1
|
Mu Y, Fan J, Gao T, Wang L, Zhang L, Zou X, Zheng W, Zhang YW, Yu ZG, Cui X. Tuning Ru-O Coordination for Switching Redox Centers in Acidic Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202504876. [PMID: 40079801 DOI: 10.1002/anie.202504876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Avoiding lattice oxygen involvement (oxygen redox) while promoting the coupling of adjacent adsorbed oxygen (metal redox) during the acidic oxygen evolution reaction (OER) is essential for gaining high activity and robust stability in RuO2-based catalysts but remains elusive. Here, we present a precise strategy to selectively activate the metal redox process while suppressing the undesired oxygen redox pathway by fine-tuning the Ru-O coordination number in amorphous RuOx. The optimized catalyst exhibits outstanding acidic OER performance, achieving a low overpotential of 215 mV at 10 mA cm-2 and maintaining stability for 300 h with a negligible degradation rate of 100 µV h-1. X-ray absorption measurements and multiple operando spectra reveal that only Ru2-O11 moieties can selectively activate the metal redox process, whereas Ru2-O9 and Ru2-O8 moieties either trigger both redox pathways or bypass them. Theoretical calculations reveal that Ru2-O11 moiety reduces crystal field splitting energy at active Ru sites, disables lattice oxygen activation, and lowers the energy barrier for oxygen coupling. The strategy developed in this work offers new avenues for switching redox centers and refining OER mechanisms to enhance catalytic performance and long-term stability.
Collapse
Affiliation(s)
- Yajing Mu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Tianyi Gao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lei Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Dang K, Wu L, Liu S, Zhao S, Zhang Y, Zhao J. Harnessing Adsorbate-Adsorbate Interaction to Activate C-N Bond for Exceptional Photoelectrochemical Urea Oxidation. Angew Chem Int Ed Engl 2025; 64:e202423457. [PMID: 39828660 DOI: 10.1002/anie.202423457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The photoelectrochemical (PEC) urea oxidation reaction (UOR) presents a promising half-reaction for green hydrogen production, but the stable resonance structure of the urea molecule results in sluggish kinetics for breaking the C-N bond. Herein, we realize the record PEC UOR performance on a NiO-modified n-Si photoanode (NiO@Ni/n-Si) by harnessing the adsorbate-adsorbate interaction. We quantificationally unveil a dependence of the UOR activation barrier on the coverage of photogenerated surface high-valent Ni-oxo species (NiIV=O) by employing operando PEC spectroscopic measurements and theoretical simulations. The strong attraction between NiIV=O and adsorbed urea facilitates their N-O coupling while weakening the C-N bonding within urea, manifesting as the decreased UOR activation energy from 0.74 to 0.41 eV when the surface coverage of NiIV=O is enhanced from zero to full, corresponding to more than two orders of magnitude enhancement for the UOR rate. Furthermore, an industrial-grade photocurrent density of 100 mA cm-2 is achieved at a potential as low as 1.08 VRHE by stimulating the NiIV=O accumulation under 10 Suns, which is 300 mV lower than the potential required for most reported electrochemical counterparts. This work opens new prospects for achieving high-performance PEC urea oxidation via adsorbate-adsorbate interaction.
