1
|
Ma D, Olivares CI. Perfluoroalkane Sulfonamides and Derivatives, a Different Class of PFAS: Sorption and Microbial Biotransformation Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40415270 DOI: 10.1021/acs.est.5c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Perfluoroalkane sulfonamides and their derivatives (FASAs), an emerging subclass of per- and polyfluoroalkyl substances (PFAS), have attracted increasing attention due to their widespread applications, environmental persistence, and potential biological toxicity. Unlike perfluoroalkyl acids (PFAAs), FASAs can be transformed by microorganisms in the environment, producing fluorinated intermediates that eventually form stable PFAAs. A key difference of FASAs is that their pKas enable them to exist as neutral species or zwitterions, unlike all other PFAS subclasses, which are all anions. Sorption processes regulate the bioavailability of FASAs to microorganisms for transformation, driving the environmental transport and fate of FASAs. In this critical review, we provide a comprehensive overview of the classification, properties, and environmental fate of FASAs, with a focus on sorption and microbial transformation. We discuss recent advancements in understanding the sorption of FASAs onto soil, sediment, and microbial biomass, including key sorption descriptors and influencing factors. Additionally, we examine the microbial biotransformation of FASAs, detailing transformation pathways, key intermediates, transformation kinetics, and enzymes involved. Finally, we identify critical research gaps and propose future directions to advance the study of the sorption and biotransformation of FASAs in environmental systems. Mechanistic understanding of these processes is crucial for managing sites impacted with FASAs.
Collapse
Affiliation(s)
- Donghui Ma
- Civil & Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Christopher I Olivares
- Civil & Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Cunningham KM, Shin W, Yang ZJ. Computational Studies of Enzymes for C-F Bond Degradation and Functionalization. Chemphyschem 2025; 26:e202401130. [PMID: 39962931 DOI: 10.1002/cphc.202401130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/08/2025]
Abstract
Organofluorine compounds have revolutionized chemical and pharmaceutical industries, serving as essential components in numerous applications and aspects of modern life. However, their bioaccumulation and resistance to degradation have resulted in environmental pollution, posing significant risks to human and animal health. The exceptionally strong C-F bond in these compounds makes their degradation challenging, with current methods often requiring extreme experimental conditions. Therefore, the development of eco-friendly approaches that operate under milder conditions is crucial, with enzyme-mediated C-F bond cleavage strategies emerging as a particularly promising solution. In this review, we present an overview of how computational approaches, including molecular docking, molecular dynamics simulations, quantum mechanics/molecular mechanics calculations, and bioinformatics, have been utilized to investigate the mechanisms underlying enzymatic C-F bond degradation and functionalization. This review highlights how these computational approaches provide critical insights into the atomic-level interactions and energetics underlying enzymatic processes, offering a foundation for the rational design and engineering of enzymes capable of addressing the challenges posed by fluorinated compounds. This review covers several types of enzymes including: fluoroacetate dehalogenases, cysteine dioxygenase, L-2-haloacid dehalogenase, cytochrome P450, fluorinase and tyrosine hydroxylase.
Collapse
Affiliation(s)
- Kendra M Cunningham
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States Phone
| | - Wook Shin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States Phone
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States Phone
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee, 37235, United States
| |
Collapse
|
3
|
Wu C, Li M. Enriching fluorotelomer carboxylic acids-degrading consortia from sludges and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177823. [PMID: 39667157 DOI: 10.1016/j.scitotenv.2024.177823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Fluorotelomer carboxylic acids (FTCAs) has drawn increasing attention due to their prevalent occurrence, high toxicity, and bioaccumulating effects. In this study, microbial consortia with sustainable FTCA removal abilities were enriched and characterized from two activated sludges and five soils when no external carbon sources were supplemented. After four generations of enrichment, stable 6:2 FTCA and 5:3 FTCA biodegradation were achieved, reaching 0.72-0.98 and 0.53-1.05 μM/day, respectively. Coupling with 6:2 FTCA biotransformation, fluoride release co-occurred, conducive to approximate 0.19 fluoride per 6:2 FTCA molecule that was biodegraded. In contrast, minimal free fluoride was detected in 5:3 FTCA-amended consortia, indicating the dominance of "non-fluoride releasing pathways". Microbial community analysis revealed the dominance of 13 genera across all consortia. Among them, 3 genera, including Hyphomicrobium, Methylorubrum, and Achromobacter, were found more enriched in consortia amended with 6:2 FTCA than those with 5:3 FTCA from an identical inoculation source, suggesting their involvement in biodefluorination. This study uncovered that microbial consortia can degrade FTCAs without the supplementation of external carbon sources, though with low biotransformation and biodefluorination rates. Further research is underscored to investigate the involved biotransformation pathways and biodefluorination mechanisms, as well as effects of external carbon sources.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
