1
|
El-Kholany MR, Senoo T, Mizutani A, Takamura H, Suzuki T, Kadota I, Tanaka K. Strongly Oxidizing Thiapyrylium Salt for Organophotoredox Catalysis. Org Lett 2025; 27:4870-4874. [PMID: 40310680 DOI: 10.1021/acs.orglett.5c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Photoredox catalysis has garnered significant attention in organic chemistry for its ability to promote chemical transformations under visible-light irradiation. To date, research on salt-based organophotoredox catalysts has mainly concentrated on the development of oxygen- and nitrogen-based catalysts such as acridinium and pyrylium salts, whereas sulfur-containing catalysts have received far less attention. Herein, we report a strongly oxidizing tert-butyl-substituted thiapyrylium organophotoredox catalyst (tBu-TTPP) that exhibits a high excited-state reduction potential (E1/2(C*/C•-) = +2.23 V vs SCE) and can be activated by blue LEDs. The tBu-TTPP catalyst provided promising results in various photoredox reactions, such as radical-cation Diels-Alder reactions, trifluoromethylations, the [4 + 2] annulation of alkynes and thiophene, and the C-N cross-coupling of fluoroarenes, demonstrating its potential in photoredox catalysis.
Collapse
Affiliation(s)
- Mohamed R El-Kholany
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria St, Mansoura 35516, Egypt
| | - Takeru Senoo
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Asuka Mizutani
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
López-Fernández AM, Neto JC, de Llanos R, Miravet JF, Galindo F. Minimalistic bis-triarylpyridinium cations: effective antimicrobials against bacterial and fungal pathogens. RSC Med Chem 2025:d4md00902a. [PMID: 40190417 PMCID: PMC11969996 DOI: 10.1039/d4md00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
A series of twelve compounds from the family of 2,4,6-triarylpyridinium cations have been synthesized, chemically characterized (1H, 13C NMR, HRMS), and microbiologically evaluated (MIC determination against S. aureus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). These compounds are quaternary ammonium cations (QACs), classified as either mono-QACs or bis-QACs. The mono-QACs are further divided into those with short (three-carbon) and long (twelve-carbon) pendant chains. An additional structural variable is the number of bromine atoms attached to the aromatic rings, ranging from zero to three. The major findings of this study are: (a) bis-QACs exhibit notably higher antimicrobial activity than mono-QACs; (b) an increased number of bromine atoms on the structure appears to diminish antimicrobial properties and (c) one of the compounds (1a) shows particularly promising properties as a broad spectrum antimicrobial, given its low MICs across all five pathogenic microorganisms studied. Preliminary assays with C. albicans show that 1a has a strong mitochondrial activity, causing a remarkable mitochondrial membrane depolarization in this organelle. Taken together, this study positions triarylpyridinium cations-previously unexplored as antimicrobials-as promising candidates for future drug development, especially in light of the growing concern over drug-resistant microorganisms.
Collapse
Affiliation(s)
- Ana M López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Jean C Neto
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
3
|
Hosford BM, Ramos W, Lamb JR. Combining photocontrolled-cationic and anionic-group-transfer polymerizations using a universal mediator: enabling access to two- and three-mechanism block copolymers. Chem Sci 2024; 15:13523-13530. [PMID: 39183918 PMCID: PMC11339941 DOI: 10.1039/d4sc02511c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported. Herein, we report a TCT universal mediator that can sequentially perform photocontrolled cationic polymerization and thioacyl anionic group transfer polymerization to access poly(ethyl vinyl ether)-block-poly(thiirane) polymers for the first time. Thermal analyses of these block copolymers provide evidence of microphase separation. The success of this system, along with the established compatibility of radical polymerization, enabled us to further chain extend the cationic-anionic diblock using radical polymerization of N-isopropylacrylamide. The resulting terpolymer represents the first example of a triblock made from three different monomer classes incorporated via three different mechanisms without any end-group modification steps. The development of this simple, sequential synthesis using a universal mediator approach opens up new possibilities by providing facile access to diverse block copolymers of vinyl ethers, thiiranes, and acrylamides.
Collapse
Affiliation(s)
- Brandon M Hosford
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - William Ramos
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
4
|
Yang Z, Liao Y, Zhang Z, Chen J, Zhang X, Liao S. Asymmetric Ion-Pairing Photoredox Catalysis for Stereoselective Cationic Polymerization under Light Control. J Am Chem Soc 2024; 146:6449-6455. [PMID: 38316013 DOI: 10.1021/jacs.3c12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
By virtue of noninvasive regulations by light, photocontrolled polymerizations have attracted considerable attention for the precision synthesis of macromolecules. However, a cationic polymerization with simultaneous photocontrol and tacticity-regulation remains elusive so far. Herein, we introduce an asymmetric ion-pairing photoredox catalysis strategy that allows for the development of a stereoselective cationic polymerization with concurrent light regulation for the first time. By employing an ion pair catalyst (PC+/*A-) consisting of a photoredox active cation (PC+) and a sterically confined chiral anion (*A-) to deliver the stereochemical control, the cationic polymerization of vinyl ethers can be achieved with photocontrol and high isotactic selectivity (up to 91% m) at a remarkable low catalyst loading (50 ppm).
