1
|
Huang Z, Zhou J, Wang J, Xu S, Cheng C, Ma J, Gao Z. Complementary Distant and Active Site Mutations Simultaneously Enhance Catalytic Activity and Thermostability of α-Galactosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3635-3644. [PMID: 39899880 DOI: 10.1021/acs.jafc.4c12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The industrial applications of enzymes are limited due to the activity-stability trade-off, which implies that the improvement of thermostability often accompanies decreased activity. This study presents a dual-strategy approach to simultaneously improve the catalytic efficiency and thermostability of α-galactosidase galV from Anoxybacillus vitaminiphilus WMF1. Our integrated method combines computational analysis with enzyme property prediction to selectively target and modify the catalytic region and residues that are distant from the active site. We identified and experimentally validated mutations that improve activity without compromising stability and further increased thermostability through additional distant-site mutations. The resulting mutant enzyme variant N549Q/T550N/Y634F demonstrated a 6.2-fold increase in catalytic efficiency and a 3.2-fold improvement in the half-life at 65 °C. Molecular dynamics (MD) simulations supported the structural basis for the observed enhancements. This approach offers a refined strategy for engineering α-galactosidases with improved industrial applicability, overcoming the traditional trade-offs between enzyme activity and stability. Hydrolytic activity toward raffinose family oligosaccharides (RFOs) was validated using soymilk as a model substrate, demonstrating significant practical potential.
Collapse
Affiliation(s)
- Zhuangzhuang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Junru Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Sheng Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Jiangfeng Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing, Jiangsu 211816, China
| |
Collapse
|
2
|
Liu X, Yang S, Sun M, Gao AX, Fan Z, Yang Y, Zheng P, Liu C, Li Y, Bai Z. Enhanced molecular stability of ApxII antigen during secretion in Corynebacterium glutamicum by rational design. J Biotechnol 2024; 394:73-84. [PMID: 39173715 DOI: 10.1016/j.jbiotec.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ApxII is a vaccine antigen used to protect against porcine contagious pleuropneumonia, which is a significant threat to the pig industry. Here, we aimed to improve the proteolytic degradation stability of ApxII during its secretion by establishing a complete screening process of stable variants through bioinformatics and site-directed mutagenesis. We employed a combination of semi-rational and rational design strategies to create 34 single-point variants of ApxII. Among them, R114E and T115D variants exhibited better stability without compromising antigen activity. Furthermore, we constructed a multi-site variant, R114E/T115D, which demonstrated the best stability, activity, and yield. Protein stability and molecular dynamic analysis indicated that the greater solubility and lower structural expansion coefficient might explain the increased stability of R114E/T115D. Additionally, site T115 was identified as a key point of truncated ApxII stability. The R114E/T115D variant, with its proven stability and intact antigenic activity, holds promising prospects for industrial-scale applications in the prevention of porcine contagious pleuropneumonia.
Collapse
Affiliation(s)
- Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shujie Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Manman Sun
- Key laboratory of high magnetic field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziming Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi 83000, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Lu ZY, Liao X, Jing WW, Liu KK, Ren QG, He YC, Hu D. Rational mutagenesis of an epoxide hydrolase and its structural mechanism for the enantioselectivity improvement toward chiral ortho-fluorostyrene oxide. Int J Biol Macromol 2024; 282:136864. [PMID: 39476898 DOI: 10.1016/j.ijbiomac.2024.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Chiral (S)-o-fluorostyrene oxide (oFSO) and vicinal diol (R)-o-fluorophenylethane-1,2-diol (oFPED) are important intermediates for synthesizing treatments for neuropathic diseases. This study aimed to engineer Aspergillus usamii epoxide hydrolase (AuEH2) through a rational mutagenesis strategy to customize high enantioselectivity mutant for rac-oFSO. Out of 181 single-site mutants screened, six showed elevated enantiomeric ratio (E value) ranging from 32 to 108 according to E value and activity mutability landscapes. By combinatorial mutagenesis of A250I with other five single-site mutants, we constructed five double-site mutants, with the best-performing mutant, D5 (A250I/L344V), achieving an E value of 180. This mutant enabled the efficient kinetic resolution of 400 mM rac-oFSO in pure water system using E. coli/Aueh2A250I/L344V, yielding (S)-oFSO (>99 % ees, 50 % yields) and (R)-oFPED (>99 % eep, 50 % yieldp) with space-time yields (STYs) of 331.5 and 376.1 g/L/d, respectively. Combining crystal structure resolution with theoretical computations clarified the enantioselectivity mechanism of D5, demonstrating that A250I reduced the funnel-shaped substrate binding pocket (SBP) while L344V extended its bottom, enhancing specific recognition of (R)-oFSO and inhibiting (S)-oFSO hydrolysis. These findings provide valuable insights for designing highly enantioselective enzyme mutants, advancing the field of asymmetric synthesis of chiral compounds using green biocatalytic processes.
