1
|
Zhou TP, Fan Y, Zhang J, Wang B. Mechanistic Perspective on C-N and C-S Bond Construction Catalyzed by Cytochrome P450 Enzymes. ACS BIO & MED CHEM AU 2025; 5:16-30. [PMID: 39990936 PMCID: PMC11843346 DOI: 10.1021/acsbiomedchemau.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cytochrome P450 enzymes catalyze a large number of oxidative transformations that are responsible for natural product synthesis. Recent studies have revealed their unique ability to catalyze the formation of C-N and C-S bonds, broadening their biosynthetic applications. However, the enzymatic mechanisms behind these reactions are still unclear. This review focuses on theoretical insights into the mechanisms of P450-catalyzed C-N and C-S bond formation. The key roles of the conformational dynamics of substrate radicals, influenced by the enzyme environment, in modulating selectivity and reactivity are highlighted. Understanding these reaction mechanisms offers valuable guidance for P450 enzyme engineering and the design of biosynthetic applications.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yakun Fan
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinyan Zhang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Phu PN, Lee JL, Biswas S, Ziller JW, Bominaar EL, Hendrich MP, Borovik AS. Proton-Induced Switching of Paramagnetism: Reversible Conversion between a Low and High Spin Co III Center within a Heterobimetallic Core. J Am Chem Soc 2025; 147:3129-3139. [PMID: 39813387 DOI: 10.1021/jacs.4c12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states. However, heterobimetallic complexes have had limited utility because of a lack of ligands that create differentiated structures around each metal center that are often necessary to regulate the electronic and magnetic properties. To circumvent this problem, we have used a tripodal ligand with phosphinic amido groups to prepare a complex with a discrete [CoIII(μ-OH)FeIII] core and an overall system spin of ST = 5/2. Deprotonation readily produces a species with a unique [CoIII(μ-O)FeIII] core and an ST = 1/2 system spin. X-ray diffraction studies, electron paramagnetic resonance spectroscopy, and Mössbauer spectroscopy pinpoint the hexacoordinate CoIII center as the cause of this spin change: the typical SCo = 0 spin state of the CoIII center in the [CoIII(μ-OH)FeIII] complex switches to a rare SCo = 2 spin state in the [CoIII(μ-O)FeIII] analogue; this change turns on antiferromagnetic coupling between the two metal centers. Computational studies link an increase in π bonding within the Co-oxido unit to the change in the CoIII spin state. The conversion is reversible and provides a blueprint for using oxido/hydroxido ligands within a heterobimetallic core to regulate the spin state of a metal site and thus modulate the paramagnetism of a system.
Collapse
Affiliation(s)
- Phan N Phu
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Justin L Lee
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Joseph W Ziller
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Li J, Duan R, Traore ES, Nguyen RC, Davis I, Griffth WP, Goodwin DC, Jarzecki AA, Liu A. Indole N-Linked Hydroperoxyl Adduct of Protein-Derived Cofactor Modulating Catalase-Peroxidase Functions. Angew Chem Int Ed Engl 2024; 63:e202407018. [PMID: 39300819 DOI: 10.1002/anie.202407018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Bifunctional catalase-peroxidase (KatG) features a posttranslational methionine-tyrosine-tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen-linked hydroperoxyl adduct (MYW-OOH) in Mycobacterium tuberculosis KatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW-OOH-containing KatG protein, we investigated the chemical stability and functional impact of MYW-OOH. We discovered that MYW-OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW-OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, the N-linked hydroperoxyl group is releasable. KatG with MYW-OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role of N-linked hydroperoxyl modifications in enzymatic function.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ran Duan
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ephrahime S Traore
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Wendell P Griffth
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Andrzej A Jarzecki
- Department of Chemistry and Biochemistry, Brooklyn College, New York, NY 11210, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Nguy AKL, Martinie RJ, Cai A, Seyedsayamdost MR. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. J Am Chem Soc 2024; 146:19629-19634. [PMID: 38989876 DOI: 10.1021/jacs.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.