4
|
Liao H, Pan H, Yao J, Zhu R, Bao W. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Biotechnol Lett 2024; 46:739-749. [PMID: 38740717 DOI: 10.1007/s10529-024-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to discuss the essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase from Pseudomonas koreensis for the production of meso-tartaric acid. RESULTS The optimum conditions of the enzyme were 45 °C and pH 9.0, respectively. It was strongly inhibited by Zn2+, Mn2+ and SDS. Michaelis-Menten enzyme kinetics analysis gave a Km value of 3.50 mM and a kcat of 99.75 s-1, with an exceptional EE value exceeding 99.9%. Multiple sequence alignment and homology modeling revealed that the enzyme belonged to MhpC superfamily and possessed a typical α/β hydrolase folding structure. Site-directed mutagenesis indicated H34, D104, R105, R108, D128, Y147, H149, W150, Y211, and H272 were important catalytic residues. The 18O-labeling study suggested the enzyme acted via two-step catalytic mechanism. CONCLUSIONS The structure and catalytic mechanism of trans-epoxysuccinate hydrolase were first reported. Ten residues were critical for its catalysis and a two-step mechanism by an Asp-His-Asp catalytic triad was proposed.
Collapse
Affiliation(s)
- Hongxiu Liao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | | | - Jinfeng Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ronglin Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Hangzhou, 310023, China.
| |
Collapse
|
5
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
6
|
Xi Z, Li L, Liu Z, Wu X, Xu Y, Zhang R. Rational Design of l-Threonine Transaldolase-Mediated System for Enhanced Florfenicol Intermediate Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:461-474. [PMID: 38153324 DOI: 10.1021/acs.jafc.3c05267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
l-threo-p-methylsulfonylphenylserine (compound 1b) is the main intermediate of florfenicol, and its efficient synthesis has been the subject of current research. Herein, Burkholderia diffusa l-threonine transaldolase (BuLTTA) was rationally designed based on the sequence-structure-function relationship. A mutant M4 (Asn35Ser/Thr352Asn) could produce 35.5 mM 1b with 88.8% conversion and 93.8% diastereoselectivity, 314 and 129% of the values observed for wild-type BuLTTA. Molecular dynamics simulations indicated that the shortened distance between key active site residues and the transition state (PLP-1b) and the improved hydrogen bond force enhanced the catalytic performance of the M4 variant. Then, the mutant M4 was combined with K. kurtzmanii alcohol dehydrogenase (KkADH) to eliminate the BuLTTA-inhibiting byproduct acetaldehyde, and a cosubstrate was added to regenerate the ADH cofactor NADH. Under optimized conditions, the yield of 1b reached 115.2 mM with a conversion of 96% and a diastereoselectivity of 95.5%. This work provides a new strategy for the efficient and sustainable production of 1b.
Collapse
Affiliation(s)
- Zhiwen Xi
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Lihong Li
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiyong Liu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaolong Wu
- Department of Infection Control, Affiliated Hospital of Jiangnan University, 214122 Wuxi, P. R. China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Rongzhen Zhang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Khusnutdinova AN, Batyrova KA, Brown G, Fedorchuk T, Chai YS, Skarina T, Flick R, Petit AP, Savchenko A, Stogios P, Yakunin AF. Structural insights into hydrolytic defluorination of difluoroacetate by microbial fluoroacetate dehalogenases. FEBS J 2023; 290:4966-4983. [PMID: 37437000 DOI: 10.1111/febs.16903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Khorcheska A Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Fedorchuk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Yao Sheng Chai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, AB, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, UK
| |
Collapse
|
9
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
10
|
Shao Q, Jiang Y, Yang ZJ. EnzyHTP: A High-Throughput Computational Platform for Enzyme Modeling. J Chem Inf Model 2022; 62:647-655. [DOI: 10.1021/acs.jcim.1c01424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
11
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
12
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
13
|
Kang H, Zheng M. Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed C F bond cleavage. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
15
|