Collapse
Affiliation(s)
- Zhi-Yi Lu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xiang Liao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wei-Wei Jing
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Kang-Kai Liu
- Changzhou Kaikang Biotechnology Co., Ltd., Changzhou 213164, PR China
| | - Qing-Gong Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
4
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
5
|
Wang J, Lu X, Zhuge B, Zong H. Enhancing the catalytic efficiency of M32 carboxypeptidase by semi-rational design and its applications in food taste improvement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7375-7385. [PMID: 38666395 DOI: 10.1002/jsfa.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Xie T, Zhou L, Han L, You C, Liu Z, Cui W, Cheng Z, Guo J, Zhou Z. Engineering hyperthermophilic pullulanase to efficiently utilize corn starch for production of maltooligosaccharides and glucose. Food Chem 2024; 446:138652. [PMID: 38402758 DOI: 10.1016/j.foodchem.2024.138652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.
Collapse
Affiliation(s)
- Ting Xie
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Cuiping You
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Junling Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
7
|
Dong S, Xuan J, Feng Y, Cui Q. Deciphering the stereo-specific catalytic mechanisms of cis-epoxysuccinate hydrolases producing L(+)-tartaric acid. J Biol Chem 2024; 300:105635. [PMID: 38199576 PMCID: PMC10869282 DOI: 10.1016/j.jbc.2024.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Microbial epoxide hydrolases, cis-epoxysuccinate hydrolases (CESHs), have been utilized for commercial production of enantiomerically pure L(+)- and D(-)-tartaric acids for decades. However, the stereo-catalytic mechanism of CESH producing L(+)-tartaric acid (CESH[L]) remains unclear. Herein, the crystal structures of two CESH[L]s in ligand-free, product-complexed, and catalytic intermediate forms were determined. These structures revealed the unique specific binding mode for the mirror-symmetric substrate, an active catalytic triad consisting of Asp-His-Glu, and an arginine providing a proton to the oxirane oxygen to facilitate the epoxide ring-opening reaction, which has been pursued for decades. These results provide the structural basis for the rational engineering of these industrial biocatalysts.
Collapse
Affiliation(s)
- Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Li S, Cao L, Yang X, Wu X, Xu S, Liu Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 374:128792. [PMID: 36842511 DOI: 10.1016/j.biortech.2023.128792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The performance of β-glucosidase during cellulose saccharification is determined by thermostability, activity and glucose tolerance. However, conflicts between them make it challenging to simultaneously optimize three properties. In this work, such a case was reported using Bgl6-M3 as a starting point. Firstly, four thermostability-enhancing mutations were obtained using computer-aided engineering strategies (mutant M7). Secondly, substrate binding pocket of M7 was reshaped, generating two mutations that increased activity but decreased glucose tolerance (mutant M9). Then a key region lining active site cavity was redesigned, resulting in three mutations that boosted glucose tolerance and activity. Finally, mutant M12 with simultaneously improved thermostability (half-life of 20-fold), activity (kcat/Km of 5.6-fold) and glucose tolerance (ΔIC50 of 200 mM) was obtained. Mechanisms for property improvement were elucidated by structural analysis and molecular dynamics simulations. Overall, the strategies used here and new insights into the underlying mechanisms may provide guidance for multi-property engineering of other enzymes.