Collapse
Affiliation(s)
- Zan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yun Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhengyi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Liu J, Blosch SE, Volokhova AS, Crater ER, Gallin CF, Moore RB, Matson JB, Byers JA. Using Redox-Switchable Polymerization Catalysis to Synthesize a Chemically Recyclable Thermoplastic Elastomer. Angew Chem Int Ed Engl 2024; 63:e202317699. [PMID: 38168073 PMCID: PMC10873474 DOI: 10.1002/anie.202317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/05/2024]
Abstract
In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox-switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran-co-cyclohexene oxide) (poly(THF-co-CHO) copolymer as the mid-block. The orthogonal reactivity induced by changing the oxidation state of the iron-based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l-lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of -60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d-lactic acid) (PDLA) end-blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3 and ZnCl2 /PEG under reactive distillation conditions.
Collapse
Affiliation(s)
- Jiangwei Liu
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah E Blosch
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anastasia S Volokhova
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erin R Crater
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Connor F Gallin
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Robert B Moore
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
6
|
Hulnik M, Trofimuk D, Nikishau PA, Kiliclar HC, Kiskan B, Kostjuk SV. Visible-Light-Induced Cationic Polymerization of Isobutylene: A Route toward the Synthesis of End-Functional Polyisobutylene. ACS Macro Lett 2023; 12:1125-1131. [PMID: 37497867 DOI: 10.1021/acsmacrolett.3c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The visible-light-induced cationic polymerization of isobutylene with a dimanganese decacarbonyl (Mn2(CO)10)/diphenyl iodonium hexafluorophosphate (Ph2I+PF6-) photoinitiating system in a CH2Cl2/n-hexane mixture at -30 °C was reported. It was shown that polymerization is initiated by chloromethylisobutyl carbocations generated by the oxidation of chloromethylisobutyl radicals by Ph2I+PF6-. The latter are formed via chlorine abstraction from solvent (CH2Cl2) by MnCO5· radicals, which are generated by the photoinduced decomposition of Mn2(CO)10, followed by single isobutylene addition. This initiating system allowed us to synthesize valuable low molecular weight polyisobutylene with a relatively low polydispersity (Mn = 2000-3000 g mol-1; Đ < 1.7) and high content of exo-olefin end groups (up to 90%). The molecular weight of polyisobutylenes could be easily controlled in the range from 2000 to 12000 g mol-1 by changing the diphenyl iodonium salt concentration. Poly(β-pinene) with Mn = 5000 g mol-1 and Đ ∼ 2.0 was successfully synthesized using the same photoinitiating system.
Collapse
Affiliation(s)
- Maksim Hulnik
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
| | - Diana Trofimuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
| | - Pavel A Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
| | - Hüseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Baris Kiskan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sergei V Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus
| |
Collapse
|
7
|
Tao W, He W, Feng X, Liu G, Shi Q, Tan J, Hu J, Yang S, Liu G, Yang R. Cationic Single-Unit Monomer Insertion (cSUMI): From Discrete Oligomers to the α-/ω-End and In-Chain Sequence-Regulated Polymers. J Am Chem Soc 2023; 145:3636-3646. [PMID: 36724078 DOI: 10.1021/jacs.2c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-unit monomer insertion (SUMI) has become an important strategy for the synthesis of sequence-controlled vinyl polymers due to its strong versatility and high efficiency. However, all reported SUMI processes are based on a free-radical mechanism, resulting in a limited number of monomer types being applicable to SUMI or a limited number of sequences of structural units that SUMI can synthesize. Herein, we developed a novel SUMI based on a cationic mechanism (cSUMI), which operates through a degenerative (similar to radical SUMI) but cationic chain transfer process. By optimizing the chain transfer agent (CTA) and monomer pairs, a high-efficiency cSUMI was achieved for vinyl ether and styrene monomers. Based on this reaction, a range of discrete oligomers containing vinyl ether and styrene moieties, and even α-/ω-end and in-chain sequence-regulated polymers were synthesized, most of which cannot be achieved by radical SUMI. In addition, we explored the application of these sequence-regulated polymers in the preparation of miktoarm star polymers, delivery of photosensitizers, and solubilization of fluorescence probes. The development of SUMI with a new mechanism will certainly broaden the scope of structures and sequences in precise vinyl-based polymers.