Collapse
Affiliation(s)
- Andy K L Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan J Martinie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Amanda Cai
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Zhang X, Zhao Q, Liu Y. Computational Insights into the Intramolecular Aromatic C-C Coupling Catalyzed by the Cytochrome P450 Enzyme CYP121 from Mycobacterium tuberculosis. Inorg Chem 2024; 63:13068-13078. [PMID: 38937145 DOI: 10.1021/acs.inorgchem.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
CYP121 is a P450 enzyme that catalyzes the intramolecular C-C coupling of its native substrate, dicyclotyrosine (cYY). According to previous suggestions, when the cosubstrate peracetic acid was used to generate Cpd I, the substrate cYY was suggested to participate in the cleavage of the O-O bond; however, whether cYY is involved in the formation of Cpd I and how two distant aromatic carbon atoms are activated are still unclear. Here, we constructed computational models and performed QM/MM calculations to clarify the reaction mechanism. On the basis of our calculation results, cYY is not involved in the formation of Cpd I, and the C-C coupling reaction starts from hydrogen abstraction. In the second stage, the substrate should first undergo a complex conformational change, leading to two phenolic hydroxyls of cYY close to each other. In the subsequent reaction, the resultant Cpd II again abstracts a hydrogen atom from the proximal tyrosine to generate the diradical intermediate. In addition, the C-C coupling occurs in the active site, but the final aromatization may be a nonenzymatic reaction. In general, the intramolecular C-C coupling requires two basic conditions, including the active site having good flexibility and the substrate itself having a suitable and rotatable skeleton.
Collapse
Affiliation(s)
- Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Li J, Duan R, Liu A. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex. J Am Chem Soc 2024; 146:18292-18297. [PMID: 38941563 PMCID: PMC11608028 DOI: 10.1021/jacs.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center's high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV-vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Campomizzi CS, Uttamrao PP, Stallone JJ, Rathinavelan T, Estrada DF. Asparagine-85 Stabilizes a Structural Active Site Water Network in CYP121A1 of Mycobacterium tuberculosis. Biochemistry 2024; 63:711-722. [PMID: 38380587 DOI: 10.1021/acs.biochem.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon-carbon bond between the two phenol groups of dicyclotyrosine (cYY) in Mycobacterium tuberculosis (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of 19F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Jack J Stallone
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| | - Thenmalarchelvi Rathinavelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
9
|
Amaya JA, Manley OM, Bian JC, Rutland CD, Leschinsky N, Ratigan SC, Makris TM. Enhancing ferryl accumulation in H 2O 2-dependent cytochrome P450s. J Inorg Biochem 2024; 252:112458. [PMID: 38141432 DOI: 10.1016/j.jinorgbio.2023.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
A facile strategy is presented to enhance the accumulation of ferryl (iron(IV)-oxo) species in H2O2 dependent cytochrome P450s (CYPs) of the CYP152 family. We report the characterization of a highly chemoselective CYP decarboxylase from Staphylococcus aureus (OleTSA) that is soluble at high concentrations. Examination of OleTSA Compound I (CpdI) accumulation with a variety of fatty acid substrates reveals a dependence on resting spin-state equilibrium. Alteration of this equilibrium through targeted mutagenesis of the proximal pocket favors the high-spin form, and as a result, enhances Cpd-I accumulation to nearly stoichiometric yields.
Collapse
Affiliation(s)
- Jose A Amaya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Julia C Bian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Cooper D Rutland
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Nicholas Leschinsky
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
10
|
Mendez D, Holton JM, Lyubimov AY, Hollatz S, Mathews II, Cichosz A, Martirosyan V, Zeng T, Stofer R, Liu R, Song J, McPhillips S, Soltis M, Cohen AE. Deep residual networks for crystallography trained on synthetic data. Acta Crystallogr D Struct Biol 2024; 80:26-43. [PMID: 38164955 PMCID: PMC10833344 DOI: 10.1107/s2059798323010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.
