1
|
Park JY, Baek D, Min H, Yeom B, Ha JS, Kim Y. Aromatic Anion Carrier via Self-Assembly with Imidazolium-Fused Aromatic Amphiphiles. PRECISION CHEMISTRY 2025; 3:214-220. [PMID: 40313857 PMCID: PMC12042134 DOI: 10.1021/prechem.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 05/03/2025]
Abstract
The transport of anions across cell membranes is difficult because of the negatively charged outer surfaces of cell membranes. To overcome this limitation, herein, we report a system for transporting aromatic anions across cellular membranes via self-assembly using a synthetic imidazolium-fused aromatic amphiphile. The amphiphile with cationic and aromatic groups in close proximity to each other could interact with anionic pyranine via electrostatic and aromatic interactions to form supramolecular vesicles. Supramolecular vesicles based on the synthetic imidazolium-fused aromatic amphiphile and pyranine complex transport anionic aromatic pyranine across the membranes of live MCF-7 cells without cytotoxicity.
Collapse
Affiliation(s)
- Jung Yeon Park
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Dongjun Baek
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Hyunggeun Min
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Bongjun Yeom
- Department
of Chemical Engineering, Hanyang University, Seoul 24763, Republic of Korea
| | - Jeong Sook Ha
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Yongju Kim
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
- Department
of Integrative Energy Engineering, Korea
University, Seoul 02841, Republic of Korea
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Li L, Yao X, Li G, Guo Q, Yue J, Liu W, Fang Y, Midgley A, Zhao M, Nishinari K. Recent progress of artificial cells in structure design, functionality and the prospects in food biotechnology. Mater Today Bio 2025; 31:101565. [PMID: 40026621 PMCID: PMC11869102 DOI: 10.1016/j.mtbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Artificial cells have bridged the gap between non-living systems and biological cells. In recent years, artificial cells designed to simulate cellular structure and function have garnered significant attention. These artificial cells demonstrate vast potential for advancements in various biomedical areas, including simulating cell structure and function, creating innovative biosensors, facilitating bioactives transport, enabling micro and nanoreactors, and improving the targeted therapy for chronic foodborne diseases. In the interdisciplinary field of artificial cell construction, based on their constituent components, these systems can be categorized into lipid/polymer vesicles, coacervate, colloidosome, and metal-organic framework (MOF) artificial cells. They are anticipated to significantly enhance advancements in food science, particularly in cellular structure optimization, precise nutrition delivery, targeted nutrient release, and rapid detection methods. Consequently, this paper will comprehensively cover the historical background, fabrication techniques, and structural characteristics of artificial cells. From a functional design perspective, this review examines the growth and division mechanisms, energy production processes, encapsulation and reaction vessels, carriers, and information exchange systems of artificial cells. Ultimately, it provides a comprehensive evaluation of the safety of artificial cells from both biological and environmental viewpoints, to introduce and expand the application scenarios of this innovative biotechnology in food science.
Collapse
Affiliation(s)
- Li Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Qianqian Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Juan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wenguang Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
3
|
Wu Y, Xu Q, Chen Y, Li C, Wu Y, Yu X, Li H, Xu Z, Xu J, Ni Z, Ge Y, Yan T, Qi Z, Liu J. Mechanosensitive and pH-Gated Butterfly-Shaped Artificial Ion Channel for High-Selective K + Transport and Cancer Cell Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416852. [PMID: 39981913 DOI: 10.1002/adma.202416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/10/2025] [Indexed: 02/22/2025]
Abstract
To advance the exploration of mechanisms underlying natural multi-gated ion channels, a novel butterfly-shaped biomimetic K+ channel GnC7 (n = 3, 4) is developed with dual mechanical and pH responsiveness, exhibiting unprecedented K+/Na+ selectivity (G3C7: 34.4; G4C7: 41.3). These channels constructed from poly(propylene imine) dendrimer and benzo-21-crown-7-ethers achieve high K+ transport activity (EC50: 0.72 µm for G3C7; 0.9 µm for G4C7) due to their arc-like mechanical rotation. The dynamic mode relies on butterfly-shaped topology derived from the highly symmetrical core and multiple intramolecular hydrogen bonds. GnC7 can sense mechanical stimulus applied to liposomes/cells and then adapt the K+ transport rate accordingly. Furthermore, reversible ON/OFF switching of K+ transport is realized through the pH-controllable host-guest complexation. G4C7-induced ultrafast cellular K+ efflux (70% within only 9 min) efficiently triggers mitochondrial-dependent apoptosis of cancer cells by provoking endoplasmic reticulum stress accompanied by drastic Ca2+ sparks. This work embodies a multi-dimensional regulation of channel functions; it will provide insights into the dynamic behaviors of biological analogs and promote the innovative design of artificial ion channels and therapeutic agents.