Collapse
Affiliation(s)
- Shuifeng Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lichuang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangpeng Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangrui Wu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shujing Xu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
9
|
Li JK, Qu G, Li X, Tian Y, Cui C, Zhang FG, Zhang W, Ma JA, Reetz MT, Sun Z. Rational enzyme design for enabling biocatalytic Baldwin cyclization and asymmetric synthesis of chiral heterocycles. Nat Commun 2022; 13:7813. [PMID: 36535947 PMCID: PMC9763437 DOI: 10.1038/s41467-022-35468-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral heterocyclic compounds are needed for important medicinal applications. We report an in silico strategy for the biocatalytic synthesis of chiral N- and O-heterocycles via Baldwin cyclization modes of hydroxy- and amino-substituted epoxides and oxetanes using the limonene epoxide hydrolase from Rhodococcus erythropolis. This enzyme normally catalyzes hydrolysis with formation of vicinal diols. Firstly, the required shutdown of the undesired natural water-mediated ring-opening is achieved by rational mutagenesis of the active site. In silico enzyme design is then continued with generation of the improved mutants. These variants prove to be versatile catalysts for preparing chiral N- and O-heterocycles with up to 99% conversion, and enantiomeric ratios up to 99:1. Crystal structural data and computational modeling reveal that Baldwin-type cyclizations, catalyzed by the reprogrammed enzyme, are enabled by reshaping the active-site environment that directs the distal RHN and HO-substituents to be intramolecular nucleophiles.
Collapse
Affiliation(s)
- Jun-Kuan Li
- grid.33763.320000 0004 1761 2484Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 China ,grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Ge Qu
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xu Li
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yuchen Tian
- grid.33763.320000 0004 1761 2484Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 China
| | - Chengsen Cui
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Fa-Guang Zhang
- grid.33763.320000 0004 1761 2484Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 China
| | - Wuyuan Zhang
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jun-An Ma
- grid.33763.320000 0004 1761 2484Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 China
| | - Manfred T. Reetz
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,grid.419607.d0000 0001 2096 9941Biocatalysis Section, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Zhoutong Sun
- grid.9227.e0000000119573309Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
10
|
Fu Y, Chen H, Fu W, Garcia-Borràs M, Yang Y, Liu P. Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. J Am Chem Soc 2022; 144:13344-13355. [PMID: 35830682 PMCID: PMC9339536 DOI: 10.1021/jacs.2c04937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New-to-nature radical biocatalysis has recently emerged as a powerful strategy to tame fleeting open-shell intermediates for stereoselective transformations. In 2021, we introduced a novel metalloredox biocatalysis strategy that leverages the innate redox properties of the heme cofactor of P450 enzymes, furnishing new-to-nature atom-transfer radical cyclases (ATRCases) with excellent activity and stereoselectivity. Herein, we report a combined computational and experimental study to shed light on the mechanism and origins of enantioselectivity for this system. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) calculations revealed an unexpected role of the key beneficial mutation I263Q. The glutamine residue serves as an essential hydrogen bond donor that engages with the carbonyl moiety of the substrate to promote bromine atom abstraction and enhance the enantioselectivity of radical cyclization. Therefore, the evolved ATRCase is a bifunctional biocatalyst, wherein the heme cofactor enables atom-transfer radical biocatalysis, while the hydrogen bond donor residue further enhances the activity and enantioselectivity. Unlike many enzymatic stereocontrol rationales based on a rigid substrate binding model, our computations demonstrate a high degree of rotational flexibility of the allyl moiety in an enzyme-substrate complex and succeeding intermediates. Therefore, the enantioselectivity is controlled by the radical cyclization transition states rather than the substrate orientation in ground-state complexes in the preceding steps. During radical cyclization, anchoring effects of the Q263 residue and steric interactions with the heme cofactor concurrently control the π-facial selectivity, allowing for highly enantioselective C-C bond formation. Our computational findings are corroborated by experiments with ATRCase mutants generated from site-directed mutagenesis.