Collapse
Affiliation(s)
- Wei Tao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xuepu Feng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guoqin Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiangqiang Shi
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
8
|
Das S, Zhu C, Demirbas D, Bill E, De CK, List B. Asymmetric counteranion-directed photoredox catalysis. Science 2023; 379:494-499. [PMID: 36656920 DOI: 10.1126/science.ade8190] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Photoredox catalysis enables distinctive and broadly applicable chemical reactions, but controlling their selectivity has proven to be difficult. The pursuit of enantioselectivity is a particularly daunting challenge, arguably because of the high energy of the activated radical (ion) intermediates, and previous approaches have invariably required pairing of the photoredox catalytic cycle with an additional activation mode for asymmetric induction. A potential solution for photoredox reactions proceeding via radical ions would be catalytic pairing with enantiopure counterions. However, although attempts toward this approach have been described, high selectivity has not yet been accomplished. Here we report a potentially general solution to radical cation-based asymmetric photoredox catalysis. We describe organic salts, featuring confined imidodiphosphorimidate counteranions that catalyze highly enantioselective [2+2]-cross cycloadditions of styrenes.
Collapse
Affiliation(s)
- Sayantani Das
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Chendan Zhu
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Feng X, Liu R, Shao L, Xu X, Jin Y, Shi Q, Wu Y. Visible light‐catalyzed living cationic homopolymerization and copolymerization of isobutyl vinyl ether: Characteristics and mechanism. J Appl Polym Sci 2023. [DOI: 10.1002/app.53692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaohu Feng
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| | - Ruofan Liu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| | - Lei Shao
- International Department Beijing NO.80 High School Beijing China
| | - Xinghang Xu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| | - Yushun Jin
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| | - Qisong Shi
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| | - Yibo Wu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials Beijing Institute of of Petrochemical Technology Beijing China
| |
Collapse
|
10
|
Wang Q, Bai FY, Wang Y, Niu F, Zhang Y, Mi Q, Hu K, Pan X. Photoinduced Ion-Pair Inner-Sphere Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2022; 144:19942-19952. [PMID: 36266241 DOI: 10.1021/jacs.2c08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.
Collapse
Affiliation(s)
- Qianyi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yinling Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Fushuang Niu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Hu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
12
|
Yang Z, Chen J, Liao S. Monophosphoniums as Effective Photoredox Organocatalysts for Visible Light-Regulated Cationic RAFT Polymerization. ACS Macro Lett 2022; 11:1073-1078. [PMID: 35984378 DOI: 10.1021/acsmacrolett.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible light-regulated metal-free polymerizations have attracted considerable attention for macromolecular syntheses in recent years. However, few organic photocatalysts show high efficiency and strict photocontrol in cationic polymerizations. Herein, we introduce monophosphonium-doped polycyclic arenes as an organic photocatalyst, which features the high tunability, broad redox window, long excited state lifetime, and excellent temporal control in the cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. A correlation of the catalytic performance and the photophysical and electrochemical properties of photocatalysts is also discussed.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Liang Y, Zhou N, Ma G, Wen L, Wu X, Feng P. Tunable alkoxy-nucleophilic addition under photochemical condition: Dioxidation of gem‑difluoroalkenes with O2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Sifri RJ, Ma Y, Fors BP. Photoredox Catalysis in Photocontrolled Cationic Polymerizations of Vinyl Ethers. Acc Chem Res 2022; 55:1960-1971. [PMID: 35771008 DOI: 10.1021/acs.accounts.2c00252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAdvances in photocontrolled polymerizations have expanded the scope of polymer architectures and structures that can be synthesized for various applications. The majority of these polymerizations have been developed for radical processes, which limits the diversity of monomers that can be used in macromolecular design. More recent developments of photocontrolled cationic polymerizations have taken a step toward addressing this limitation and have expanded the palette of monomers that can be used in stimuli-regulated polymerizations, enabling the synthesis of previously inaccessible polymeric structures. This Account will detail our group's studies on cationic polymerization processes where chain growth is regulated by light and highlight how these methods can be combined with other stimuli-controlled polymerizations to precisely dictate macromolecular structure.Photoinitiated cationic polymerizations are well-studied and important processes that have control over initiation. However, we wanted to develop systems where we had spatiotemporal control over both polymer initiation and chain growth. This additional command over the reaction provides the ability to manipulate the growing polymer with an external stimulus during a polymerization, which can be used to control structure. To achieve this goal, we set out to develop a method to photoreversibly generate a cation at a growing chain end that could participate in a controlled polymerization process. We took inspiration from previous work on cationic degenerate chain transfer polymerizations of vinyl ethers that used thiocarbonylthio chain transfer agents. These polymerizations were initiated by a strong acid and gave well-defined poly(vinyl ether)s. We posited that we could remove the acid initiator in these systems and reversibly oxidize the thiocarbonylthio chain ends in these reactions with a photocatalyst to give a photocontrolled cationic polymerization of vinyl ethers. This Account will focus on our journey to discover cationic photocontrolled polymerizations. We will summarize our initial developments and detail our mechanistic understanding of these reactions using both organic and inorganic based photocatalysts, and we will outline more recent efforts to expand cationic degenerate chain transfer polymerizations to other thioacetal initiators. Finally, we will detail how these photocontrolled cationic polymerizations can be used to switch monomer selectivity in situ using light to control polymer structure. At the end of the Account, we will discuss our vision for future potential applications of these photocontrolled cationic polymerizations in the synthesis of novel block copolymers and next generation cross-linked networks.