Yue Y, Fan J, Xin G, Huang Q, Wang JB, Li Y, Zhang Q, Wang W. Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9817-9825. [PMID: 34080849 DOI: 10.1021/acs.est.0c08811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorochemicals are persistent, bioaccumulative, and toxic compounds that are widely tributed in the environment. Developing efficient biodegradation strategies to decompose the fluorochemicals via breaking the inert C-F bonds presents a holistic challenge. As a promising biodegradation enzyme candidate, fluoroacetate dehalogenase (FAcD) has been reported as the only non-metallic enzyme to catalyze the cleavage of the strong C-F bond. Here, we systematically investigated the catalytic actions of FAcD toward its natural substrate fluoroacetate using molecular dynamics simulations and quantum mechanism/molecular mechanism calculations. We propose that the enzymatic transformation involves four elementary steps, (I) C-F bond activation, (II) nucleophilic attack, (III) C-O bond cleavage, and (IV) proton transfer. Our results show that nucleophilic attack is the rate-determining step. However, for difluoroacetate and trifluoroacetate, C-F bond activation, instead of nucleophilic attack, becomes the rate-determining step. We show that FAcD, originally recognized as α-fluorocarboxylic acid degradation enzyme, can catalyze the defluorination of difluoroacetate to glyoxylate, which is captured by our high-resolution mass spectrometry experiments. In addition, we employed amino acid electrostatic analysis method to screen potential mutation hotspots for tuning FAcD's electrostatic environment to favor substrate conversion. The comprehensive understanding of catalytic mechanism will inform a rational enzyme engineering strategy to degrade fluorochemicals for benefits of environmental sustainability.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Jiaqian Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center (WHMFC), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
16
|
Yue Y, Chen J, Bao L, Wang J, Li Y, Zhang Q. Fluoroacetate dehalogenase catalyzed dehalogenation of halogenated carboxylic acids: A QM/MM approach. CHEMOSPHERE 2020; 254:126803. [PMID: 32361540 DOI: 10.1016/j.chemosphere.2020.126803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Dehalogenation is one of the most important reactions in environmental pollution control, for instance, the degradation of persistent organic pollutants (POPs). Recently, fluoroacetate dehalogenase (FAcD) has been reported to catalyze the dehalogenation reactions, which shows great potential in treating halogenated pollutants. Here the dehalogenation mechanism catalyzed by FAcD was fully deciphered with the aid of quantum mechanics/molecular mechanics method. The results show that FAcD catalyzed dehalogenation efficiency follows the order of defluorination > dechlorination > debromination. The corresponding Boltzmann-weighted average barriers are 10.1, 19.7, and 20.9 kcal mol-1. Positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) for FAcD catalyzed dechlorination and debromination were established. Based on the structure-energy relationship, we propose that mutation of the binding pocket amino acids (e.g. His155, Trp156, Tyr219) to smaller proton donor amino acids (e.g. Serine, Threonine, Cysteine, Asparagine) may increase the efficiency for dechlorination and debromination. The results may of practical value for the efficient degradation of chlorined and bromined pollutants by harnessing FAcD.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Jinfeng Chen
- School of Life Sciences, Westlake University, Hangzhou, 310000, PR China
| | - Lei Bao
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Junjie Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
17
|
Song Z, Yue Y, Feng S, Sun H, Li Y, Xu F, Zhang Q, Wang W. Cysteine dioxygenase catalyzed C F bond cleavage: An in silico approach. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Structure-guided protein design of fluoroacetate dehalogenase for kinetic resolution of rac-2-bromobutyric acid. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
20
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
21
|
Zhang H, Tian S, Yue Y, Li M, Tong W, Xu G, Chen B, Ma M, Li Y, Wang JB. Semirational Design of Fluoroacetate Dehalogenase RPA1163 for Kinetic Resolution of α-Fluorocarboxylic Acids on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Min Li
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Guangyu Xu
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan 430062, People’s Republic of China
| |
Collapse
|
22
|
Abstract
AbstractOrganofluorines are widely used in a variety of applications, ranging from pharmaceuticals to pesticides and advanced materials. The widespread use of organofluorines also leads to its accumulation in the environment, and two major questions arise: how to synthesize and how to degrade this type of compound effectively? In contrast to a considerable number of easy-access chemical methods, milder and more effective enzymatic methods remain to be developed. In this review, we present recent progress on enzyme-catalyzed C–F bond formation and cleavage, focused on describing C–F bond formation enabled by fluorinase and C–F bond cleavage catalyzed by oxidase, reductase, deaminase, and dehalogenase.