Collapse
Affiliation(s)
- Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catalisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Xu Q, Huang KS, Wang YF, Wang HH, Cui BD, Han WY, Chen YZ, Wan NW. Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Kai-Shun Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Fei Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
12
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Dong Y, Li T, Zhang S, Sanchis J, Yin H, Ren J, Sheng X, Li G, Reetz MT. Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Agricultural Microbiomics and Precision Application − Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany
| |
Collapse
|
14
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Liu YY, Wu MD, Zhu XX, Zhang XD, Zhang C, Xu YH, Wu MC. Remarkable improvement in the regiocomplementarity of a Glycine max epoxide hydrolase by reshaping its substrate-binding pocket for the enantioconvergent preparation of (R)-hexane-1,2-diol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Shukla V, Runthala A, Rajput VS, Chandrasai PD, Tripathi A, Phulara SC. Computational and synthetic biology approaches for the biosynthesis of antiviral and anticancer terpenoids from Bacillus subtilis. Med Chem 2021; 18:307-322. [PMID: 34254925 DOI: 10.2174/1573406417666210712211557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Recent advancements in medicinal research have identified several antiviral and anticancer terpenoids that are usually deployed as a source of flavor, fragrances and pharmaceuticals. Under the current COVID-19 pandemic conditions, natural therapeutics with least side effects are the need of the hour to save the patients, especially, which are pre-affected with other medical complications. Although, plants are the major sources of terpenoids; however, for the environmental concerns, the global interest has shifted to the biocatalytic production of molecules from microbial sources. The gram-positive bacterium Bacillus subtilis is a suitable host in this regard due to its GRAS (generally regarded as safe) status, ease in genetic manipulations and wide industrial acceptability. The B. subtilis synthesizes its terpenoid molecules from 1-deoxy-d-xylulose-5-phosphate (DXP) pathway, a common route in almost all microbial strains. Here, we summarize the computational and synthetic biology approaches to improve the production of terpenoid-based therapeutics from B. subtilis by utilizing DXP pathway. We focus on the in-silico approaches for screening the functionally improved enzyme-variants of the two crucial enzymes namely, the DXP synthase (DXS) and farnesyl pyrophosphate synthase (FPPS). The approaches for engineering the active sites are subsequently explained. It will be helpful to construct the functionally improved enzymes for the high-yield production of terpenoid-based anticancer and antiviral metabolites, which would help to reduce the cost and improve the availability of such therapeutics for the humankind.
Collapse
Affiliation(s)
- Vibha Shukla
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, India
| | - Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, India
| | | | - Potla Durthi Chandrasai
- Department of Biotechnology, National Institute of Technology Warangal, Warangal-506004, Telangana, India
| | - Anurag Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, India
| |
Collapse
|
17
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Ao YF, Hu HJ, Zhao CX, Chen P, Huang T, Chen H, Wang QQ, Wang DX, Wang MX. Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Juan Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Cheng-Xin Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Liu Z, Zhang R, Zhang W, Xu Y. Ile258Met mutation of Brucella melitensis 7α-hydroxysteroid dehydrogenase significantly enhances catalytic efficiency, cofactor affinity, and thermostability. Appl Microbiol Biotechnol 2021; 105:3573-3586. [PMID: 33937927 DOI: 10.1007/s00253-021-11299-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
NAD(H)-dependent 7α-hydroxysteroid dehydrogenase catalyzes the oxidation of chenodeoxycholic acid to 7-oxolithocholic acid. Here, we designed mutations of Ile258 adjacent to the catalytic pocket of Brucella melitensis 7α-hydroxysteroid dehydrogenase. The I258M variant gave a 4.7-fold higher kcat, but 4.5-fold lower KM, compared with the wild type, resulting in a 21.8-fold higher kcat/KM value for chenodeoxycholic acid oxidation. It presented a 2.0-fold lower KM value with NAD+, suggesting stronger binding to the cofactor. I258M produced 7-oxolithocholic acid in the highest yield of 92.3% in 2 h, whereas the wild-type gave 88.4% in 12 h. The I258M mutation increased the half-life from 20.8 to 31.1 h at 30 °C. Molecular dynamics simulations indicated increased interactions and a modified tunnel improved the catalytic efficiency, and enhanced rigidity at three regions around the ligand-binding pocket increased the enzyme thermostability. This is the first report about significantly improved catalytic efficiency, cofactor affinity, and enzyme thermostability through single site-mutation of Brucella melitensis 7α-hydroxysteroid dehydrogenase. KEY POINTS: • Sequence and structure analysis guided the site mutation design. • Thermostability, catalytic efficiency and 7-oxo-LCA production were determined. • MD simulation was performed to indicate the improvement by I258M mutation.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| |
Collapse
|
20
|
Li G, Qin Y, Fontaine NT, Ng Fuk Chong M, Maria‐Solano MA, Feixas F, Cadet XF, Pandjaitan R, Garcia‐Borràs M, Cadet F, Reetz MT. Machine Learning Enables Selection of Epistatic Enzyme Mutants for Stability Against Unfolding and Detrimental Aggregation. Chembiochem 2021; 22:904-914. [PMID: 33094545 PMCID: PMC7984044 DOI: 10.1002/cbic.202000612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.