Collapse
Affiliation(s)
- Renee J Sifri
- Cornell University, Ithaca, New York 14853, United States
| | - Yuting Ma
- Cornell University, Ithaca, New York 14853, United States
| | - Brett P Fors
- Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Visible light-controlled living cationic polymerization of methoxystyrene. Nat Commun 2022; 13:3621. [PMID: 35750872 PMCID: PMC9232534 DOI: 10.1038/s41467-022-31359-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Photo-controlled living polymerization has received great attention in recent years. However, despite the great success therein, the report on photo-controlled living cationic polymerization has been greatly limited. We demonstrate here a novel decolorable, metal-free and visible light-controlled living cationic polymerization system by using tris(2,4-dimethoxyphenyl)methylium tetrafluoroborate as the photocatalyst and phosphate as the chain transfer agent (CTA) for polymerization of 4-methoxystyrene. This polymerization reaction under green LED light irradiation shows clear living characteristics including predictable molar mass, low molar-mass dispersity (Đ = 1.25), and sequential polymerization capability. In addition, the photocatalytic system exits excellent "on-off" photo switchability and shows the longest "off period" of 36 h up to now for photo-controlled cationic polymerization. Furthermore, the residual photo-catalyst is easily deactivated and decolored with addition of a base after the polymerization. The present study has extended the photo-controlled living cationic polymerization systems with new organic photocatalysts, phosphate CTA and polymerizable monomer as well as the new properties of excellent photostability and in-situ decolored capacity.
Collapse
|
16
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
17
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
18
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
19
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Zefeng Zhou
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Xuanting Tang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Stephanie Moran
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jing Jin
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jia Niu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
20
|
Yang Z, Xiao W, Zhang X, Liao S. Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polym Chem 2022. [DOI: 10.1039/d2py00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-controlled cationic degenerate chain transfer polymerization of vinyl ethers has been developed by using a bisphosphonium organophotocatalyst.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenpei Xiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
21
|
Matsuda M, Uchiyama M, Itabashi Y, Ohkubo K, Kamigaito M. Acridinium salts as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d1py01568k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acridinium salts with high excited-state oxidative power are employed as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations under visible light.
Collapse
Affiliation(s)
- Marina Matsuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Zhang DY, Han D, Li Y, Chen DF. Expanding monomer scope and enabling post-modification in photocontrolled radical ring-opening polymerization of vinylcyclopropanes by an iodine transfer strategy. Polym Chem 2022. [DOI: 10.1039/d2py00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light-driven iodine transfer polymerization provides efficient and unique access to novel poly(vinylcyclopropanes) with enhanced material properties.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Han
- Department of Oral and Maxillofacial Surgery, Hefei First People's Hospital, Hefei, Anhui 230001, China
| | - Yue Li
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dian-Feng Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Wang Q, Popov S, Strehmel V, Gutmann JS, Strehmel B. NIR-sensitized hybrid radical and cationic photopolymerization of several cyanines in combination with diaryliodonium bis(trifluoromethyl)sulfonyl imide. Polym Chem 2022. [DOI: 10.1039/d2py01186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of cyanines exhibiting absorption between 750 and 930 nm reacted after NIR excitation with the bis(t-butylphenyl) iodonium cation comprising the [(CF3SO2)2N]− anion (NTf2)−, resulting in the generation of free radicals and conjugate acids.
Collapse
Affiliation(s)
- Qunying Wang
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Sergey Popov
- Spectrum Info Ltd., Murmanskaya 5, 02094 Kyiv, Ukraine
| | - Veronika Strehmel
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Jochen S. Gutmann
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| | - Bernd Strehmel
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| |
Collapse
|
24
|
|
25
|
Wang X, Wang G, Li J, Li X, Zhang K. A simple and straightforward polymer post-modification method for wearable difluoroboron β-diketonate luminescent sensors. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Shankel S, Lambert T, Fors B. Moisture tolerant cationic RAFT polymerization of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d2py00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic reversible addition—fragmentation chain transfer (RAFT) polymerizations have permitted the controlled polymerization of vinyl ethers and select styrenics with predictable molar masses and easily modified thiocarbonylthio chain ends. However, most...