Collapse
Affiliation(s)
- Yaqi Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiangqiang Xu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaoxuan Chen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Cong Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanliang Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaoxuan Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junqiu Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
4
|
Jia C, Luo D, Zhou J, Xie X, Yuen In Lam H, Li P, Mu Y, Zeng Z, Ren C. Engineered Reactive Oxygen Species (ROS)-Responsive Artificial H +/Cl - Ion Channels for Targeted Cancer Treatment. Angew Chem Int Ed Engl 2025; 64:e202419800. [PMID: 39620598 DOI: 10.1002/anie.202419800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Reactive oxygen species (ROS)-responsive ion channels regulate the ion flow across the membranes in response to alterations in the cellular redox state, playing a crucial role in cellular adaptation to oxidative stress. Despite their significance, replicating ROS-responsive functionality in artificial ion channels remains elusive. In this study, we introduce a novel class of artificial H+/Cl- ion channels activatable by elevated ROS levels in cancer cells. ROS-induced decaging of the phenylboronate group triggers the rapid release of the channel-forming units, leading to self-assembly of the H-bonded cascades facilitating the synergistic transport of H+ and Cl- ions, with H+/Cl- ion transport selectivity of 7.7. Upon activation, ROS-C-Cl exhibits significant apoptotic activity against human breast cancer cells, achieving an IC50 of 2.8 μM, comparable to that of paclitaxel. Exploiting the intrinsic oxidative microenvironment of cancer cells, along with the enhanced oxidative stress arising from H+/Cl- co-transport, ROS-C-Cl demonstrates exceptional selectivity in targeting cancer cells with a selectivity index of 10.2 over normal breast cells, outperforming that of paclitaxel by 19.4 folds.
Collapse
Affiliation(s)
- Chunyan Jia
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Daoxin Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Jin Zhou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Pengzhe Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhiping Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| |
Collapse
|
5
|
Yan T, Liu J. Transmembrane Ion Channels: From Natural to Artificial Systems. Angew Chem Int Ed Engl 2025; 64:e202416200. [PMID: 39545394 DOI: 10.1002/anie.202416200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/17/2024]
Abstract
Natural channel proteins allow the selective permeation of ions, water or other nutritious entities across bilayer membranes, facilitating various essential physiological functions in living systems. Inspired by nature, chemists endeavor to simulate the structural features and transport behaviors of channel proteins through biomimetic strategies. In this review, we start from introducing the inherent traits of channel proteins such as their crystal structures, functions and mechanisms. Subsequently, different kind of synthetic ion channels including their design principles, dynamic regulations and therapeutic applications were carefully reviewed. Finally, the potential challenges and opportunities in this research field were also carefully discussed. It is anticipated that this review could provide some inspiring ideas and future directions towards the construction of novel bionic ion channels with higher-level structures, properties, functions and practical applications.
Collapse
Affiliation(s)
- Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
6
|
Liu S, Guo Y, Gong Y, Wei Y, Hu Q, Yu L. Hydrodynamic Fluidic Pump Empowered Sensitive Recognition and Active Transport of Hydrogen Peroxide in 1D Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408755. [PMID: 39527459 PMCID: PMC11714159 DOI: 10.1002/advs.202408755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Through synthetic chemistry, the development of molecular devices for the precise selective recognition and active transport of small molecules stands as one of the most ambitious objectives in extensive medical, environmental, and biological applications. The periodical channels of the metal-organic frameworks (MOFs) with excellent chemical affinity offer vast regulatory space for reaching this goal. Herein, by post-modifying fluorescent probes and ionic liquid molecules into the Zr-MOFs (NU-1000), a donor-acceptor (D-A) system within the periodical 1D channels is created to construct a hydrodynamic fluidic pump within the abundant 1D channels. Irradiation with light serves to initiate and direct fluid motion, expediting the transport of H2O2 molecules to the active site, thus boosting the sensor sensitivity through gas enrichment. The rapid mass transfer, characterized by a high flow rate and intensified interaction between the D-A system and H2O2 molecules, enables the detection of H2O2 at concentrations as low as 20 ppb. Besides, with the aid of incident light, the pump system exhibits active transport characteristics by transporting radicals derived from H2O2 against a concentration gradient, reaching a remarkable 10th cycle. The strategy of achieving active transport of small molecules through pore modification holds promise for advancing the development of artificial bioactive channels.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Yongxian Guo
- Qilu University of Technology (Shandong Academy of Sciences)Shandong Analysis and Test CenterJinan250014China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Yanze Wei
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences)Shandong Analysis and Test CenterJinan250014China
| | - Li Yu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| |
Collapse
|
7
|
Chinner K, Grabicki N, Hamaguchi R, Ikeguchi M, Kinbara K, Toyoda S, Sato K, Dumele O. Nanohoops in membranes: confined supramolecular spaces within phospholipid bilayer membranes. Chem Sci 2024:d4sc03408b. [PMID: 39309096 PMCID: PMC11409858 DOI: 10.1039/d4sc03408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Nanohoops, an exciting class of fluorophores with supramolecular binding abilities, have the potential to become innovative tools within biological imaging and sensing. Given the biological importance of cell membranes, incorporation of macrocyclic materials with the dual capability of fluorescence emission and supramolecular complexation would be particularly interesting. A series of different-sized nanohoops-ethylene glycol-decorated [n]cyclo-para-pyrenylenes (CPYs) (n = 4-8)-were synthesised via an alternate synthetic route which implements a stannylation-based precursor, producing purer material than the previous borylation approach, enabling the growth of single-crystals of the Pt-macrocycle. Reductive elimination of these single-crystals achieved significantly higher selectivity and yields towards smaller ring-sized nanohoops (n = 4-6). The supramolecular binding capabilities of these CPYs were then explored through host-guest studies with a series of polycyclic (aromatic)hydrocarbons, revealing the importance of molecular size, shape, and CH-π contacts for efficient binding. CPYs were incorporated within the hydrophobic layer of lipid bilayer membranes, as confirmed by microscopic imaging and emission spectroscopy, which also demonstrated the size-preferential incorporation of the five-fold nanohoop. Molecular dynamics simulations revealed the position and orientation within the membrane, as well as the unique non-covalent threading interaction between nanohoop and phospholipid.
