. Phys Chem Chem Phys 2025; 27:4298-4306. [PMID: 39925168 DOI: 10.1039/d4cp03870c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
SIRT6 is a member of the NAD+-dependent histone deacetylase family and is integral to maintaining genome stability and regulating metabolic transcription. SIRT6 transfers acetyl groups from the lysine side chains of protein substrates to the cofactor NAD+, generating nicotinamide, 2'-O-acyl-ADP-ribose (ADPr), and a deacetylated substrate. SIRT6 has been found to be activated by small molecule activators, such as CL5D. However, the process of dissociation of the SIRT6 product and the mechanism of activation by small molecule activators are unknown. In this work, we elucidated these activation mechanisms by performing extensive molecular dynamics simulations. The results of random acceleration molecular dynamics and umbrella sampling demonstrated that the dissociation sequence involves the exit of the deacetylated substrate first, followed by ADPr. The binding of CL5D does not alter the dissociation pathway of the products, but it increases the catalytic activity of SIRT6 by facilitating the dissociation of products within SIRT6. Our results suggest a mechanism of SIRT6 activation, which highlights the importance of product dissociation in enzyme catalysis. This result may help facilitate the development of new SIRT6 activators.
Collapse
Affiliation(s)
- Hao Rao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Ting Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yue Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Junwen Fei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Li-Hua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Chong W, Zhang Z, Li Z, Meng S, Nian B, Hu Y. Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes. Int J Biol Macromol 2024; 278:134953. [PMID: 39181358 DOI: 10.1016/j.ijbiomac.2024.134953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.
Collapse
Affiliation(s)
- Wenya Chong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Zihan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Zhongyu Li
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Shuaiqi Meng
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Hou XN, Song B, Zhao C, Chu WT, Ruan MX, Dong X, Meng LS, Gong Z, Weng YX, Zheng J, Wang J, Tang C. Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability. JACS AU 2024; 4:3310-3320. [PMID: 39211624 PMCID: PMC11350723 DOI: 10.1021/jacsau.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mei-Xia Ruan
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Ling-Shen Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zheng
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, Newyork 11794-3400, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
5
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
6
|
Cetin E, Atilgan AR, Atilgan C. DHFR Mutants Modulate Their Synchronized Dynamics with the Substrate by Shifting Hydrogen Bond Occupancies. J Chem Inf Model 2022; 62:6715-6726. [PMID: 35984987 PMCID: PMC9795552 DOI: 10.1021/acs.jcim.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibiotic resistance is a global health problem in which mutations occurring in functional proteins render drugs ineffective. The working mechanisms of the arising mutants are seldom apparent; a methodology to decipher these mechanisms systematically would render devising therapies to control the arising mutational pathways possible. Here we utilize Cα-Cβ bond vector relaxations obtained from moderate length MD trajectories to determine conduits for functionality of the resistance conferring mutants of Escherichia coli dihydrofolate reductase. We find that the whole enzyme is synchronized to the motions of the substrate, irrespective of the mutation introducing gain-of-function or loss-of function. The total coordination of the motions suggests changes in the hydrogen bond dynamics with respect to the wild type as a possible route to determine and classify the mode-of-action of individual mutants. As a result, nine trimethoprim-resistant point mutations arising frequently in evolution experiments are categorized. One group of mutants that display the largest occurrence (L28R, W30G) work directly by modifying the dihydrofolate binding region. Conversely, W30R works indirectly by the formation of the E139-R30 salt bridge which releases energy resulting from tight binding by distorting the binding cavity. A third group (D27E, F153S, I94L) arising as single, resistance invoking mutants in evolution experiment trajectories allosterically and dynamically affects a hydrogen bonding motif formed at residues 59-69-71 which in turn modifies the binding site dynamics. The final group (I5F, A26T, R98P) consists of those mutants that have properties most similar to the wild type; these only appear after one of the other mutants is fixed on the protein structure and therefore display clear epistasis. Thus, we show that the binding event is governed by the entire enzyme dynamics while the binding site residues play gating roles. The adjustments made in the total enzyme in response to point mutations are what make quantifying and pinpointing their effect a hard problem. Here, we show that hydrogen bond dynamics recorded on sub-μs time scales provide the necessary fingerprints to decipher the various mechanisms at play.