Collapse
|
27
|
Lin X, Li J, Pan X, Zhang Z, Zhu J. Controlled Cationic Polymerization Using RAFT Agents with Selenonium Cations as Metal-Free Lewis Acids: From Homogeneous to Heterogeneous Catalysis. Polym Chem 2022. [DOI: 10.1039/d2py00089j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living cationic polymerization is a well-known technique, but it is generally limited by strict operating conditions. Here, a series of selenonium cations was used as a new class of catalysts...
Collapse
|
28
|
Ma Y, Kottisch V, McLoughlin EA, Rouse ZW, Supej MJ, Baker SP, Fors BP. Photoswitching Cationic and Radical Polymerizations: Spatiotemporal Control of Thermoset Properties. J Am Chem Soc 2021; 143:21200-21205. [PMID: 34878283 DOI: 10.1021/jacs.1c09523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to fabricate polymeric materials with spatially controlled physical properties has been a challenge in thermoset manufacturing. To address this challenge, this work takes advantage of a photoswitchable polymerization that selectively incorporates different monomers at a growing chain by converting from cationic to radical polymerizations through modulation of the wavelength of irradiation. By regulating the dosage and wavelength of light applied to the system, the mechanical properties of the crosslinked material can be temporally and spatially tuned. Furthermore, photopatterning can be achieved both on the macroscale and the microscale, enabling precise spatial control of crosslink density that results in high-resolution control over mechanical properties.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Veronika Kottisch
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | | | - Zachary W Rouse
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael J Supej
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Shefford P Baker
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Brett P Fors
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
Affiliation(s)
- Wenqi Wang
- Boston College, Chemistry, UNITED STATES
| | | | - Devavrat Sathe
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | | | | | - Jing Jin
- Boston College, Chemistry, UNITED STATES
| | | | - Junpeng Wang
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | - Jia Niu
- Boston College, Department of Chemistry, 2609 Beacon St., Merkert Chemistry Center 214B, 02467, Chestnut Hill, UNITED STATES
| |
Collapse
|
30
|
Taschner R, Liska R, Knaack P. Evaluation of suitable onium tetrafluoroborates for cationic polymerization of epoxides. POLYM INT 2021. [DOI: 10.1002/pi.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roland Taschner
- Department of Polymer Chemistry and Technology, Institute of Applied Synthetic Chemistry, TU Wien Vienna Austria
| | - Robert Liska
- Department of Polymer Chemistry and Technology, Institute of Applied Synthetic Chemistry, TU Wien Vienna Austria
| | - Patrick Knaack
- Department of Polymer Chemistry and Technology, Institute of Applied Synthetic Chemistry, TU Wien Vienna Austria
| |
Collapse
|
31
|
Zhu Y, Egap E. Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives. ACS POLYMERS AU 2021; 1:76-99. [PMID: 36855427 PMCID: PMC9954404 DOI: 10.1021/acspolymersau.1c00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct capture of solar energy for chemical transformation via photocatalysis proves to be a cost-effective and energy-saving approach to construct organic compounds. With the recent growth in photosynthesis, photopolymerization has been established as a robust strategy for the production of specialty polymers with complex structures, precise molecular weight, and narrow dispersity. A key challenge in photopolymerization is the scarcity of effective photomediators (photoinitiators, photocatalysts, etc.) that can provide polymerization with high yield and well-defined polymer products. Current efforts on developing photomediators have mainly focused on organic dyes and metal complexes. On the other hand, nanomaterials (NMs), particularly semiconducting nanomaterials (SNMs), are suitable candidates for photochemical reactions due to their unique optical and electrical properties, such as high absorption coefficients, large charge diffusion lengths, and broad absorption spectra. This review provides a comprehensive insight into SNMs' photomediated polymerizations and highlights the roles SNMs play in photopolymerizations, types of polymerizations, applications in producing advanced materials, and the future directions.
Collapse
Affiliation(s)
- Yifan Zhu
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States,
| |
Collapse
|
32
|
Deacy A, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J Am Chem Soc 2021; 143:10021-10040. [PMID: 34190553 PMCID: PMC8297863 DOI: 10.1021/jacs.1c03250] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/24/2022]
Abstract
There is an ever-increasing demand for higher-performing polymeric materials counterbalanced by the need for sustainability throughout the life cycle. Copolymers comprising ester, carbonate, or ether linkages could fulfill some of this demand as their monomer-polymer chemistry is closer to equilibrium, facilitating (bio)degradation and recycling; many monomers are or could be sourced from renewables or waste. Here, an efficient and broadly applicable route to make such copolymers is discussed, a form of switchable polymerization catalysis which exploits a single catalyst, switched between different catalytic cycles, to prepare block sequence selective copolymers from monomer mixtures. This perspective presents the principles of this catalysis, catalyst design criteria, the selectivity and structural copolymer characterization tools, and the properties of the resulting copolymers. Uses as thermoplastic elastomers, toughened plastics, adhesives, and self-assembled nanostructures, and for programmed degradation, among others, are discussed. The state-of-the-art research into both catalysis and products, as well as future challenges and directions, are presented.