Collapse
Affiliation(s)
- Kylie Chinner
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Niklas Grabicki
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Rei Hamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University Yokohama Kanagawa 230-0045 Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
- Research Center for Autonomous SystemMaterialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8501 Japan
| | - Sayaka Toyoda
- Department of Chemistry, School of Science 1 Gakuen Uegahara Sanda-shi Hyogo 669-1330 Japan https://www.ksatolab.net
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
- Department of Chemistry, School of Science 1 Gakuen Uegahara Sanda-shi Hyogo 669-1330 Japan https://www.ksatolab.net
| | - Oliver Dumele
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
- Institute of Organic Chemistry, University of Freiburg Albertstr. 21 Freiburg 79104 Germany https://www.dumelelab.com
| |
Collapse
|
8
|
Lin Y, Wu B, Zeng Y, Yuan H, Ji C, Liu Z, Sui Y, Yin T, Kong X, Zhu Y, Chen J, Lang C. Artificial Channels Based on Bottlebrush Polymers: Enhanced Ion Transport Through Polymer Topology Control. Angew Chem Int Ed Engl 2024; 63:e202408558. [PMID: 38842471 DOI: 10.1002/anie.202408558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.
Collapse
Affiliation(s)
- Yangyang Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bei Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | | | - Haoxuan Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Changxing Ji
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ziqi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yan Sui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuting Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jie Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Pamungkas KKP, Fureraj I, Assies L, Sakai N, Mercier V, Chen XX, Vauthey E, Matile S. Core-Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes. Angew Chem Int Ed Engl 2024; 63:e202406204. [PMID: 38758302 DOI: 10.1002/anie.202406204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.
Collapse
Affiliation(s)
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Shi L, Zhao W, Jiu Z, Guo J, Zhu Q, Sun Y, Zhu B, Chang J, Xin P. Redox-Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion-Permeation Pathway. Angew Chem Int Ed Engl 2024; 63:e202403667. [PMID: 38407803 DOI: 10.1002/anie.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Natural redox-regulated channel proteins often utilize disulfide bonds as redox sensors for adaptive regulation of channel conformations in response to diverse physiological environments. In this study, we developed novel synthetic ion channels capable of reversibly switching their ion-transport capabilities by incorporating multiple disulfide bonds into artificial systems. X-ray structural analysis and electrophysiological experiments demonstrated that these disulfide-bridged molecules possess well-defined tubular cavities and can be efficiently inserted into lipid bilayers to form artificial ion channels. More importantly, the disulfide bonds in these molecules serve as redox-tunable switches to regulate the formation and disruption of ion-permeation pathways, thereby achieving a transition in the transmembrane transport process between the ON and OFF states.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wen Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhihui Jiu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
11
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
12
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
13
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Yoda T. Direct Observation of Cell‐sized Liposomes Containing a Functional Polyphenol Procyanidin B2 from Apple. ChemistrySelect 2022. [DOI: 10.1002/slct.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tsuyoshi Yoda
- Hirosaki Industrial Research Institute Aomori Prefectural Industrial Technology Research Center 1-1-8 Ougi-machi Hirosaki City, Aomori 036-8104 Japan
- Hachinohe Industrial Research Institute Aomori Prefectural Industrial Technology Research Center 1-4-43 Kita-inter-kogyodanchi Hachinohe City, Aomori 039-2245 Japan
- The United Graduate School of Agricultural Sciences Iwate University 3-18-8, Ueda Morioka City, Iwate 020-8550 Japan
| |
Collapse
|
15
|
Qiao D, Chen Y, Tan H, Zhou R, Feng J. De novo design of transmembrane nanopores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Yoda T. The Flavonoid Molecule Procyanidin Reduces Phase Separation in Model Membranes. MEMBRANES 2022; 12:943. [PMID: 36295702 PMCID: PMC9609489 DOI: 10.3390/membranes12100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Procyanidin extracted from fruits, such as apples, has been shown to improve lipid metabolization. Recently, studies have revealed that procyanidin interacts with lipid molecules in membranes to enhance lipid metabolism; however, direct evidence of the interaction between procyanidin and lipid membranes has not been demonstrated. In this study, the phase behaviors and changes in the membrane fluidity of cell-sized liposomes containing apple procyanidin, procyanidin B2 (PB2), were demonstrated for the first time. Phase separation in 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol ternary membranes significantly decreased after the addition of PB2. The prospect of applying procyanidin content measurements, using the results of this study, to commercial apple juice was also assessed. Specifically, the PB2 concentrations were 50%, 33%, and 0% for pure apple juice, 2-fold diluted apple juice, and pure water, respectively. The results of the actual juice were correlated with PB2 concentrations and phase-separated liposomes ratios, as well as with the results of experiments involving pure chemicals. In conclusion, the mechanism through which procyanidin improves lipid metabolism through the regulation of membrane fluidity was established.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Hachinohe Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 1-4-43 Kita-inter-kogyodanchi, Hachinohe City 039-2245, Japan; ; Tel.: +81-178-21-2100
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka City 020-8550, Japan
| |
Collapse
|
17
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Bickerton LE, Langton MJ. Controlling transmembrane ion transport via photo-regulated carrier mobility. Chem Sci 2022; 13:9531-9536. [PMID: 36091898 PMCID: PMC9400602 DOI: 10.1039/d2sc03322d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Stimuli-responsive transmembrane ion carriers allow for targeted and controllable transport activity, with potential applications as therapeutics for channelopathies and cancer, and in fundamental studies into ion transport phenomena. These applications require OFF-ON activation from a fully inactive state which does not exhibit background activity, but this remains challenging to achieve with synthetic transport systems. Here we introduce a novel mechanism for photo-gating mobile ion carriers, which involves modulating the mobility of the carriers within the lipid bilayer membrane. By appending a membrane-targeting anchor to the carrier using a photo-cleavable linker, the carrier's ion transport activity is fully switched off by suppressing its ability to shuttle between the two aqueous-membrane interfaces of the bilayer. The system can be reactivated rapidly in situ within the membrane by photo-triggered cleavage of the anchor to release the mobile ion carrier. This approach does not involve direct functionalization of the ion binding site of the carrier, and so does not require the de novo design of novel ion binding motifs to implement the photo-caging of activity. This work demonstrates that controlling the mobility of artificial transport systems enables precise control over activity, opening up new avenues for spatio-temporally targeted ionophores.