Collapse
Affiliation(s)
- Derek Mendez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158, USA
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sabine Hollatz
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aleksander Cichosz
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Vardan Martirosyan
- Department of Mathematics, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Teo Zeng
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ryan Stofer
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ruobin Liu
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mike Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
11
|
Nguyen RC, Davis I, Dasgupta M, Wang Y, Simon PS, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim IS, Zhou T, Mendez D, Paley D, Fuller F, Alonso-Mori R, Batyuk A, Sauter NK, Brewster AS, Orville AM, Yachandra VK, Yano J, Kern JF, Liu A. In Situ Structural Observation of a Substrate- and Peroxide-Bound High-Spin Ferric-Hydroperoxo Intermediate in the P450 Enzyme CYP121. J Am Chem Soc 2023; 145:25120-25133. [PMID: 37939223 PMCID: PMC10799213 DOI: 10.1021/jacs.3c04991] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Daniel Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jan F. Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| |
Collapse
|
12
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
13
|
Redhair M, Nath A, Hackett JC, Atkins WM. Low molecular weight ligands bind to CYP3A4 via a branched induced fit mechanism: Implications for O 2 binding. Arch Biochem Biophys 2023; 739:109582. [PMID: 36948348 PMCID: PMC10103683 DOI: 10.1016/j.abb.2023.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Michelle Redhair
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA
| | - John C Hackett
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - William M Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA.
| |
Collapse
|
14
|
Abstract
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme-substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme-substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
15
|
Campomizzi CS, Ghanatios GE, Estrada DF. 19F-NMR reveals substrate specificity of CYP121A1 in Mycobacterium tuberculosis. J Biol Chem 2021; 297:101287. [PMID: 34634307 PMCID: PMC8571521 DOI: 10.1016/j.jbc.2021.101287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochromes P450 are versatile enzymes that function in endobiotic and xenobiotic metabolism and undergo meaningful structural changes that relate to their function. However, the way in which conformational changes inform the specific recognition of the substrate is often unknown. Here, we demonstrate the utility of fluorine (19F)-NMR spectroscopy to monitor structural changes in CYP121A1, an essential enzyme from Mycobacterium tuberculosis. CYP121A1 forms functional dimers that catalyze the phenol-coupling reaction of the dipeptide dicyclotyrosine. The thiol-reactive compound 3-bromo-1,1,1-trifluoroacetone was used to label an S171C mutation of the enzyme FG loop, which is located adjacent to the homodimer interface. Substrate titrations and inhibitor-bound 19F-NMR spectra indicate that ligand binding reduces conformational heterogeneity at the FG loop in both the dimer and in an engineered monomer of CYP121A1. However, only the dimer was found to promote a substrate-bound conformation that was preexisting in the substrate-free spectra, thus confirming a role for the dimer interface in dicyclotyrosine recognition. Moreover, 19F-NMR spectra in the presence of substrate analogs indicate the hydrogen-bonding feature of the dipeptide aromatic side chain as a dicyclotyrosine specificity criterion. This study demonstrates the utility of 19F-NMR as applied to a multimeric cytochrome P450, while also revealing mechanistic insights for an essential M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - George E Ghanatios
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
16
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Tapiwa Chiura
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Ankita J. Sachla
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Francis Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Piotr J. Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
17
|
Surface hydrophobics mediate functional dimerization of CYP121A1 of Mycobacterium tuberculosis. Sci Rep 2021; 11:394. [PMID: 33431984 PMCID: PMC7801616 DOI: 10.1038/s41598-020-79545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) and remains the leading cause of death by infection world-wide. The Mtb genome encodes a disproportionate number of twenty cytochrome P450 enzymes, of which the essential enzyme cytochrome P450 121A1 (CYP121A1) remains a target of drug design efforts. CYP121A1 mediates a phenol coupling reaction of the tyrosine dipeptide cyclo-L-Tyr-L-Tyr (cYY). In this work, a structure and function investigation of dimerization was performed as an overlooked feature of CYP121A1 function. This investigation showed that CYP121A1 dimers form via intermolecular contacts on the distal surface and are mediated by a network of solvent-exposed hydrophobic residues. Disruption of CYP121A1 dimers by site-directed mutagenesis leads to a partial loss of specificity for cYY, resulting in an approximate 75% decrease in catalysis. 19F labeling and nuclear magnetic resonance of the enzyme FG-loop was also combined with protein docking to develop a working model of a functional CYP121A1 dimer. The results obtained suggest that participation of a homodimer interface in substrate selectivity represents a novel paradigm of substrate binding in CYPs, while also providing important mechanistic insight regarding a relevant drug target in the development of novel anti-tuberculosis agents.