Collapse
|
7
|
Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Conserved conformational dynamics determine enzyme activity. SCIENCE ADVANCES 2022; 8:eabo5546. [PMID: 35921420 PMCID: PMC9348788 DOI: 10.1126/sciadv.abo5546] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Homologous enzymes often exhibit different catalytic rates despite a fully conserved active site. The canonical view is that an enzyme sequence defines its structure and function and, more recently, that intrinsic protein dynamics at different time scales enable and/or promote catalytic activity. Here, we show that, using the protein tyrosine phosphatase PTP1B, residues surrounding the PTP1B active site promote dynamically coordinated chemistry necessary for PTP1B function. However, residues distant to the active site also undergo distinct intermediate time scale dynamics and these dynamics are correlated with its catalytic activity and thus allow for different catalytic rates in this enzyme family. We identify these previously undetected motions using coevolutionary coupling analysis and nuclear magnetic resonance spectroscopy. Our findings strongly indicate that conserved dynamics drives the enzymatic activity of the PTP family. Characterization of these conserved dynamics allows for the identification of novel regulatory elements (therapeutic binding pockets) that can be leveraged for the control of enzymes.
Collapse
Affiliation(s)
- Kristiane R. Torgeson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Michael W. Clarkson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Daniele Granata
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
8
|
Galenkamp NS, Maglia G. Single-Molecule Sampling of Dihydrofolate Reductase Shows Kinetic Pauses and an Endosteric Effect Linked to Catalysis. ACS Catal 2022; 12:1228-1236. [PMID: 35096468 PMCID: PMC8787752 DOI: 10.1021/acscatal.1c04388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Indexed: 12/21/2022]
Abstract
![]()
The ability to sample multiple reactions
on the same single enzyme
is important to link rare intermediates with catalysis and to unravel
the role of conformational changes. Despite decades of efforts, however,
the single-molecule characterization of nonfluorogenic enzymes during
multiple catalytic turnovers has been elusive. Here, we show that
nanopore currents allow sampling the dynamic exchange between five
structural intermediates during E. coli dihydrofolate reductase (DHFR) catalysis. We found that an endosteric
effect promotes the binding of the substrate to the enzyme with a
specific hierarchy. The chemical step then switched the enzyme from
the closed to the occluded conformation, which in turn promotes the
release of the reduced cofactor NADP+. Unexpectedly, only
a few reactive complexes lead to catalysis. Furthermore, second-long
catalytic pauses were observed, possibly reflecting an off-path conformation
generated during the reaction. Finally, the free energy from multiple
cofactor binding events were required to release the product and switch
DHFR back to the reactive conformer. This catalytic fueled concerted
mechanism is likely to have evolved to improve the catalytic efficiency
of DHFR under the high concentrations of NADP+ in E. coli and might be a general feature for complex
enzymatic reactions where the binding and release of the products
must be tightly controlled.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Nierzwicki L, East KW, Morzan UN, Arantes PR, Batista VS, Lisi GP, Palermo G. Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9. eLife 2021; 10:e73601. [PMID: 34908530 PMCID: PMC8741213 DOI: 10.7554/elife.73601] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat and associated Cas9 protein) is a molecular tool with transformative genome editing capabilities. At the molecular level, an intricate allosteric signaling is critical for DNA cleavage, but its role in the specificity enhancement of the Cas9 endonuclease is poorly understood. Here, multi-microsecond molecular dynamics is combined with solution NMR and graph theory-derived models to probe the allosteric role of key specificity-enhancing mutations. We show that mutations responsible for increasing the specificity of Cas9 alter the allosteric structure of the catalytic HNH domain, impacting the signal transmission from the DNA recognition region to the catalytic sites for cleavage. Specifically, the K855A mutation strongly disrupts the allosteric connectivity of the HNH domain, exerting the highest perturbation on the signaling transfer, while K810A and K848A result in more moderate effects on the allosteric communication. This differential perturbation of the allosteric signal correlates to the order of specificity enhancement (K855A > K848A ~ K810A) observed in biochemical studies, with the mutation achieving the highest specificity most strongly perturbing the signaling transfer. These findings suggest that alterations of the allosteric communication from DNA recognition to cleavage are critical to increasing the specificity of Cas9 and that allosteric hotspots can be targeted through mutational studies for improving the system's function.