Collapse
Affiliation(s)
- Laura E Bickerton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
19
|
Sato K, Sasaki R, Matsuda R, Nakagawa M, Ekimoto T, Yamane T, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. J Am Chem Soc 2022; 144:11802-11809. [PMID: 35727684 DOI: 10.1021/jacs.2c04118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inspired by mechanosensitive potassium channels found in nature, we developed a fluorinated amphiphilic cyclophane composed of fluorinated rigid aromatic units connected via flexible hydrophilic octa(ethylene glycol) chains. Microscopic and emission spectroscopic studies revealed that the cyclophane could be incorporated into the hydrophobic layer of the lipid bilayer membranes and self-assembled to form a supramolecular transmembrane ion channel. Current recording measurements using cyclophane-containing planer lipid bilayer membranes successfully demonstrated an efficient transmembrane ion transport. We also demonstrated that the ion transport property was sensitive to the mechanical forces applied to the membranes. In addition, ion transport assays using pH-sensitive fluorescence dye revealed that the supramolecular channel possesses potassium ion selectivity. We also performed all-atom hybrid quantum-mechanical/molecular mechanical simulations to assess the channel structures at atomic resolution and the mechanism of selective potassium ion transport. This research demonstrated the first example of a synthetic mechanosensitive potassium channel, which would open a new door to sensing and manipulating biologically important processes and purification of key materials in industries.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryoto Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mayuko Nakagawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
20
|
Johnson TG, Sadeghi-Kelishadi A, Langton MJ. A Photo-responsive Transmembrane Anion Transporter Relay. J Am Chem Soc 2022; 144:10455-10461. [PMID: 35652660 PMCID: PMC9204766 DOI: 10.1021/jacs.2c02612] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 01/17/2023]
Abstract
Ion transport across lipid membranes in biology is controlled by stimuli-responsive membrane channels and molecular machine ion pumps such as ATPases. Here, we report a synthetic molecular machine-like ion transport relay, in which transporters on opposite sides of a lipid bilayer membrane facilitate transport by passing ions between them. By incorporating a photo-responsive telescopic arm into the relay design, this process is reversibly controlled in response to irradiation with blue and green light. Transport occurs only in the extended state when the length of the arm is sufficient to pass the anion between transporters located on opposite sides of the membrane. In contrast, the contracted state of the telescopic arm is too short to mediate effective transport. The system acts as a stimuli-responsive ensemble of machine-like components, reminiscent of robotic arms in a factory assembly line, working cooperatively to mediate ion transport. This work points to new prospects for using lipid bilayer membranes as scaffolds for confining, orientating, and controlling the relative positions of molecular machines, thus enabling multiple components to work in concert and opening up new applications in biological contexts.
Collapse
Affiliation(s)
- Toby G. Johnson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Matthew J. Langton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
21
|
Humeniuk H, Gini A, Hao X, Coelho F, Sakai N, Matile S. Pnictogen-Bonding Catalysis and Transport Combined: Polyether Transporters Made In Situ. JACS AU 2021; 1:1588-1593. [PMID: 34723261 PMCID: PMC8549043 DOI: 10.1021/jacsau.1c00345] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 05/16/2023]
Abstract
The combination of catalysis and transport across lipid bilayer membranes promises directional access to a solvent-free and structured nanospace that could accelerate, modulate, and, at best, enable new chemical reactions. To elaborate on these expectations, anion transport and catalysis with pnictogen and tetrel bonds are combined with polyether cascade cyclizations into bioinspired cation transporters. Characterized separately, synergistic anion and cation transporters of very high activity are identified. Combined for catalysis in membranes, cascade cyclizations are found to occur with a formal rate enhancement beyond one million compared to bulk solution and product formation is detected in situ as an increase in transport activity. With this operational system in place, intriguing perspectives open up to exploit all aspects of this unique nanospace for important chemical transformations.