Collapse
Affiliation(s)
| | | | - Gregory S. Sulley
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Thomas T. D. Chen
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
33
|
Chen G, Zhang Z, Zhang W, Xia L, Nie X, Huang W, Wang X, Wang L, Hong C, Zhang Z, You Y. Photopolymerization performed under dark conditions using long-stored electrons in carbon nitride. MATERIALS HORIZONS 2021; 8:2018-2024. [PMID: 34846478 DOI: 10.1039/d1mh00412c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, the chemical energy and electrons stored in ATP and NADPH generated during irradiation can facilitate biochemical reactions under dark conditions. However, in artificial photoreaction systems, it is still very difficult to perform photoreactions under dark conditions due to the fact that the photogenerated charge pairs can recombine immediately upon ceasing the irradiation. Preventing the recombination of photogenerated charge pairs still constitutes a major challenge at present. Here, it is reported that functionalized carbon nitride nanomaterials having many heptazine rings with a positive charge distribution, which can tightly trap photogenerated electrons, efficiently prevent the recombination of photogenerated charges. These stored charges are exceedingly long-lived (up to months) and can drive photopolymerization without light irradiation, even after one month. The system introduced here demonstrates a new approach for storing light energy as long-lived radicals, enabling photoreactions under dark conditions.
Collapse
Affiliation(s)
- Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen J, Qiao J, Kim DP, Qi L. Study on controllable enzymolysis by chiral capillary electrophoresis with an ultraviolet-visible responsive polymer membrane based l-asparaginase reactor. Talanta 2021; 234:122676. [PMID: 34364476 DOI: 10.1016/j.talanta.2021.122676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive polymer enzyme reactors have become a major area of research interest, from their fundamental aspects to applications in bio-living science. However, the polymer materials, that enable the controllable enzymolysis based on ultraviolet-visible (UV)-responsive properties, have remained unexplored. Herein, an enzyme reactor was fabricated by immobilization of l-asparaginase on an UV-responsive porous polymer membrane (UV-PPMER), which consisted of poly(styrene-maleicanhydride-4-[(4-methacryloyloxy)phenylazo]benzoic acid) [P(St-MAn-MPABA)], and explored its controllable enzymolysis. By controlling the "on/off" switch of 365 nm UV irradiation, the configuration of polymer membrane surface changed to improve and tune the enzymolysis. Using l-asparagine (L-Asn) as the substrate, the enzymatic efficiency of the UV-PPMER was evaluated by a chiral capillary electrophoresis technique. Upon UV irradiation, the PMPABA moiety in the membrane changed from a trans- to a cisconfiguration and encapsulated the enzyme and substrate into a narrow cavity, further improving the enzymatic efficiency due to the confinement effect. It was found that the enzymatic reaction rate with the UV-PPMER under UV irradiation (13.3 mM min-1) was 4.5 times higher than that of UV irradiation was off (2.94 mM min-1). Additionally, the low cytotoxicity and excellent UV-responsivity of UV-PPMER were verified in the living cells and serum samples.
Collapse
Affiliation(s)
- Ji Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
35
|
Zeppuhar AN, Wolf SM, Falvey DE. Photoacid Generators Activated through Sequential Two-Photon Excitation: 1-Sulfonatoxy-2-alkoxyanthraquinone Derivatives. J Phys Chem A 2021; 125:5227-5236. [PMID: 34129332 DOI: 10.1021/acs.jpca.1c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two sulfonate ester derivatives of anthraquinone, 1-tosyloxy-2-methoxy-9,10-anthraquinone (1a) and 1-trifluoromethylsulfonoxy-2-methoxy-9,10-anthraquinone (1b), were prepared and their ability to produce strong acids upon photoexcitation was examined. It is shown that these compounds generate acid with a yield that increases with light intensity when the applied photon dose is held constant. Additional experiments show that the rate of acid generation increases fourfold when visible light (532 nm) laser pulses are combined with ultraviolet (355 nm) compared with ultraviolet alone. Continuous wave diode laser photolysis also affects acid generation with a rate that depends quadratically on the light intensity. Density functional theory calculations, laser flash photolysis, and chemical trapping experiments support a mechanism, whereby an initially formed triplet state (T1) is excited to a higher triplet state which in turn undergoes homolysis of the RS(O2)-OAr bond. Secondary reactions of the initially formed sulfonyl radicals produce strong acids. It is demonstrated that high-intensity photolysis of either 1a or 1b can initiate cationic polymerization of ethyl vinyl ether.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Wolf
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
36
|
Thum MD, Hong D, Zeppuhar AN, Falvey DE. Visible-Light Photocatalytic Oxidation of DMSO for RAFT Polymerization †. Photochem Photobiol 2021; 97:1335-1342. [PMID: 34129686 DOI: 10.1111/php.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
The solvent is an important, yet often forgotten part of a reaction mechanism. Many photochemical polymerizations are carried out using dimethyl sulfoxide (DMSO) as a way to promote the solubility of both the reactants and products, but its reactivity is rarely considered when initiation mechanisms are proposed. Herein, the oxidation of DMSO by an excited-state quinone is used to form initiating radicals resulting in the polymerization of methacrylate monomers, and the polymerization can be controlled with the addition of a chain transfer agent. This process leads to the formation of polymers with narrow molecular weight distribution, and the polymerization is able to be carried out in the presence of oxygen. A visible light absorbing substituted anthraquinone is synthesized, and nanosecond transient absorption spectroscopy is used to monitor the intermediates involved in the initiation mechanism. Photoproduct analysis indicates formation of methyl radicals as a result of DMSO oxidation. Furthermore, we show that the solvent outcompetes the chain transfer agent for interacting with the excited-state anthraquinone. These observations have a broad impact on photoinduced polymerizations performed in DMSO as many photocatalysts are strong oxidants in the excited state and are capable of reacting with the solvent. Therefore, the role of the solvent needs to be more carefully considered when proposing mechanisms for photoinduced polymerizations in DMSO.