Collapse
Affiliation(s)
- Lukasz Nierzwicki
- Department of Bioengineering and Department of Chemistry, University of California, RiversideRiversideUnited States
| | - Kyle W East
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Uriel N Morzan
- International Centre for Theoretical PhysicsTriesteItaly
| | - Pablo R Arantes
- Department of Bioengineering and Department of Chemistry, University of California, RiversideRiversideUnited States
| | | | - George P Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, RiversideRiversideUnited States
| |
Collapse
|
10
|
Singh A, Fenwick RB, Dyson HJ, Wright PE. Role of Active Site Loop Dynamics in Mediating Ligand Release from E. coli Dihydrofolate Reductase. Biochemistry 2021; 60:2663-2671. [PMID: 34428034 DOI: 10.1021/acs.biochem.1c00461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational fluctuations from ground-state to sparsely populated but functionally important excited states play a key role in enzyme catalysis. For Escherichia coli dihydrofolate reductase (DHFR), the release of the product tetrahydrofolate (THF) and oxidized cofactor NADP+ occurs through exchange between closed and occluded conformations of the Met20 loop. A "dynamic knockout" mutant of E. coli DHFR, where the E. coli sequence in the Met20 loop is replaced by the human sequence (N23PP/S148A), models human DHFR and is incapable of accessing the occluded conformation. 1H and 15N CPMG relaxation dispersion analysis for the ternary product complex of the mutant enzyme with NADP+ and the product analogue 5,10-dideazatetrahydrofolate (ddTHF) (E:ddTHF:NADP+) reveals the mechanism by which NADP+ is released when the Met20 loop cannot undergo the closed-to-occluded conformational transition. Two excited states were observed: one related to a faster, relatively high-amplitude conformational fluctuation in areas near the active site, associated with the shuttling of the nicotinamide ring of the cofactor out of the active site, and the other to a slower process where ddTHF undergoes small-amplitude motions within the binding site that are consistent with disorder observed in a room-temperature X-ray crystal structure of the N23PP/S148A mutant protein. These motions likely arise due to steric conflict of the pterin ring of ddTHF with the ribose-nicotinamide moiety of NADP+ in the closed active site. These studies demonstrate that site-specific kinetic information from relaxation dispersion experiments can provide intimate details of the changes in catalytic mechanism that result from small changes in local amino acid sequence.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R Bryn Fenwick
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Elings W, Chikunova A, van Zanten DB, Drenth R, Ahmad MUD, Blok AJ, Timmer M, Perrakis A, Ubbink M. Two β-Lactamase Variants with Reduced Clavulanic Acid Inhibition Display Different Millisecond Dynamics. Antimicrob Agents Chemother 2021; 65:e0262820. [PMID: 34031049 PMCID: PMC8284444 DOI: 10.1128/aac.02628-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The β-lactamase of Mycobacterium tuberculosis, BlaC, is susceptible to inhibition by clavulanic acid. The ability of this enzyme to escape inhibition through mutation was probed using error-prone PCR combined with functional screening in Escherichia coli. The variant that was found to confer the most inhibitor resistance, K234R, as well as variant G132N that was found previously were characterized using X-ray crystallography and nuclear magnetic resonance (NMR) relaxation experiments to probe structural and dynamic properties. The G132N mutant exists in solution in two almost equally populated conformations that exchange with a rate of ca. 88 s-1. The conformational change affects a broad region of the enzyme. The crystal structure reveals that the Asn132 side chain forces the peptide bond between Ser104 and Ile105 in a cis-conformation. The crystal structure suggests multiple conformations for several side chains (e.g., Ser104 and Ser130) and a short loop (positions 214 to 216). In the K234R mutant, the active-site dynamics are significantly diminished with respect to the wild-type enzyme. These results show that multiple evolutionary routes are available to increase inhibitor resistance in BlaC and that active-site dynamics on the millisecond time scale are not required for catalytic function.