Collapse
|
22
|
Sato K, Muraoka T, Kinbara K. Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles. Acc Chem Res 2021; 54:3700-3709. [PMID: 34496564 DOI: 10.1021/acs.accounts.1c00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transmembrane proteins located within biological membranes play a crucial role in a variety of important cellular processes, such as energy conversion and signal transduction. Among them, ion channel proteins that can transport specific ions across the biological membranes are particularly important for achieving precise control over those processes. Strikingly, approximately 20% of currently approved drugs are targeted to ion channel proteins within membranes. Thus, synthetic molecules that can mimic the functions of natural ion channel proteins would possess great potential in the sensing and manipulation of biologically important processes, as well as in the purification of key industrial materials.Inspired by the sophisticated structures and functions of natural ion channel proteins, our research group developed a series of multiblock amphiphiles (MAs) composed of a repetitive sequence of flexible hydrophilic oligo(ethylene glycol) chains and rigid hydrophobic oligo(phenylene-ethynylene) units. These MAs can be effectively incorporated into the hydrophobic layer of lipid bilayer membranes and adopt folded conformations, with their hydrophobic units stacked in a face-to-face configuration. Moreover, the folded MAs can self-assemble within the membranes and form supramolecular nanopores that can transport ions across the membranes. In these studies, we focused on the structural flexibility of the MAs and decided to design new molecules able to respond to various external stimuli in order to control their transmembrane ion transport properties. For this purpose, we developed new MAs incorporating sterically bulky groups within their hydrophobic units and demonstrated that their transmembrane ion transport properties could be controlled via mechanical forces applied to the membranes. Moreover, we developed MAs incorporating phosphate ester groups that functioned as ligand-binding sites at the boundary between hydrophilic and hydrophobic units and found that these MAs exhibited transmembrane ion transport properties upon binding with aromatic amine ligands, even within the biological membranes of living cells. We further modified the hydrophobic units of the MAs with fluorine atoms and demonstrated their voltage-responsive transmembrane ion transport properties. These molecular design principles were extended to the development of a transmembrane anion transporter whose transport mechanism was studied by all-atom molecular dynamics simulations.This Account describes the basic principles of the molecular designs of MAs, the characterization of their self-assembled structures within a lipid bilayer, and their transmembrane ion transport properties, including their responsiveness to stimuli. Finally, we discuss future perspectives on the manipulation of biological processes based on the characteristic features of MAs.
Collapse
Affiliation(s)
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2−24−16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | |
Collapse
|
23
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
24
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
25
|
Domene C, Ocello R, Masetti M, Furini S. Ion Conduction Mechanism as a Fingerprint of Potassium Channels. J Am Chem Soc 2021; 143:12181-12193. [PMID: 34323472 DOI: 10.1021/jacs.1c04802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
K+-channels are membrane proteins that regulate the selective conduction of potassium ions across cell membranes. Although the atomic mechanisms of K+ permeation have been extensively investigated, previous work focused on characterizing the selectivity and occupancy of the binding sites, the role of water molecules in the conduction process, or the identification of the minimum energy pathways enabling permeation. Here, we exploit molecular dynamics simulations and the analytical power of Markov state models to perform a comparative study of ion conduction in three distinct channel models. Significant differences emerged in terms of permeation mechanisms and binding site occupancy by potassium ions and/or water molecules from 100 μs cumulative trajectories. We found that, at odds with the current paradigm, each system displays a characteristic permeation mechanism, and thus, there is not a unique way by which potassium ions move through K+-channels. The high functional diversity of K+-channels can be attributed in part to the differences in conduction features that have emerged from this work. This study provides crucial information and further inspiration for wet-lab chemists designing new synthetic strategies to produce versatile artificial ion channels that emulate membrane transport for their applications in diagnosis, sensors, the next generation of water treatment technologies, etc., as the ability of synthetic channels to transport molecular ions across a bilayer in a controlled way is usually governed through the choice of metal ions, their oxidation states, or their coordination geometries.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.,Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
26
|
Mori M, Kinbara K. Properties of Imidazolinium-containing Multiblock Amphiphile in Lipid Bilayer Membranes. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
27
|
Shimizu Y, Sato K, Kinbara K. Calcium-induced reversible assembly of phosphorylated amphiphile within lipid bilayer membranes. Chem Commun (Camb) 2021; 57:4106-4109. [PMID: 33908497 DOI: 10.1039/d1cc01111a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inspired by calcium-induced reversible assembly and disassembly of membrane proteins found in nature, here we developed a phosphorylated amphiphile (PA) that contains an oligo(phenylene-ethynylene) unit as a hydrophobic unit and a phosphate ester group as a hydrophilic calcium-binding unit. We demonstrated that PA can assemble and disassemble in a reversible manner in response to the sequential addition of calcium chloride and ethylene-diaminetetraacetic acid within the lipid bilayer membranes for the first time as a synthetic molecule.
Collapse
Affiliation(s)
- Yusuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan. and World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
28
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021; 60:12258-12263. [DOI: 10.1002/anie.202016105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
29
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
30
|
López-Andarias J, Straková K, Martinent R, Jiménez-Rojo N, Riezman H, Sakai N, Matile S. Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation. JACS AU 2021; 1:221-232. [PMID: 34467286 PMCID: PMC8395630 DOI: 10.1021/jacsau.0c00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 05/12/2023]
Abstract
To image membrane tension in selected membranes of interest (MOI) inside living systems, the field of mechanobiology requires increasingly elaborated small-molecule chemical tools. We have recently introduced HaloFlipper, i.e., a mechanosensitive flipper probe that can localize in the MOI using HaloTag technology to report local membrane tension changes using fluorescence lifetime imaging microscopy. However, the linker tethering the probe to HaloTag hampers the lateral diffusion of the probe in all the lipid domains of the MOI. For a more global membrane tension measurement in any MOI, we present here a supramolecular chemistry strategy for selective localization and controlled release of flipper into the MOI, using a genetically encoded supramolecular tag. SupraFlippers, functionalized with a desthiobiotin ligand, can selectively accumulate in the organelle having expressed streptavidin. The addition of biotin as a biocompatible external stimulus with a higher affinity for Sav triggers the release of the probe, which spontaneously partitions into the MOI. Freed in the lumen of endoplasmic reticulum (ER), SupraFlippers report the membrane orders along the secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Kinetics of the process are governed by both the probe release and the transport through lipid domains. The concentration of biotin can control the former, while the expression level of a transmembrane protein (Sec12) involved in the stimulation of the vesicular transport from ER to Golgi influences the latter. Finally, the generation of a cell-penetrating and fully functional Sav-flipper complex using cyclic oligochalcogenide (COC) transporters allows us to combine the SupraFlipper strategy and HaloTag technology.