Collapse
Affiliation(s)
- Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety Ministry of Agriculture, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Youcai Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety Ministry of Agriculture, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Nicolas T. Fontaine
- PEACCELArtificial Intelligence Department6 Square Albin Cachot, Box 4275013ParisFrance) .
| | - Matthieu Ng Fuk Chong
- PEACCELArtificial Intelligence Department6 Square Albin Cachot, Box 4275013ParisFrance) .
| | - Miguel A. Maria‐Solano
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de Girona Campus Montilivi17003Girona, CataloniaSpain) .
| | - Ferran Feixas
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de Girona Campus Montilivi17003Girona, CataloniaSpain) .
| | - Xavier F. Cadet
- PEACCELArtificial Intelligence Department6 Square Albin Cachot, Box 4275013ParisFrance) .
| | - Rudy Pandjaitan
- PEACCELArtificial Intelligence Department6 Square Albin Cachot, Box 4275013ParisFrance) .
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de Girona Campus Montilivi17003Girona, CataloniaSpain) .
| | - Frederic Cadet
- PEACCELArtificial Intelligence Department6 Square Albin Cachot, Box 4275013ParisFrance) .
| | - Manfred T. Reetz
- Department of ChemistryPhilipps-Universität35032MarburgGermany) .
- Max-Planck-Institut fuer Kohlenforschung45470MülheimGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Avenue, Tianjin Airport Economic Area300308TianjinP. R. China
| |
Collapse
|
21
|
Ma R, Su P, Jin B, Guo J, Tian M, Mao L, Tang J, Chen T, Lai C, Zeng W, Cui G, Huang L. Molecular cloning and functional identification of a high-efficiency (+)-borneol dehydrogenase from Cinnamomum camphora (L.) Presl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:363-371. [PMID: 33243711 DOI: 10.1016/j.plaphy.2020.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Cinnamomum camphora (L.) Presl, rich in terpenoids, is an important commercial plant. The monoterpenes borneol and camphor are highly desired compounds that have been widely and diversely used in medicine and spices since ancient times. However, the key enzymes in the biosynthetic pathway of borneol and camphor in C. camphora remains unknown, which limits access to these natural products. Here, the chirality of borneol and camphor were identified in C. camphora leaves. Besides the main (+)-borneol and (+)-camphor, C. camphora also contains small amounts of (-)-borneol and (-)-camphor. Then, CcBDH3 - an efficient (+)-borneol dehydrogenase (BDH) - was identified that catalyzed (+)-borneol into (+)-camphor in the presence of NAD+. The Km value was 25.1 μM with a kcat value of 5.4 × 10-3 s-1 at pH 8.5 and 30 °C. CcBDH3, which also yields (-)-camphor from (-)-borneol as a substrate, had a Km value of 36.9 μM with a kcat of 2.1 × 10-3 s-1, and pH of 8.0 and temperature of 32 °C. We further compared the conformational specificity of two other reported BDHs, ZSD1 and ADH2, and found that ZSD1 had the highest conversion rate with (-)-borneol. These findings provide a new way for the production of camphor with various optical activities by metabolic engineering, and the identified camphor biosynthesis pathway provides the foundation for using genetic engineering to improve the production and purity of (+)-borneol in planta.