Collapse
Affiliation(s)
- Wouter Elings
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | - Ralphe Drenth
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Misbha Ud Din Ahmad
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Anneloes J. Blok
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Thompson S, Zhang Y, Ingle C, Reynolds KA, Kortemme T. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. eLife 2020; 9:53476. [PMID: 32701056 PMCID: PMC7377907 DOI: 10.7554/elife.53476] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/09/2020] [Indexed: 12/03/2022] Open
Abstract
Protein mutational landscapes are shaped by the cellular environment, but key factors and their quantitative effects are often unknown. Here we show that Lon, a quality control protease naturally absent in common E. coli expression strains, drastically reshapes the mutational landscape of the metabolic enzyme dihydrofolate reductase (DHFR). Selection under conditions that resolve highly active mutants reveals that 23.3% of all single point mutations in DHFR are advantageous in the absence of Lon, but advantageous mutations are largely suppressed when Lon is reintroduced. Protein stability measurements demonstrate extensive activity-stability tradeoffs for the advantageous mutants and provide a mechanistic explanation for Lon’s widespread impact. Our findings suggest possibilities for tuning mutational landscapes by modulating the cellular environment, with implications for protein design and combatting antibiotic resistance.
Collapse
Affiliation(s)
- Samuel Thompson
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States
| | - Christine Ingle
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
13
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
14
|
Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, Zhang DH. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surf B Biointerfaces 2020; 189:110874. [DOI: 10.1016/j.colsurfb.2020.110874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
|
15
|
Abstract
Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the world-wide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional coordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insight into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.
Collapse
|
16
|
Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat Chem 2020; 12:481-488. [DOI: 10.1038/s41557-020-0437-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
|
17
|
Babu CS, Lim C. Sensitivity of Functional Loop Conformations on Long-Range Electrostatics: Implications for M20 Loop Dynamics in E. coli Dihydrofolate Reductase. J Chem Theory Comput 2020; 16:2028-2033. [PMID: 32192329 DOI: 10.1021/acs.jctc.9b01285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In E. coli dihydrofolate reductase, unusual conformational motions of a functional M20 loop that interacts with substrate and coenzyme have been construed as evidence for dynamical effects in enzyme catalysis. By computing this loop's conformational free energies in the apoenzyme, we show that it is sensitive to the treatment of long-range electrostatic interactions and the solvation box size in modeling/simulations. These results provide important guidelines for computing reaction/binding free energy profiles of proteins with functional loops.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry 2019; 58:5160-5172. [PMID: 31794659 DOI: 10.1021/acs.biochem.9b00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.
Collapse
|
19
|
Plangger R, Juen MA, Hoernes TP, Nußbaumer F, Kremser J, Strebitzer E, Klingler D, Erharter K, Tollinger M, Erlacher MD, Kreutz C. Branch site bulge conformations in domain 6 determine functional sugar puckers in group II intron splicing. Nucleic Acids Res 2019; 47:11430-11440. [PMID: 31665419 PMCID: PMC6868427 DOI: 10.1093/nar/gkz965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Although group II intron ribozymes are intensively studied the question how structural dynamics affects splicing catalysis has remained elusive. We report for the first time that the group II intron domain 6 exists in a secondary structure equilibrium between a single- and a two-nucleotide bulge conformation, which is directly linked to a switch between sugar puckers of the branch site adenosine. Our study determined a functional sugar pucker equilibrium between the transesterification active C2'-endo conformation of the branch site adenosine in the 1nt bulge and an inactive C3'-endo state in the 2nt bulge fold, allowing the group II intron to switch its activity from the branching to the exon ligation step. Our detailed NMR spectroscopic investigation identified magnesium (II) ions and the branching reaction as regulators of the equilibrium populations. The tuneable secondary structure/sugar pucker equilibrium supports a conformational selection mechanism to up- and downregulate catalytically active and inactive states of the branch site adenosine to orchestrate the multi-step splicing process. The conformational dynamics of group II intron domain 6 is also proposed to be a key aspect for the directionality selection in reversible splicing.