Collapse
|
31
|
Xiao Q, Haoyang WW, Lin T, Li ZT, Zhang DW, Hou JL. Unimolecular artificial transmembrane channels showing reversible ligand-gating behavior. Chem Commun (Camb) 2021; 57:863-866. [PMID: 33439165 DOI: 10.1039/d0cc06974d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of peptide-appended bisresorcinarenes were synthesized, which adopted tubular conformation induced by intramolecular hydrogen bonds. The derivatives formed unimolecular artificial transmembrane channels in lipid bilayers to enable selective transport of monovalent cations. Importantly, the channels exhibited reversible ligand-gating behavior in response to alkyl amine and Cu2+.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Wei-Wei Haoyang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Tao Lin
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
32
|
Mori M, Sato K, Ekimoto T, Okumura S, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Imidazolinium-based Multiblock Amphiphile as Transmembrane Anion Transporter. Chem Asian J 2021; 16:147-157. [PMID: 33247535 DOI: 10.1002/asia.202001106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Indexed: 01/13/2023]
Abstract
Transmembrane anion transport is an important biological process in maintaining cellular functions. Thus, synthetic anion transporters are widely developed for their biological applications. Imidazolinium was introduced as anion recognition site to a multiblock amphiphilic structure that consists of octa(ethylene glycol) and aromatic units. Ion transport assay using halide-sensitive lucigenin and pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) revealed that imidazolinium-based multiblock amphiphile (IMA) transports anions and showed high selectivity for nitrate, which plays crucial roles in many biological events. Temperature-dependent ion transport assay using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) indicated that IMA works as a mobile carrier. 1 H NMR titration experiments indicated that the C2 proton of the imidazolinium ring recognizes anions via a (C-H)+ ⋅⋅⋅X- hydrogen bond. Furthermore, all-atom molecular dynamics simulations revealed a dynamic feature of IMA within the membranes during ion transportation.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinichi Okumura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Medical Science Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhito V Tabata
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Noji
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
33
|
Sasaki R, Sato K, Tabata KV, Noji H, Kinbara K. Synthetic Ion Channel Formed by Multiblock Amphiphile with Anisotropic Dual-Stimuli-Responsiveness. J Am Chem Soc 2021; 143:1348-1355. [DOI: 10.1021/jacs.0c09470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
34
|
Pazzi J, Subramaniam AB. Nanoscale Curvature Promotes High Yield Spontaneous Formation of Cell-Mimetic Giant Vesicles on Nanocellulose Paper. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56549-56561. [PMID: 33284582 DOI: 10.1021/acsami.0c14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, techniques for the assembly of phospholipid films into cell-like giant unilamellar vesicles (GUVs) use planar surfaces and require the application of electric fields or dissolved molecules to obtain adequate yields. Here, we present the use of nanocellulose paper, which are surfaces composed of entangled cylindrical nanofibers, to promote the facile and high yield assembly of GUVs. Use of nanocellulose paper results in up to a 100 000-fold reduction in costs while increasing yields compared to extant surface-assisted assembly techniques. Quantitative measurements of yields and the distributions of sizes using large data set confocal microscopy illuminates the mechanism of assembly. We present a thermodynamic "budding and merging", BNM, model that offers a unified explanation for the differences in the yields and sizes of GUVs obtained from surfaces of varying geometry and chemistry. The BNM model considers the change in free energy due to budding by balancing the elastic, adhesion, and edge energies of a section of a surface-attached membrane that transitions into a surface-attached spherical bud. The model reveals that the formation of GUVs is spontaneous on hydrophilic surfaces consisting of entangled cylindrical nanofibers with dimensions similar to nanocellulose fibers. This work advances understanding of the effects of surface properties on the assembly of GUVs. It also addresses practical barriers that currently impede the promising use of GUVs as vehicles for the delivery of drugs, for the manufacturing of synthetic cells, and for the assembly of artificial tissues at scale.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
35
|
Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nat Rev Chem 2020; 5:46-61. [PMID: 37118103 DOI: 10.1038/s41570-020-00233-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed.
Collapse
|
36
|
Kato T, Strakova K, García-Calvo J, Sakai N, Matile S. Mechanosensitive Fluorescent Probes, Changing Color Like Lobsters during Cooking: Cascade Switching Variations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Takehiro Kato
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Straková K, López-Andarias J, Jiménez-Rojo N, Chambers JE, Marciniak SJ, Riezman H, Sakai N, Matile S. HaloFlippers: A General Tool for the Fluorescence Imaging of Precisely Localized Membrane Tension Changes in Living Cells. ACS CENTRAL SCIENCE 2020; 6:1376-1385. [PMID: 32875078 PMCID: PMC7453570 DOI: 10.1021/acscentsci.0c00666] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 05/03/2023]
Abstract
Tools to image membrane tension in response to mechanical stimuli are badly needed in mechanobiology. We have recently introduced mechanosensitive flipper probes to report quantitatively global membrane tension changes in fluorescence lifetime imaging microscopy (FLIM) images of living cells. However, to address specific questions on physical forces in biology, the probes need to be localized precisely in the membrane of interest (MOI). Herein we present a general strategy to image the tension of the MOI by tagging our newly introduced HaloFlippers to self-labeling HaloTags fused to proteins in this membrane. The critical challenge in the construction of operational HaloFlippers is the tether linking the flipper and the HaloTag: It must be neither too taut nor too loose, be hydrophilic but lipophilic enough to passively diffuse across membranes to reach the HaloTags, and allow partitioning of flippers into the MOI after the reaction. HaloFlippers with the best tether show localized and selective fluorescence after reacting with HaloTags that are close enough to the MOI but remain nonemissive if the MOI cannot be reached. Their fluorescence lifetime in FLIM images varies depending on the nature of the MOI and responds to myriocin-mediated sphingomyelin depletion as well as to osmotic stress. The response to changes in such precisely localized membrane tension follows the validated principles, thus confirming intact mechanosensitivity. Examples covered include HaloTags in the Golgi apparatus, peroxisomes, endolysosomes, and the ER, all thus becoming accessible to the selective fluorescence imaging of membrane tension.