Collapse
Affiliation(s)
- Matthew D Thum
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Donald Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| |
Collapse
|
37
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
38
|
Zhang X, Jiang Y, Ma Q, Hu S, Liao S. Metal-Free Cationic Polymerization of Vinyl Ethers with Strict Temporal Control by Employing an Organophotocatalyst. J Am Chem Soc 2021; 143:6357-6362. [PMID: 33900068 DOI: 10.1021/jacs.1c02500] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By virtue of spatiotemporal control over the chain propagating, visible-light-regulated organocatalytic photoredox cationic polymerization provides an appealing approach for the construction of metal-free, well-defined polymers and materials. However, so far, organic photocatalysts capable of mediated cationic polymerization of vinyl ethers are quite limited, and the photocontrol or efficiency is often eroded due to the difficulty in achieving a good activation-deactivation balance, which is greatly dependent on the redox property of the catalyst. Here, we introduce a new type of organic photocatalysts, bisphosphonium salts, which show high performance in the photoregulated reversible addition-fragmentation chain transfer cationic polymerization of vinyl ethers and allow the synthesis of poly(vinyl ethers) with predictable molecular weights and narrow dispersities at low ppm catalyst loadings under visible light. In particular, the tunable redox potential and excellent stability endow the bisphosphonium salts strict temporal control, thus enabling the metal-free polymerization with a halt in a long dark period.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Siping Hu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
39
|
Hola E, Ortyl J. Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – Perspectives on catalyst design and performance. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Trusiano G, Vitale A, Pulfer J, Newton J, Joly-Duhamel C, Friesen CM, Bongiovanni R. Novel perfluoropolyalkylethers monomers: synthesis and photo-induced cationic polymerization. Colloid Polym Sci 2021; 299:1173-1188. [PMID: 34720334 PMCID: PMC8550325 DOI: 10.1007/s00396-021-04838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Several difunctional oligomers were synthesized by functionalizing perfluoropolyalkylether (PFPAE) chains with different vinyl ethers and epoxides end-groups. Due to their innate synthetic challenges and demanding purification protocols, the PFPAE derivatives were obtained in low yield and with an average functionality lower than 2. However, the functionalized PFPAE oligomers were successful in being used in photo-induced cationic polymerization processes, obtaining transparent and soft films. The influences of the fluorinated chains, and various end-groups on the photopolymerization process were investigated, as well their chemical stability, thermal degradation, and surface properties. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00396-021-04838-1.
Collapse
Affiliation(s)
- Giuseppe Trusiano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Jason Pulfer
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley City, BC V2Y 1Y1 Canada
| | - Josiah Newton
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley City, BC V2Y 1Y1 Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Christine Joly-Duhamel
- University of Montpellier, Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Cedex 5, 34095 Montpellier, France
| | - Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley City, BC V2Y 1Y1 Canada
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
41
|
Sambiagio C, Ferrari M, van Beurden K, Ca’ ND, van Schijndel J, Noël T. Continuous-Flow Synthesis of Pyrylium Tetrafluoroborates: Application to Synthesis of Katritzky Salts and Photoinduced Cationic RAFT Polymerization. Org Lett 2021; 23:2042-2047. [PMID: 33650879 PMCID: PMC8041383 DOI: 10.1021/acs.orglett.1c00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 11/29/2022]
Abstract
Katritzky salts have emerged as effective alkyl radical sources upon metal- or photocatalysis. These are typically prepared from the corresponding triarylpyrylium ions, in turn an important class of photocatalysts for small molecules synthesis and photopolymerization. Here, a flow method for the rapid synthesis of both pyrylium and Katrizky salts in a telescoped fashion is reported. Moreover, several pyrylium salts were tested in the photoinduced RAFT polymerization of vinyl ethers under flow and batch conditions.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Matteo Ferrari
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Koen van Beurden
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Nicola della Ca’
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Jack van Schijndel
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Timothy Noël
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
42
|
Spring SW, Smith-Sweetser RO, Rosenbloom SI, Sifri RJ, Fors BP. Sustainable thermoplastic elastomers produced via cationic RAFT polymerization. Polym Chem 2021. [DOI: 10.1039/d0py01640c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cationic polymerization enables production of sustainable thermoplastic elastomers constructed from renewable vinyl ethers and -p-methoxystyrene with properties consistent with their petroleum-derived counterparts.