Collapse
|
18
|
Shanmugam M, Quareshy M, Cameron AD, Bugg TDH, Chen Y. Light-Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske-Type Oxygenase from Human Microbiota. Angew Chem Int Ed Engl 2020; 60:4529-4534. [PMID: 33180358 PMCID: PMC7986066 DOI: 10.1002/anie.202012381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Oxidation of quaternary ammonium substrate, carnitine by non‐heme iron containing Acinetobacter baumannii (Ab) oxygenase CntA/reductase CntB is implicated in the onset of human cardiovascular disease. Herein, we develop a blue‐light (365 nm) activation of NADH coupled to electron paramagnetic resonance (EPR) measurements to study electron transfer from the excited state of NADH to the oxidized, Rieske‐type, [2Fe‐2S]2+ cluster in the AbCntA oxygenase domain with and without the substrate, carnitine. Further electron transfer from one‐electron reduced, Rieske‐type [2Fe‐2S]1+ center in AbCntA‐WT to the mono‐nuclear, non‐heme iron center through the bridging glutamate E205 and subsequent catalysis occurs only in the presence of carnitine. The electron transfer process in the AbCntA‐E205A mutant is severely affected, which likely accounts for the significant loss of catalytic activity in the AbCntA‐E205A mutant. The NADH photo‐activation coupled with EPR is broadly applicable to trap reactive intermediates at low temperature and creates a new method to characterize elusive intermediates in multiple redox‐centre containing proteins.
Collapse
Affiliation(s)
- Muralidharan Shanmugam
- Manchester Institute of Biotechnology (MIB) & Photon Science Institute (PSI), University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Alexander D Cameron
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
19
|
Shanmugam M, Quareshy M, Cameron AD, Bugg TDH, Chen Y. Light‐Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske‐Type Oxygenase from Human Microbiota. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muralidharan Shanmugam
- Manchester Institute of Biotechnology (MIB) & Photon Science Institute (PSI) University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mussa Quareshy
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Alexander D. Cameron
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Timothy D. H. Bugg
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Yin Chen
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
20
|
Anti-Tubercular Properties of 4-Amino-5-(4-Fluoro-3- Phenoxyphenyl)-4 H-1,2,4-Triazole-3-Thiol and Its Schiff Bases: Computational Input and Molecular Dynamics. Antibiotics (Basel) 2020; 9:antibiotics9090559. [PMID: 32878018 PMCID: PMC7560126 DOI: 10.3390/antibiotics9090559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin microtiter assay (REMA) plate method. Test compound 1 exhibited promising anti-TB activity against H37Rv and MDR strains of MTB at 5.5 µg/mL and 11 µg/mL, respectively. An attempt to identify the suitable molecular target for compound 1 was performed using a set of triazole thiol cellular targets, including β-ketoacyl carrier protein synthase III (FABH), β-ketoacyl ACP synthase I (KasA), CYP121, dihydrofolate reductase, enoyl-acyl carrier protein reductase, and N-acetylglucosamine-1-phosphate uridyltransferase. MTB β-ketoacyl ACP synthase I (KasA) was identified as the cellular target for the promising anti-TB parent compound 1 via docking and molecular dynamics simulation. MM(GB/PB)SA binding free energy calculation revealed stronger binding of compound 1 compared with KasA standard inhibitor thiolactomycin (TLM). The inhibitory mechanism of test compound 1 involves the formation of hydrogen bonding with the catalytic histidine residues, and it also impedes access of fatty-acid substrates to the active site through interference with α5–α6 helix movement. Test compound 1-specific structural changes at the ALA274–ALA281 loop might be the contributing factor underlying the stronger anti-TB effect of compound 1 when compared with TLM, as it tends to adopt a closed conformation for the access of malonyl substrate to its binding site.