Collapse
Affiliation(s)
- Karolína Straková
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (J.L.-A.)
| | - Noemi Jiménez-Rojo
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Howard Riezman
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (S.M.)
| |
Collapse
|
38
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
39
|
García-Calvo J, Maillard J, Fureraj I, Strakova K, Colom A, Mercier V, Roux A, Vauthey E, Sakai N, Fürstenberg A, Matile S. Fluorescent Membrane Tension Probes for Super-Resolution Microscopy: Combining Mechanosensitive Cascade Switching with Dynamic-Covalent Ketone Chemistry. J Am Chem Soc 2020; 142:12034-12038. [PMID: 32609500 DOI: 10.1021/jacs.0c04942] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the design, synthesis, and evaluation of fluorescent flipper probes for single-molecule super-resolution imaging of membrane tension in living cells. Reversible switching from bright-state ketones to dark-state hydrates, hemiacetals, and hemithioacetals is demonstrated for twisted and planarized mechanophores in solution and membranes. Broadband femtosecond fluorescence up-conversion spectroscopy evinces ultrafast chalcogen-bonding cascade switching in the excited state in solution. According to fluorescence lifetime imaging microscopy, the new flippers image membrane tension in live cells with record red shifts and photostability. Single-molecule localization microscopy with the new tension probes resolves membranes well below the diffraction limit.
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Ina Fureraj
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Karolina Strakova
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Adai Colom
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
40
|
Muraoka T, Noguchi D, Kasai RS, Sato K, Sasaki R, Tabata KV, Ekimoto T, Ikeguchi M, Kamagata K, Hoshino N, Noji H, Akutagawa T, Ichimura K, Kinbara K. A synthetic ion channel with anisotropic ligand response. Nat Commun 2020; 11:2924. [PMID: 32522996 PMCID: PMC7287108 DOI: 10.1038/s41467-020-16770-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/26/2020] [Indexed: 12/04/2022] Open
Abstract
Biological membranes play pivotal roles in the cellular activities. Transmembrane proteins are the central molecules that conduct membrane-mediated biochemical functions such as signal transduction and substance transportation. Not only the molecular functions but also the supramolecular properties of the transmembrane proteins such as self-assembly, delocalization, orientation and signal response are essential for controlling cellular activities. Here we report anisotropic ligand responses of a synthetic multipass transmembrane ion channel. An unsymmetrical molecular structure allows for oriented insertion of the synthetic amphiphile to a bilayer by addition to a pre-formed membrane. Complexation with a ligand prompts ion transportation by forming a supramolecular channel, and removal of the ligand deactivates the transportation function. Biomimetic regulation of the synthetic channel by agonistic and antagonistic ligands is also demonstrated not only in an artificial membrane but also in a biological membrane of a living cell. Transmembrane proteins are important for cellular functions and synthetic analogues are of interest. Here the authors report on the design and testing of a synthetic multipass transmembrane channel which shows anisotropic responses to agonistic and antagonistic ligands.
Collapse
Affiliation(s)
- Takahiro Muraoka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Daiki Noguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shougoin, Kyoto, 606-8507, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Medical Sciences Innovation Hub Program RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuaki Ichimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
41
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
42
|
Bai D, Yan T, Wang S, Wang Y, Fu J, Fang X, Zhu J, Liu J. Reversible Ligand‐Gated Ion Channel via Interconversion between Hollow Single Helix and Intertwined Double Helix. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dongya Bai
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Tengfei Yan
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Shi Wang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Yanbo Wang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Jiya Fu
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Xiaomin Fang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Junyan Zhu
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Junqiu Liu
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
43
|
Bai D, Yan T, Wang S, Wang Y, Fu J, Fang X, Zhu J, Liu J. Reversible Ligand‐Gated Ion Channel via Interconversion between Hollow Single Helix and Intertwined Double Helix. Angew Chem Int Ed Engl 2020; 59:13602-13607. [DOI: 10.1002/anie.201916755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Dongya Bai
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Tengfei Yan
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Shi Wang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Yanbo Wang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Jiya Fu
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Xiaomin Fang
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Junyan Zhu
- Institute of Functional Organic Molecular Engineering Henan Engineering Laboratory of Flame-Retardant and Functional Materials College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 China
| | - Junqiu Liu
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
44
|
Hindley JW, Law RV, Ces O. Membrane functionalization in artificial cell engineering. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2357-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractBottom-up synthetic biology aims to construct mimics of cellular structure and behaviour known as artificial cells from a small number of molecular components. The development of this nascent field has coupled new insights in molecular biology with large translational potential for application in fields such as drug delivery and biosensing. Multiple approaches have been applied to create cell mimics, with many efforts focusing on phospholipid-based systems. This mini-review focuses on different approaches to incorporating molecular motifs as tools for lipid membrane functionalization in artificial cell construction. Such motifs range from synthetic chemical functional groups to components from extant biology that can be arranged in a ‘plug-and-play’ approach which is hard to replicate in living systems. Rationally designed artificial cells possess the promise of complex biomimetic behaviour from minimal, highly engineered chemical networks.
