1
|
Peng B, Wang Z, Jiang J, Huang Y, Liu W. Investigation of ultrafast intermediate states during singlet fission in lycopene H-aggregate using femtosecond stimulated Raman spectroscopy. J Chem Phys 2024; 160:194304. [PMID: 38757619 DOI: 10.1063/5.0200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) → 11Bu- → S1 (21Ag-) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.
Collapse
Affiliation(s)
- Bo Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Hao JF, Qi CH, Yu BY, Wang HY, Gao RY, Yamano N, Ma F, Wang P, Xin YY, Zhang CF, Yu LJ, Zhang JP. Light-Quality-Adapted Carotenoid Photoprotection in the Photosystem of Roseiflexus castenholzii. J Phys Chem Lett 2024:3470-3477. [PMID: 38512331 DOI: 10.1021/acs.jpclett.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Bu-Yang Yu
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Hao-Yi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yue-Yong Xin
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Chun-Feng Zhang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
4
|
Dong J, Wang P. Discovery of ultra-weakly coupled β-carotene J-aggregates by machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123950. [PMID: 38277780 DOI: 10.1016/j.saa.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Carotenoid aggregates are omnipresent in natural world and can be synthesized in hydrophilic environments. Despite different types of carotenoid aggregates have been reported hitherto, the way to predict the formation of carotenoid aggregates, i.e. H- or J-aggregates, is still challenging. Here, for the first time, we established machine learning models that can predict the formation behavior of carotenoid aggregates. The models are trained based on a database containing different types of carotenoid aggregates reported in the literatures. With the help of these machine learning models, we found a series of unknown types of β-carotene J-aggregates. These novel aggregates are ultra-weakly coupled and have absorption bands up to 700 nm, different from all the carotenoid aggregates reported previously. Our work demonstrates that the machine learning is a powerful tool to predict the formation behavior of carotenoid aggregates and can further lead into the discovery of new carotenoid aggregates for different applications.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
5
|
Hao JF, Yamano N, Qi CH, Zhang Y, Ma F, Wang P, Yu LJ, Zhang JP. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting-Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. J Phys Chem B 2023; 127:10360-10369. [PMID: 37983555 DOI: 10.1021/acs.jpcb.3c07087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
6
|
Sutherland G, Pidgeon JP, Lee HKH, Proctor MS, Hitchcock A, Wang S, Chekulaev D, Tsoi WC, Johnson MP, Hunter CN, Clark J. Twisted Carotenoids Do Not Support Efficient Intramolecular Singlet Fission in the Orange Carotenoid Protein. J Phys Chem Lett 2023; 14:6135-6142. [PMID: 37364284 PMCID: PMC10331831 DOI: 10.1021/acs.jpclett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.
Collapse
Affiliation(s)
- George
A. Sutherland
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - James P. Pidgeon
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Harrison Ka Hin Lee
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew S. Proctor
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Shuangqing Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Wing Chung Tsoi
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Jenny Clark
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| |
Collapse
|
7
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Rivas A, Castiñeira M, Álvarez R, Vaz B, de Lera AR. Stereoselective Synthesis of Bisfuranoxide (Aurochrome, Auroxanthin) and Monofuranoxide (Equinenone 5',8'-Epoxide) Carotenoids by Double Horner-Wadsworth-Emmons Reaction. JOURNAL OF NATURAL PRODUCTS 2022; 85:2302-2311. [PMID: 36121920 PMCID: PMC9693700 DOI: 10.1021/acs.jnatprod.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The stereoselective synthesis of C40-all-trans-carotenoids with the formal hexahydrobenzofuran skeletons aurochrome, auroxanthin, and equinenone-5',8'-epoxide is reported. The synthesis is based on a one-pot or stepwise double Horner-Wadsworth-Emmons (HWE) reaction of a terminal enantiopure C15-5,6-epoxycyclohexadienylphosphonate and a central C10-trienedial. The ring expansion of the epoxycyclohexadienylphosphonate, generated by a Stille cross-coupling reaction, to the hexahydrobenzofuran skeleton was promoted by the reaction conditions of the HWE reaction prior to double-bond formation.