Collapse
Affiliation(s)
- Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China; Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, United States.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Mei Tian
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Liuying Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Luqi Huang
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| |
Collapse
|
22
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
23
|
Hu D, Hu BC, Wen Z, Zhang D, Liu YY, Zang J, Wu MC. Nearly perfect kinetic resolution of racemic o-nitrostyrene oxide by AuEH2, a microsomal epoxide hydrolase from Aspergillus usamii, with high enantio- and regio-selectivity. Int J Biol Macromol 2020; 169:1-7. [PMID: 33316339 DOI: 10.1016/j.ijbiomac.2020.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Only a few known epoxide hydrolases (EHs) displayed activity towards o-nitrostyrene oxide (4a), presumably owing to the large steric hindrance caused by o-nitro substituent. Therefore, excavating EHs with high activity and enantio- and/or regio-selectivity towards racemic (rac-) 4a is essential but challenging. Here, AuEH2 from Aspergillus usamii was expressed in E. coli BL21(DE3). E. coli/Aueh2, an E. coli transformant expressing AuEH2, possessed EH activities of 16.2-184 U/g wet cell towards rac-styrene oxide (1a) and its derivatives (2a-13a), and the largest enantiomeric ratio of 96 towards rac-4a. The regioselectivity coefficients, βR and βS, of AuEH2 were determined to be 99.2% and 98.9%, suggesting that it regiopreferentially attacks the Cβ in the oxirane rings of (R)- and (S)-4a. Then, the nearly perfect kinetic resolution of 20 mM rac-4a in pure water was carried out using 20 mg/mL wet cells of E. coli/Aueh2 at 25 °C for 50 min, retaining (S)-4a with over 99% ees and 48.9% yields, while producing (R)-o-nitrophenyl-1,2-ethanediol (4b) with 95.3% eep and 49.8% yieldp. To elucidate the molecular mechanism of AuEH2 with high enantiopreference for (R)-4a, its crystal structure was solved by X-ray diffraction and the molecular docking of AuEH2 with (R)- or (S)-4a was simulated.
Collapse
Affiliation(s)
- Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - You-Yi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jia Zang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
24
|
Zhang L, De BC, Zhang W, Mándi A, Fang Z, Yang C, Zhu Y, Kurtán T, Zhang C. Mutation of an atypical oxirane oxyanion hole improves regioselectivity of the α/β-fold epoxide hydrolase Alp1U. J Biol Chem 2020; 295:16987-16997. [PMID: 33004437 PMCID: PMC7863881 DOI: 10.1074/jbc.ra120.015563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Indexed: 01/13/2023] Open
Abstract
Epoxide hydrolases (EHs) have been characterized and engineered as biocatalysts that convert epoxides to valuable chiral vicinal diol precursors of drugs and bioactive compounds. Nonetheless, the regioselectivity control of the epoxide ring opening by EHs remains challenging. Alp1U is an α/β-fold EH that exhibits poor regioselectivity in the epoxide hydrolysis of fluostatin C (compound 1) and produces a pair of stereoisomers. Herein, we established the absolute configuration of the two stereoisomeric products and determined the crystal structure of Alp1U. A Trp-186/Trp-187/Tyr-247 oxirane oxygen hole was identified in Alp1U that replaced the canonical Tyr/Tyr pair in α/β-EHs. Mutation of residues in the atypical oxirane oxygen hole of Alp1U improved the regioselectivity for epoxide hydrolysis on 1. The single site Y247F mutation led to highly regioselective (98%) attack at C-3 of 1, whereas the double mutation W187F/Y247F resulted in regioselective (94%) nucleophilic attack at C-2. Furthermore, single-crystal X-ray structures of the two regioselective Alp1U variants in complex with 1 were determined. These findings allowed insights into the reaction details of Alp1U and provided a new approach for engineering regioselective epoxide hydrolases.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
26
|
Bassanini I, Ferrandi EE, Monti D, Riva S. Studies on the Catalytic Promiscuity of Limonene Epoxide Hydrolases in the Non‐hydrolytic Ring Opening of 1,2‐Epoxides. Chembiochem 2020; 21:1868-1874. [DOI: 10.1002/cbic.201900694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
- Università degli Studi di MilanoDipartimento di Scienze Farmaceutiche via Mangiagalli 25 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| |
Collapse
|
27
|
Arabnejad H, Bombino E, Colpa DI, Jekel PA, Trajkovic M, Wijma HJ, Janssen DB. Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols. Chembiochem 2020; 21:1893-1904. [PMID: 31961471 PMCID: PMC7383614 DOI: 10.1002/cbic.201900726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Indexed: 12/13/2022]
Abstract
The use of enzymes in preparative biocatalysis often requires tailoring enzyme selectivity by protein engineering. Herein we explore the use of computational library design and molecular dynamics simulations to create variants of limonene epoxide hydrolase that produce enantiomeric diols from meso‐epoxides. Three substrates of different sizes were targeted: cis‐2,3‐butene oxide, cyclopentene oxide, and cis‐stilbene oxide. Most of the 28 designs tested were active and showed the predicted enantioselectivity. Excellent enantioselectivities were obtained for the bulky substrate cis‐stilbene oxide, and enantiocomplementary mutants produced (S,S)‐ and (R,R)‐stilbene diol with >97 % enantiomeric excess. An (R,R)‐selective mutant was used to prepare (R,R)‐stilbene diol with high enantiopurity (98 % conversion into diol, >99 % ee). Some variants displayed higher catalytic rates (kcat) than the original enzyme, but in most cases KM values increased as well. The results demonstrate the feasibility of computational design and screening to engineer enantioselective epoxide hydrolase variants with very limited laboratory screening.