Collapse
Affiliation(s)
- Scott W. Spring
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | | | | | - Renee J. Sifri
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
43
|
Zhang X, Ma Q, Jiang Y, Hu S, Li J, Liao S. Visible light-regulated organocatalytic ring-opening polymerization of lactones by harnessing excited state acidity. Polym Chem 2021. [DOI: 10.1039/d0py01715a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free ring-opening polymerization of lactones has been developed using PyOH as a photocatalyst under visible light mediation.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Siping Hu
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Junfang Li
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
44
|
Wang G, Li X, Wang X, Zhang K. Efficient cascade reactions for luminescent pyrylium biolabels catalysed by light rare-earth elements. NEW J CHEM 2021. [DOI: 10.1039/d1nj01793d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent pyrylium salts have been efficiently synthesized from cascade reactions, coupled to supramolecular assembly and used for protein labeling.
Collapse
Affiliation(s)
- Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- 345 Lingling Road
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- 345 Lingling Road
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- 345 Lingling Road
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- 345 Lingling Road
| |
Collapse
|
45
|
Wu X, Ma G, Peng X, Ning Z, Lin Z, Chen X, Tang Y, Feng P. Photoredox initiated azole-nucleophilic addition: oxo-azolation of gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00701g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protocol for photoredox initiated oxo-azolation of gem-difluoroalkenes has been demonstrated. The strategy offers a facile access to a series of synthetically useful azolated difluoroacetonarenes and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Xing Wu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guojian Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xichao Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zuozhou Ning
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zirun Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoguang Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yu Tang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
47
|
Hotta D, Kanazawa A, Aoshima S. tert-Butyl Esters as Potential Reversible Chain Transfer Agents for Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization of Vinyl Ethers and Oxiranes. Macromol Rapid Commun 2020; 42:e2000479. [PMID: 33200479 DOI: 10.1002/marc.202000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
tert-Butyl esters are demonstrated to function as chain transfer agents (CTAs) in the cationic copolymerization of vinyl ether (VE) and oxirane via concurrent vinyl-addition and ring-opening mechanisms. In the copolymerization of isopropyl VE and isobutylene oxide (IBO), the IBO-derived propagating species reacts with tert-butyl acetate to generate a copolymer chain with an acetoxy group at the ω-end. This reaction liberates a tert-butyl cation; hence, a polymer chain with a tert-butyl group at the α-end is subsequently generated. Other tert-butyl esters also function as CTAs, and the substituent attached to the carbonyl group affects the chain transfer efficiency. In addition, ethyl acetate does not function as a CTA, which suggests the importance of the liberation of a tert-butyl cation for the chain transfer process. Chain transfer reactions by tert-butyl esters potentially occur reversibly through the reaction of the propagating cation with the ester group at the ω-end of another chain.
Collapse
Affiliation(s)
- Daisuke Hotta
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
48
|
Li Y, Wang H, Li X. Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the construction of complex macrocycles and metallo-supramolecules. Chem Sci 2020; 11:12249-12268. [PMID: 34123226 PMCID: PMC8163312 DOI: 10.1039/d0sc04585c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Over one century after its discovery, pyrylium salt chemistry has been extensively applied in preparing light emitters, photocatalysts, and sensitizers. In most of these studies, pyrylium salts acted as versatile precursors for the preparation of small molecules (such as furan, pyridines, phosphines, pyridinium salts, thiopyryliums and betaine dyes) and poly(pyridinium salt)s. In recent decades, pyrylium salt chemistry has emerged as a powerful approach for constructing complex macrocycles and metallo-supramolecules. In this perspective, we attempt to summarize the representative efforts of synthesizing and self-assembling large, complex architectures using pyrylium salt chemistry. We believe that this perspective not only highlights the recent achievements in pyrylium salt chemistry, but also inspires us to revisit this chemistry to design and construct macrocycles and metallo-supramolecules with increasing complexity and desired function.
Collapse
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
- Department of Chemistry, University of South Florida Tampa Florida 33620 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 China
| |
Collapse
|
49
|
Dutta S, Saha A. Iodine mediated direct coupling of benzylic alcohols with dithiocarbamate anions: An easy access of S-benzyl dithiocarbamate esters under neat reaction condition. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|