Collapse
Affiliation(s)
- Aurea Rivas
- CINBIO, Universidade de Vigo, Department
of Organic Chemistry, Galicia Sur Health Research Institute (IIS Galicia
Sur),, 36310 Vigo, Spain
| | - Marta Castiñeira
- CINBIO, Universidade de Vigo, Department
of Organic Chemistry, Galicia Sur Health Research Institute (IIS Galicia
Sur),, 36310 Vigo, Spain
| | - Rosana Álvarez
- CINBIO, Universidade de Vigo, Department
of Organic Chemistry, Galicia Sur Health Research Institute (IIS Galicia
Sur),, 36310 Vigo, Spain
| | - Belén Vaz
- CINBIO, Universidade de Vigo, Department
of Organic Chemistry, Galicia Sur Health Research Institute (IIS Galicia
Sur),, 36310 Vigo, Spain
| | - Angel R. de Lera
- CINBIO, Universidade de Vigo, Department
of Organic Chemistry, Galicia Sur Health Research Institute (IIS Galicia
Sur),, 36310 Vigo, Spain
| |
Collapse
|
9
|
Santra S, Ray J, Ghosh D. Mechanism of Singlet Fission in Carotenoids from a Polyene Model System. J Phys Chem Lett 2022; 13:6800-6805. [PMID: 35856845 DOI: 10.1021/acs.jpclett.2c02000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Singlet fission (SF) is the process of formation of multiple excitons (triplet) from a locally excited singlet state. The mechanism of SF in polyacenes has been shown to proceed via a charge transfer intermediate state. However, carotenoids are not understood in the context of SF. This is possibly due to the complicated multireference nature of the low-lying excited states of carotenoids and the presence of a dark 21Ag state below the optically bright 1Bu state. In this work, we show that the dark Ag state in polyenes and/or carotenoids, along with the charge transfer states, plays a pivotal role in the SF process. We notice that the relative importance of these states varies with a change in geometry and the overall presence of multiple pathways is crucial to the success of the SF process in carotenoid aggregates and disordered geometries.
Collapse
Affiliation(s)
- Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmoy Ray
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Zhang Y, Qi CH, Yamano N, Wang P, Yu LJ, Wang-Otomo ZY, Zhang JP. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. J Phys Chem Lett 2022; 13:3534-3541. [PMID: 35420425 DOI: 10.1021/acs.jpclett.2c00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | | | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| |
Collapse
|
11
|
Kundu A, Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J Phys Chem Lett 2021; 12:1468-1474. [PMID: 33528257 DOI: 10.1021/acs.jpclett.0c03301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular triplet excitons produced through singlet fission (SF) usually have shorter triplet lifetimes due to exciton-exciton recombination and relaxation pathways, thereby resulting in complex device architectures for SF-boosted solar cells. Using broadband transient absorption spectroscopy, we here show that the photoexcitation of nanostructured lycopene H-aggregates at room temperature produces free triplets with an unprecedented 35-fold enhancement in the lifetime compared to those localized on the monomer backbone. The observed rise of a spectrally blue-shifted correlated T-T pair state in ∼19 ps with distinct vibronic features provides the basis for SF-induced triplet generation.
Collapse
Affiliation(s)
- Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
12
|
Wang M, Shi Y, Guo Y, Chen Y, Zhao C, Zhou Y, Xiao Y, Wang Y, Zhang S, Jin B, Wu Z, Zhao G. Nonadiabatic dynamics Mechanisms of natural UV Photoprotection ompounds chlorogenic acid and isochlorogenic acid a: Double conjugated structures but single photoexcited channel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Optical Projection and Spatial Separation of Spin-Entangled Triplet Pairs from the S1 (21 Ag–) State of Pi-Conjugated Systems. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Sutherland GA, Polak D, Swainsbury DJK, Wang S, Spano FC, Auman DB, Bossanyi DG, Pidgeon JP, Hitchcock A, Musser AJ, Anthony JE, Dutton PL, Clark J, Hunter CN. A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. J Am Chem Soc 2020; 142:13898-13907. [PMID: 32672948 DOI: 10.1021/jacs.0c05477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.