Collapse
Affiliation(s)
- Hesam Arabnejad
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Elvira Bombino
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Dana I. Colpa
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Peter A. Jekel
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Milos Trajkovic
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
28
|
Qian Y, Lu C, Liu J, Song W, Chen X, Luo Q, Liu L, Wu J. Engineering protonation conformation of
l
‐aspartate‐α‐decarboxylase to relieve mechanism‐based inactivation. Biotechnol Bioeng 2020; 117:1607-1614. [DOI: 10.1002/bit.27316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Yuanyuan Qian
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Cui Lu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| | - Jia Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Wei Song
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| | - Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Jing Wu
- School of Pharmaceutical ScienceJiangnan University Wuxi China
| |
Collapse
|
29
|
Hu BC, Hu D, Li C, Xu XF, Wen Z, Wu MC. Near-perfect kinetic resolution of racemic p-chlorostyrene oxide by SlEH1, a novel epoxide hydrolase from Solanum lycopersicum with extremely high enantioselectivity. Int J Biol Macromol 2020; 147:1213-1220. [DOI: 10.1016/j.ijbiomac.2019.10.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023]
|
30
|
Hu D, Zong XC, Xue F, Li C, Hu BC, Wu MC. Manipulating regioselectivity of an epoxide hydrolase for single enzymatic synthesis of (R)-1,2-diols from racemic epoxides. Chem Commun (Camb) 2020; 56:2799-2802. [DOI: 10.1039/d0cc00283f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both the activity and regioselectivity of Phaseolus vulgaris epoxide hydrolase were remarkably improved via reshaping two substrate tunnels based on rational design.
Collapse
Affiliation(s)
- Die Hu
- Wuxi School of Medicine, Jiangnan University
- Wuxi
- China
| | - Xun-Cheng Zong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Feng Xue
- School of Marine and Bioengineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Chuang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University
- Wuxi
- China
| |
Collapse
|
31
|
Hu B, Hu D, Zhang D, Wen Z, Zang J, Wu M. Manipulating the regioselectivity of a Solanum lycopersicum epoxide hydrolase for the enantioconvergent synthesis of enantiopure alkane- and alkene-1,2-diols. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work engineered a superior double-site mutant SlEH1W106T/F189L used for the enantioconvergent biosynthesis of (R)-1b–6b with high eep values.