Collapse
|
21
|
Wang Y, Davis I, Chan Y, Naik SG, Griffith WP, Liu A. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J Biol Chem 2020; 295:11789-11802. [PMID: 32601061 DOI: 10.1074/jbc.ra120.013915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Cysteamine dioxygenase (ADO) has been reported to exhibit two distinct biological functions with a nonheme iron center. It catalyzes oxidation of both cysteamine in sulfur metabolism and N-terminal cysteine-containing proteins or peptides, such as regulator of G protein signaling 5 (RGS5). It thereby preserves oxygen homeostasis in a variety of physiological processes. However, little is known about its catalytic center and how it interacts with these two types of primary substrates in addition to O2 Here, using electron paramagnetic resonance (EPR), Mössbauer, and UV-visible spectroscopies, we explored the binding mode of cysteamine and RGS5 to human and mouse ADO proteins in their physiologically relevant ferrous form. This characterization revealed that in the presence of nitric oxide as a spin probe and oxygen surrogate, both the small molecule and the peptide substrates coordinate the iron center with their free thiols in a monodentate binding mode, in sharp contrast to binding behaviors observed in other thiol dioxygenases. We observed a substrate-bound B-type dinitrosyl iron center complex in ADO, suggesting the possibility of dioxygen binding to the iron ion in a side-on mode. Moreover, we observed substrate-mediated reduction of the iron center from ferric to the ferrous oxidation state. Subsequent MS analysis indicated corresponding disulfide formation of the substrates, suggesting that the presence of the substrate could reactivate ADO to defend against oxidative stress. The findings of this work contribute to the understanding of the substrate interaction in ADO and fill a gap in our knowledge of the substrate specificity of thiol dioxygenases.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, Texas, USA.,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Yan Chan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Sunil G Naik
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | | | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, Texas, USA .,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Nguyen RC, Yang Y, Wang Y, Davis I, Liu A. Substrate-Assisted Hydroxylation and O-Demethylation in the Peroxidase-like Cytochrome P450 Enzyme CYP121. ACS Catal 2020; 10:1628-1639. [PMID: 32391185 DOI: 10.1021/acscatal.9b04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CYP121 is a P450 enzyme from Mycobacterium tuberculosis that catalyzes a C-C coupling reaction between the two aromatic rings on its native substrate cyclo(l-Tyr-l-Tyr) (cYY) to form mycocyclosin, a necessary product for cell survival. Unlike the typical P450 enzymes for hydroxylation, CYP121 is believed to behave like a peroxidase and conduct radical-mediated C-C bond formation. Here, we probe whether the phenolic hydrogen of the substrate is the site of the postulated hydrogen atom abstraction for radical formation. We synthesized a singly O-methylated substrate analogue, cYF-4-OMe, and characterized its interaction with CYP121 by ultraviolet-visible and electron paramagnetic resonance spectroscopies and X-ray crystallography. We found that cYF-4-OMe can function as a substrate of CYP121 using the established assay via the peroxide shunt. Analysis of the enzymatic reaction revealed an O-demethylation of cYF-4-OMe instead of cyclization, yielding cYY and formaldehyde. A hydroxylated substrate, cYF-4-OMeOH, is expected to be the intermediate product, which was trapped and structurally characterized by X-ray crystallography. We further determined that the deformylation reaction of cYF-4-OMeOH proceeds via an alkyl-oxygen rather than aryl-oxygen bond cleavage by the 18O-labeling studies. Finally, the pH dependence catalytic study on the native substrate and the methoxy analogue further supports the mechanistic understanding that the hydrogen atom abstraction is the critical first oxidation step exerted by a heme-based oxidant during the cyclization reaction of cYY. The switch in catalytic activity reveals the power of CYP121 as a P450 enzyme and provides insight into the peroxidase-like catalytic mechanism.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yu Yang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
23
|
Multiple drug binding modes in Mycobacterium tuberculosis CYP51B1. J Inorg Biochem 2020; 205:110994. [PMID: 31982812 DOI: 10.1016/j.jinorgbio.2020.110994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) genome encodes 20 different cytochrome P450 enzymes (CYPs), many of which serve essential biosynthetic roles. CYP51B1, the Mtb version of eukaryotic sterol demethylase, remains a potential therapeutic target. The binding of three drug fragments containing nitrogen heterocycles to CYP51B1 is studied here by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) techniques to determine how each drug fragment binds to the heme active-site. All three drug fragments form a mixture of complexes, some of which retain the axial water ligand from the resting state. Hyperfine sublevel correlation spectroscopy (HYSCORE) and electron-nuclear double resonance spectroscopy (ENDOR) observe protons of the axial water and on the drug fragments that reveal drug binding modes. Binding in CYP51B1 is complicated by the presence of multiple binding modes that coexist in the same solution. These results aid our understanding of CYP-inhibitor interactions and will help guide future inhibitor design.