Collapse
Affiliation(s)
- George A Sutherland
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Daniel Polak
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Shuangqing Wang
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dirk B Auman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David G Bossanyi
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - James P Pidgeon
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Kentucky 40511, United States
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
15
|
Tamura H, Ishikita H. Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics. J Phys Chem A 2020; 124:5081-5088. [PMID: 32482065 DOI: 10.1021/acs.jpca.0c02228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyze the quenching mechanism of singlet molecular oxygen (1O2) by carotenoids, namely lycopene, β-carotene, astaxanthin, and lutein, by means of quantum dynamics calculations and ab initio calculations. The singlet carotenoid (1Car) and 1O2 molecules can form a weakly bound complex via donation of electron density from the highest occupied molecular orbital (HOMO) of the carotenoid to the πg* orbitals of 1O2. The Dexter-type superexchange via charge transfer states (Car•+/O2•-) governs the 1O2 quenching. The Car•+/O2•- states are substantially higher in energy (2-4 eV) than the initial 1Car/1O2 states. The quantum dynamics calculations indicate an ultrafast 1O2 quenching on a timescale of subpicosecond owing to the strong electronic couplings in the carotenoid/O2 complexes. The superexchange mechanism via the Car•+/O2•- states dominates the 1O2 quenching, although the direct two-electron coupling can also play a certain role.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
16
|
Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148186. [PMID: 32171793 DOI: 10.1016/j.bbabio.2020.148186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
The light-harvesting complexes II (LHCIIs) of spinach and Bryopsis corticulans as a green alga are similar in structure, but differ in carotenoid (Car) and chlorophyll (Chl) compositions. Carbonyl Cars siphonein (Spn) and siphonaxanthin (Spx) bind to B. corticulans LHCII likely in the sites as a pair of lutein (Lut) molecules bind to spinach LHCII in the central domain. To understand the light-harvesting and photoprotective properties of the algal LHCII, we compared its excitation dynamics and relaxation to those of spinach LHCII been well documented. It was found that B. corticulans LHCII exhibited a substantially longer chlorophyll (Chl) fluorescence lifetime (4.9 ns vs 4.1 ns) and a 60% increase of the fluorescence quantum yield. Photoexcitation populated 3Car* equally between Spn and Spx in B. corticulans LHCII, whereas predominantly at Lut620 in spinach LHCII. These results prove the functional differences of the LHCIIs with different Car pairs and Chl a/b ratios: B. corticulans LHCII shows the enhanced blue-green light absorption, the alleviated quenching of 1Chl*, and the dual sites of quenching 3Chl*, which may facilitate its light-harvesting and photoprotection functions. Moreover, for both types of LHCIIs, the triplet excitation profiles revealed the involvement of extra 3Car* formation mechanisms besides the conventional Chl-to-Car triplet transfer, which are discussed in relation to the ultrafast processes of 1Chl* quenching. Our experimental findings will be helpful in deepening the understanding of the light harvesting and photoprotection functions of B. corticulans living in the intertidal zone with dramatically changing light condition.
Collapse
|
17
|
Gryaznov AA, Klenina IB, Makhneva ZK, Moskalenko AA, Proskuryakov II. The Singlet–Triplet Fission of Carotenoid Excitation in Light-Harvesting Complexes from Thermochromatium tepidum. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919060083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Excited State Properties of Fucoxanthin Aggregates. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Klenina IB, Gryaznov AA, Makhneva ZK, Proskuryakov II. Singlet-triplet Fission of Carotenoid Excitation in the Purple Phototrophic Bacteria Thermochromatium tepidum. DOKL BIOCHEM BIOPHYS 2019; 485:135-137. [DOI: 10.1134/s1607672919020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 11/23/2022]
|
20
|
Basel BS, Hetzer C, Zirzlmeier J, Thiel D, Guldi R, Hampel F, Kahnt A, Clark T, Guldi DM, Tykwinski RR. Davydov splitting and singlet fission in excitonically coupled pentacene dimers. Chem Sci 2019; 10:3854-3863. [PMID: 31015927 PMCID: PMC6461118 DOI: 10.1039/c9sc00384c] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
Singlet fission (SF) allows two charges to be generated from the absorption of a single photon and is, therefore, potentially transformative toward improving solar energy conversion. Key to the present study of SF is the design of pentacene dimers featuring a xanthene linker that strictly places two pentacene chromophores in a rigid arrangement and, in turn, enforces efficient, intramolecular π-overlap that mimics interactions typically found in condensed state (e.g., solids, films, etc.). Inter-chromophore communication ensures Davydov splitting, which plays an unprecedented role toward achieving SF in pentacene dimers. Transient absorption measurements document that intramolecular SF evolves upon excitation into the lower Davydov bands to form a correlated triplet pair at cryogenic temperature. At room temperature, the two spin-correlated triplets, one per pentacene moiety within the dimers, are electronically coupled to an excimer state. The presented results are transferable to a broad range of acene morphologies including aggregates, crystals, and films.
Collapse
Affiliation(s)
- Bettina Sabine Basel
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Constantin Hetzer
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Johannes Zirzlmeier
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Dominik Thiel
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Rebecca Guldi
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) , Permoserstr. 15 , D-04318 Leipzig , Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy , Computer-Chemistry-Center (CCC) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nägelsbachstrasse 25 , 91052 Erlangen , Germany .
| | - Dirk Michael Guldi
- Department of Chemistry and Pharmacy , Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Rik R Tykwinski
- Department of Chemistry , University of Alberta , Edmonton , Alberta, T6G 2G2 , Canada .
| |
Collapse
|
21
|
Zhang D, Tan L, Dong J, Yi J, Wang P, Zhang J. Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium Bromide Micelle. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7379-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Yu J, Tan LM, Kawakami T, Wang P, Fu LM, Wang-Otomo ZY, Zhang JP. Cooperative Photoprotection by Multicompositional Carotenoids in the LH1 Antenna from a Mutant Strain of Rhodobacter sphaeroides. J Phys Chem B 2018; 122:8028-8036. [DOI: 10.1021/acs.jpcb.8b06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Ming Tan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
23
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|