Collapse
Affiliation(s)
- Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Philipp Hoernes
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - David Klingler
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Commun Biol 2018; 1:226. [PMID: 30564747 PMCID: PMC6290769 DOI: 10.1038/s42003-018-0236-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 12/02/2022] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the stereospecific reduction of 7,8-dihydrofolate (FH2) to (6s)-5,6,7,8-tetrahydrofolate (FH4) via hydride transfer from NADPH. The consensus Escherichia coli DHFR mechanism involves conformational changes between closed and occluded states occurring during the rate-limiting product release step. Although the Protein Data Bank (PDB) contains over 250 DHFR structures, the FH4 complex structure responsible for rate-limiting product release is unknown. We report to our knowledge the first crystal structure of an E. coli. DHFR:FH4 complex at 1.03 Å resolution showing distinct stabilizing interactions absent in FH2 or related (6R)-5,10-dideaza-FH4 complexes. We discover the time course of decay of the co-purified endogenous FH4 during crystal growth, with conversion from FH4 to FH2 occurring in 2–3 days. We also determine another occluded complex structure of E. coli DHFR with a slow-onset nanomolar inhibitor that contrasts with the methotrexate complex, suggesting a plausible strategy for designing DHFR antibiotics by targeting FH4 product conformations. Hongnan Cao et al. present the X-ray crystal structure of E. coli dihydrofolate reductase (DHFR) in complex with its reduced substrate, (6s)-5,6,7,8-tetrahydrofolate (FH4). This structure provides the first glimpse of the rate-limiting product release step of the DHFR mechanism and suggests a strategy for designing DHFR-targeting antibiotics.
Collapse
|
21
|
Abstract
The phenomenon of chemical or conformational exchange in NMR spectroscopy has enabled detailed characterization of time-dependent aspects of biomolecular function, including folding, molecular recognition, allostery, and catalysis, on timescales from microsecond to second. Importantly, NMR methods based on a variety of spin relaxation parameters have been developed that provide quantitative information on interconversion kinetics, thermodynamic properties, and structural features of molecular states populated to a fraction of a percent at equilibrium and otherwise unobservable by other NMR approaches. The ongoing development of more sophisticated experimental techniques and the necessity to apply these methods to larger and more complex molecular systems engenders a corresponding need for theoretical advances describing such techniques and facilitating data analysis in applications. This review surveys current aspects of the theory of chemical exchange, as utilized in ZZ-exchange; Hahn and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo; and R1ρ, chemical exchange saturation transfer (CEST), and dark state saturation transfer (DEST) spin-locking experiments. The review emphasizes theoretical results for kinetic topologies with more than two interconverting states, both to obtain compact analytical forms suitable for data analysis and to establish conditions for distinguishability between alternative kinetic schemes.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| | - Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Nagae T, Yamada H, Watanabe N. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP . Acta Crystallogr D Struct Biol 2018; 74:895-905. [PMID: 30198899 PMCID: PMC6130465 DOI: 10.1107/s2059798318009397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
A high-pressure crystallographic study was conducted on Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ in crystal forms containing both the open and closed conformations of the M20 loop under high-pressure conditions of up to 800 MPa. At pressures between 270 and 500 MPa the crystal form containing the open conformation exhibited a phase transition from P21 to C2. Several structural changes in ecDHFR were observed at high pressure that were also accompanied by structural changes in the NADP+ cofactor and the hydration structure. In the crystal form with the closed conformation the M20 loop moved as the pressure changed, with accompanying conformational changes around the active site, including NADP+ and folate. These movements were consistent with the suggested hypothesis that movement of the M20 loop was necessary for ecDHFR to catalyze the reaction. In the crystal form with the open conformation the nicotinamide ring of the NADP+ cofactor undergoes a large flip as an intermediate step in the reaction, despite being in a crystalline state. Furthermore, observation of the water molecules between Arg57 and folate elucidated an early step in the substrate-binding pathway. These results demonstrate the possibility of using high-pressure protein crystallography as a method to capture high-energy substates or transient structures related to the protein reaction cycle.
Collapse
Affiliation(s)
- Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Hiroyuki Yamada
- Venture Business Laboratory, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Nobuhisa Watanabe
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
- Venture Business Laboratory, Nagoya University, Chikusa, Nagoya 464-8603, Japan
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
23
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|