Collapse
|
24
|
Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, Liu A. Biocatalytic Carbon-Hydrogen and Carbon-Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme. ACS Catal 2019; 9:4764-4776. [PMID: 31355048 DOI: 10.1021/acscatal.9b00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LmbB2 is a peroxygenase-like enzyme that hydroxylates L-tyrosine to L-3,4-dihydroxyphenylalanine (DOPA) in the presence of hydrogen peroxide. However, its heme cofactor is ligated by a proximal histidine, not cysteine. We show that LmbB2 can oxidize L-tyrosine analogs with ring-deactivated substituents such as 3-nitro-, fluoro-, chloro-, iodo-L-tyrosine. We also found that the 4-hydroxyl group of the substrate is essential for reacting with the heme-based oxidant and activating the aromatic C-H bond. The most interesting observation of this study was obtained with 3-fluoro-L-tyrosine as a substrate and mechanistic probe. The LmbB2-mediated catalytic reaction yielded two hydroxylated products with comparable populations, i.e., oxidative C-H bond cleavage at C5 to generate 3-fluoro-5-hydroxyl-L-tyrosine and oxygenation at C3 concomitant with a carbon-fluorine bond cleavage to yield DOPA and fluoride. An iron protein-mediated hydroxylation on both C-H and C-F bonds with multiple turnovers is unprecedented. Thus, this finding reveals a significant potential of biocatalysis in C-H/C-X bond (X = halogen) cleavage. Further 18O-labeling results suggest that the source of oxygen for hydroxylation is a peroxide, and that a commonly expected oxidation by a high-valent iron intermediate followed by hydrolysis is not supported for the C-F bond cleavage. Instead, the C-F bond cleavage is proposed to be initiated by a nucleophilic aromatic substitution mediated by the iron-hydroperoxo species. Based on the experimental results, two mechanisms are proposed to explain how LmbB2 hydroxylates the substrate and cleaves C-H/C-F bond. This study broadens the understanding of heme enzyme catalysis and sheds light on enzymatic applications in medicinal and environmental fields.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Daniel J. Wherritt
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Keri L. Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
26
|
Lockart MM, Rodriguez CA, Atkins WM, Bowman MK. CW EPR parameters reveal cytochrome P450 ligand binding modes. J Inorg Biochem 2018. [PMID: 29530595 DOI: 10.1016/j.jinorgbio.2018.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H2O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR.
Collapse
Affiliation(s)
- Molly M Lockart
- Department of Chemistry and Biochemistry, Box 870336, University of Alabama, Tuscaloosa, AL 35487-0336, United States
| | - Carlo A Rodriguez
- Department of Chemistry and Biochemistry, Box 870336, University of Alabama, Tuscaloosa, AL 35487-0336, United States
| | - William M Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, United States
| | - Michael K Bowman
- Department of Chemistry and Biochemistry, Box 870336, University of Alabama, Tuscaloosa, AL 35487-0336, United States.
| |
Collapse
|