Collapse
|
23
|
Li Y, Yue Y, Zhang H, Yang Z, Wang H, Tian S, Wang JB, Zhang Q, Wang W. Harnessing fluoroacetate dehalogenase for defluorination of fluorocarboxylic acids: in silico and in vitro approach. ENVIRONMENT INTERNATIONAL 2019; 131:104999. [PMID: 31319293 DOI: 10.1016/j.envint.2019.104999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Widely distributed fluorocarboxylic acids have aroused worldwide environmental concerns due to its toxicity, persistence, and bioaccumulation. Enzyme-based eco-friendly biodegradation techniques have become increasingly important in treating fluorocarboxylic acids. Here we utilized in silico and in vitro approaches to investigate the defluorination mechanism of fluoroacetate dehalogenase (FAcD) toward monofluoropropionic acids at atomic-level. The experimentally determined kcat and kM for defluorination of 2-fluoropropionic acid are 330 ± 60 min-1 and 6.12 ± 0.13 mM. The in silico results demonstrated positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) under different enzymatic conformations. We also screened computationally and tested in vitro (enzyme assay and kinetic study) the catalytic proficiency of FAcD toward polyfluoropropionic acids and perfluoropropionic acids which are known to be challenging for enzymatic degradation. The results revealed potential degradation activity of FAcD enzyme toward 2,3,3,3-tetrafluoropropionic acids. Our work will initiate the development of a new "integrated approach" for enzyme engineering to degrade environmentally persistent fluorocarboxylic acids.
Collapse
Affiliation(s)
- Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Hongxia Zhang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shaixiao Tian
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
24
|
Hrydziuszko Z, Strub DJ, Labus K, Bryjak J. Burkholderia cepacia lipase immobilization for hydrolytic reactions and the kinetic resolution of the non-equimolar mixtures of isomeric alcohols. Bioorg Chem 2019; 93:102745. [PMID: 30691728 DOI: 10.1016/j.bioorg.2019.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/10/2023]
Abstract
The major drawbacks of native lipase applications in processes occurring in water or in organic solvents include: difficulties in catalyst recycling, low activity and operational instability. The immobilization of Burkholderia cepacia lipase by adsorption or covalent binding onto 5 differently functionalized carriers (silica, acrylic, cellulose-based) was performed to overcome this problem. The optimization of the reaction preparation in water-rich media was based on the hydrolytic reactivity of the preparations, as well as the thermal, operational and storage stabilities. Aminated silica carrier, activated with glutaraldehyde, was determined to be the carrier of choice. Regarding processes in water-restricted media, carrier selection was based on reactivity after drying and five preparations were chosen for the resolution of a non-equimolar isomer mixture (85:15 ratio of R to S isomers), treating the kinetic resolution of ((+)-(S/R)-1-[(1S,5R)-6,6-dimethylbicyclo[3.1.0]hex-2-en-2-yl)]ethanol as a model. The resulting acetate of R configuration exhibits interesting sensory properties. The operational stability of the chosen catalysts was tested over 15 consecutive batch processes; the most beneficial results were obtained with lipase adsorbed on an acrylic carrier. Conversion increased gradually from 10 to 84% over the first five processes, which could be explained by the product sorption onto the carrier. Full kinetic resolution with maximal substrate conversion (approximately 84%) was achieved and remained stable during the next 10 runs, an excellent result, and thus, the proposed system might be regarded as an exceptionally attractive solution for the perfume and cosmetic industries.
Collapse
Affiliation(s)
- Zofia Hrydziuszko
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Daniel Jan Strub
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; Liquid Technologies Ltd, Chełmońskiego 12, 51-630 Wrocław, Poland.
| | - Karolina Labus
- Division of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Jolanta Bryjak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
25
|
Chan HCS, Pan L, Li Y, Yuan S. Rationalization of stereoselectivity in enzyme reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H. C. Stephen Chan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Faculty of Life Sciences University of Bradford Bradford UK
| | - Lu Pan
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai China
| | - Yi Li
- Department of Neurology University of Southern California Los Angeles California
| | - Shuguang Yuan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
26
|
Alapour S, Zamisa SJ, Silva JRA, Alves CN, Omondi B, Ramjugernath D, Koorbanally NA. Investigations into the flexibility of the 3D structure and rigid backbone of quinoline by fluorine addition to enhance its blue emission. CrystEngComm 2018. [DOI: 10.1039/c8ce00094h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Addition of fluorine to the quinoline structure was found to decrease its intermolecular interactions and influence its 3D structure.
Collapse
Affiliation(s)
- S. Alapour
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - S. J. Zamisa
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - J. R. A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - C. N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - B. Omondi
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - D. Ramjugernath
- School of Chemical Engineering
- University of KwaZulu-Natal
- Durban 4041
- South Africa
| | - N. A. Koorbanally
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| |
Collapse
|