Collapse
|
45
|
Sasaki R, Sato K, Kinbara K. Aromatic Fluorination of Multiblock Amphiphile Enhances Its Incorporation into Lipid Bilayer Membranes. ChemistryOpen 2020; 9:301-303. [PMID: 32154050 PMCID: PMC7050654 DOI: 10.1002/open.201900374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
We designed multiblock amphiphiles AmF and AmH, which consist of perfluorinated and non-fluorinated hydrophobic units, respectively. Absorption spectroscopy revealed that both amphiphiles are molecularly dispersed in organic solvent, while they form aggregates under aqueous conditions. Furthermore, we investigated whether AmF and AmH can be incorporated into DOPC lipid bilayer membranes, and found that the maximum concentration of AmF that can be incorporated into DOPC lipid bilayer membranes is 43 times higher than that of AmH.
Collapse
Affiliation(s)
- Ryo Sasaki
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| | - Kohei Sato
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| | - Kazushi Kinbara
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| |
Collapse
|
46
|
Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K +-ion across biological membranes. Nat Commun 2020; 11:469. [PMID: 31980608 PMCID: PMC6981123 DOI: 10.1038/s41467-019-13834-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The selective transport of ions across cell membranes, controlled by membrane proteins, is critical for a living organism. DNA-based systems have emerged as promising artificial ion transporters. However, the development of stable and selective artificial ion transporters remains a formidable task. We herein delineate the construction of an artificial ionophore using a telomeric DNA G-quadruplex (h-TELO) and a lipophilic guanosine (MG). MG stabilizes h-TELO by non-covalent interactions and, along with the lipophilic side chain, promotes the insertion of h-TELO within the hydrophobic lipid membrane. Fluorescence assays, electrophysiology measurements and molecular dynamics simulations reveal that MG/h-TELO preferentially transports K+-ions in a stimuli-responsive manner. The preferential K+-ion transport is presumably due to conformational changes of the ionophore in response to different ions. Moreover, the ionophore transports K+-ions across CHO and K-562 cell membranes. This study may serve as a design principle to generate selective DNA-based artificial transporters for therapeutic applications.
Collapse
|
47
|
Muraoka T. Biofunctional Molecules Inspired by Protein Mimicry and Manipulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
48
|
Sawada D, Hirono A, Asakura K, Banno T. pH-Tolerant giant vesicles composed of cationic lipids with imine linkages and oleic acids. RSC Adv 2020; 10:34247-34253. [PMID: 35519057 PMCID: PMC9056790 DOI: 10.1039/d0ra06822e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Giant vesicles (GVs) have attracted attention as functional materials because they can encapsulate both hydrophilic and hydrophobic compounds. For next generation functional GVs, both tolerance and stimuli-sensitivity are needed. So far, vesicles tolerant to acidic or basic conditions were generated using a mixture of cationic lipids and fatty acids. Here, to create functional GVs that are tolerant to a wide pH range but sensitively respond at below a specific pH, the behaviour of GVs composed of a cationic lipid with an imine bond and oleic acid was investigated. Even though the GVs prepared by the film swelling method were tolerant to strongly acidic conditions, GVs without oleic acid gradually shrank, accompanied by the generation of oil droplets at the same pH. 1H NMR analysis revealed that during hydration of the film, the imine bond hydrolysed to provide a cationic surfactant and an oil component in the presence of oleic acid due to its own Lewis basicity, suggesting the dissociation of oleic acid. The results of fluorescence spectroscopy using an environment-responsive probe and IR spectroscopy indicated that the GV tolerance originated from the intermolecular interactions of cationic lipids and anionic oleate. Giant vesicles composed of cationic lipids having an imine linkage and oleic acid were stable at strong acidic conditions.![]()
Collapse
Affiliation(s)
- Daichi Sawada
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Ayana Hirono
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Kouichi Asakura
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Taisuke Banno
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
49
|
Zhang Z, Huang X, Qian Y, Chen W, Wen L, Jiang L. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904351. [PMID: 31793736 DOI: 10.1002/adma.201904351] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid-membrane-based nanopores to robust and scalable solid-state nanopores. A generic strategy of gate location design is proposed. The single-pore-based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single-molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodong Huang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Zhang X, Sakai N, Matile S. Methyl Scanning for Mechanochemical Chalcogen-Bonding Cascade Switches. ChemistryOpen 2020; 9:18-22. [PMID: 31921541 PMCID: PMC6946998 DOI: 10.1002/open.201900288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chalcogen-bonding cascade switching was introduced recently to produce the chemistry tools needed to image physical forces in biological systems. In the original flipper probe, one methyl group appeared to possibly interfere with the cascade switch. In this report, this questionable methyl group is replaced by a hydrogen. The deletion of this methyl group in planarizable push-pull probes was not trivial because it required the synthesis of dithienothiophenes with four different substituents on the four available carbons. The mechanosensitivity of the resulting demethylated flipper probe was nearly identical to that of the original. Thus methyl groups in the switching region are irrelevant for function, whereas those in the twisting region are essential. This result supports the chalcogen-bonding cascade switching concept and, most importantly, removes significant synthetic demands from future probe development.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|