Collapse
Affiliation(s)
- Bochun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Die Hu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Jia Zang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University
- Wuxi 214002
- China
| | - Minchen Wu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
32
|
Wang B, Wu B, He B. Efficient resolution of 3-aryloxy-1,2-propanediols using CLEA-YCJ01 with high enantioselectivity. RSC Adv 2019; 9:13757-13764. [PMID: 35519562 PMCID: PMC9063935 DOI: 10.1039/c9ra01103j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
The lipase YCJ01 from Burkholderia ambifaria is an organic solvent-stable enzyme and its activity can be activated by a hydrophobic solvent due to the "interface activation" mechanism. The activity of lipase YCJ01 increased by 2.1-fold with t-butanol as the precipitant even after cross-linking. The cross-linked enzyme aggregates of lipase YCJ01 (CLEAs-YCJ01) were found to be efficient for resolving 3-(4-methylphenoxy)-1,2-propanediol (MPPD) through sequential esterification. Excellent enantioselectivity towards MPPD (E > 400), excellent enantiomeric excess (ee) values of 99.2% for S-diacetates and 99.1% for R-monoacetate, and high yield (49.9%) were achieved using a high substrate concentration (180 mmol L-1). Thus, R- and S-type compounds with excellent ee values were simultaneously obtained, and MPPD was resolved by CLEAs-YCJ01. CLEAs-YCJ01 also showed high operational stability and maintained 91.2% residual activity after ten batches. To further evaluate the substrate specificity of CLEAs-YCJ01, a series of 3-aryloxy-1,2-propanediols (six analogues of MPPD) was applied as substrates for resolution. Under the optimized reaction conditions of reaction temperature of 35 °C, MPPD concentration of 180 mmol L-1, molar ratio of vinyl acetate to MPPD of 3 : 1, and isopropyl ether as the solvent, CLEAs-YCJ01 exhibited relatively strict enantioselectivity towards all the analogues of MPPD with a high yield (≥49.3%), favourable ee values (94.8-99.4%) for S-diacetates, and high ee values (92.1-99.2%) for R-monoacetate, which shows potential prospects for industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
33
|
Serapian SA, van der Kamp MW. Unpicking the Cause of Stereoselectivity in Actinorhodin Ketoreductase Variants with Atomistic Simulations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04846] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano A. Serapian
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
- Centre for Computational Chemistry, University of Bristol, Cantock’s
Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
34
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
35
|
Chan HCS, Pan L, Li Y, Yuan S. Rationalization of stereoselectivity in enzyme reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H. C. Stephen Chan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Faculty of Life Sciences University of Bradford Bradford UK
| | - Lu Pan
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai China
| | - Yi Li
- Department of Neurology University of Southern California Los Angeles California
| | - Shuguang Yuan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
36
|
Li A, Sun Z, Reetz MT. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? Chembiochem 2018; 19:2023-2032. [PMID: 30044530 DOI: 10.1002/cbic.201800339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of, Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
- Department of Chemistry; Philipps University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
37
|
Li FL, Kong XD, Chen Q, Zheng YC, Xu Q, Chen FF, Fan LQ, Lin GQ, Zhou J, Yu HL, Xu JH. Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fu-Long Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Qiang Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Guo-Qiang Lin
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahai Zhou
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
38
|
Dong S, Liu X, Cui GZ, Cui Q, Wang X, Feng Y. Structural insight into the catalytic mechanism of a cis-epoxysuccinate hydrolase producing enantiomerically pure d(-)-tartaric acid. Chem Commun (Camb) 2018; 54:8482-8485. [PMID: 30003205 DOI: 10.1039/c8cc04398a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structure determination and mutagenesis analysis of a cis-epoxysuccinate hydrolase which produces enantiomerically pure d(-)-tartaric acids revealed a zinc ion and essential residues in the stereoselective mechanism for the catalytic reaction of the small mirror symmetric substrate.
Collapse
Affiliation(s)
- Sheng Dong
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, Shandong 266101, China.
| | | | | | | | | | | |
Collapse
|
39
|
Maria-Solano MA, Serrano-Hervás E, Romero-Rivera A, Iglesias-Fernández J, Osuna S. Role of conformational dynamics in the evolution of novel enzyme function. Chem Commun (Camb) 2018; 54:6622-6634. [PMID: 29780987 PMCID: PMC6009289 DOI: 10.1039/c8cc02426j] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
Abstract
The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.
Collapse
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Eila Serrano-Hervás
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Adrian Romero-Rivera
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Javier Iglesias-Fernández
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Sílvia Osuna
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
- ICREA
,
Pg. Lluís Companys 23
, 08010 Barcelona
, Spain
| |
Collapse
|
40
|
Rinaldi S, Van der Kamp MW, Ranaghan KE, Mulholland AJ, Colombo G. Understanding Complex Mechanisms of Enzyme Reactivity: The Case of Limonene-1,2-Epoxide Hydrolases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Marc W. Van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|