Collapse
Affiliation(s)
- Kun Dang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siqin Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shenlong Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuchao Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Zhao J, Hao S, Zhao P, Ding J, Li R, Zhang H, Dong S. On-Demand Catalytic Platform for Glycerol Upgrade and Utilization. J Am Chem Soc 2025; 147:9210-9219. [PMID: 39903907 DOI: 10.1021/jacs.4c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Surplus byproducts generated during biomass exploitation, such as glycerol from biodiesel manufacturing, seriously undermine the credibility of renewable energy policies. Here, we establish an on-demand catalytic platform for the upgrade and utilization of glycerol via photoelectro-bioelectro-heterogeneous coupling catalysis. Combining theoretical descriptors, specifically the highest occupied molecular orbital energy levels and dual local softness values, along with systematic experimental validation, we demonstrated the reaction activity of glycerol and its upgraded products on BiVO4 photoelectrodes. Glyceric acid was identified as the optimal biofuel candidate through monohydroxyl oxidation of glycerol. Coupling the preferential upgrading of glycerol to glyceric acid by night and its reuse as biofuel by day, a hybrid biophotoelectrochemical system delivered an open-circuit voltage of 0.89 ± 0.02 V and a maximum power density of 0.41 ± 0.03 mW cm-2 with stable diurnal operation for over 10 days. This successful model construction provides valuable insights into the strategic integration of multiple energy sources and the exploration of coupling-catalytic platforms, charting new territory for the next-generation sustainable energy systems.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Panpan Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiao Ding
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Zhou D, Chang Y, Tang J, Ou P. Mn 0.75Ru 0.25O 2 with Low Ru Concentration for Active and Durable Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412265. [PMID: 39955718 DOI: 10.1002/smll.202412265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Ruthenium has emerged as a promising alternative to iridium in water-splitting anodes. However, it becomes overoxidized and dissolves at industry-relevant working conditions. To enhance the activity and stability of electrocatalysts for oxygen evolution reaction, an isostructural rutile MnRu oxide with low Ru concentration (Mn0.75Ru0.25O2) is synthesized and an asymmetric Mn-O-Ru dual-site active center is developed. It exhibits 154 mV overpotential at 10 mA cm-2 and can operate stably at 200 mA cm-2 for 670 h with a degradation rate of 29 uV/h-1. A proton exchange membrane water electrolyzer achieves stable operation at 1 A cm-2 for 700 h with a degradation rate of 53 uV h-1. Structural analysis and isotopic labeling correlate the asymmetric nature of the Mn-O-Ru dual-site active center, which facilitates the oxygen evolution reaction along the radical coupling pathway, with the stabilization of the cations and the lattice oxygen in isostructural rutile Mn0.75Ru0.25O2.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxin Chang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Jialun Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Ou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Liu S, Dang K, Wu L, Bai S, Zhang Y, Zhao J. Nearly Barrierless Four-Hole Water Oxidation Catalysis on Semiconductor Photoanodes with High Density of Accumulated Surface Holes. J Am Chem Soc 2025; 147:4520-4530. [PMID: 39848796 DOI: 10.1021/jacs.4c16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e., α-Fe2O3, TiO2, WO3, and BiVO4) under concentrated light irradiation, wherein the rate-limiting O-O bond formation step is driven by accumulated surface photogenerated holes that exhibit a superior fourth-order kinetics. The activation energy is about 0.03 eV for the fourth-order kinetic pathway, which is quantitatively estimated by combining the Population model and Butler-Volmer model with the Eyring-like equation and is further confirmed by density functional theory calculations. The WOR rate under this condition shows more than 1 order of magnitude enhancement compared with that of first-, second-, or third-order kinetics. Focusing on α-Fe2O3, the accumulated high-density surface holes form adjacent FeV═O intermediates that effectively activate surface-adsorbed H2O molecules via the hydrogen-bonding effect, as revealed by operando Raman measurements and ab initio molecular dynamics simulations. This work discloses a systematic understanding of the internal relations between activation energy and reaction orders of surface holes for future WOR study.
Collapse
Affiliation(s)
- Siqin Liu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuming Bai
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Li Q, Dang K, Wu L, Liu S, Zhang Y, Zhao J. Regulating Chlorine and Hydrogen Atom Transfer for Selective Photoelectrochemical C─C Coupling by Cu-coordination Effect at Semiconductor/Electrolyte Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408767. [PMID: 39447122 PMCID: PMC11633461 DOI: 10.1002/advs.202408767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Semiconductor-based photoelectrochemical (PEC) organic transformations usually show radical characteristics, in which the reaction selectivity is often difficult to precisely control due to the nonselectivity of radicals. Accordingly, several simple organic reactions (e.g., oxidations of alcohols, aldehydes, and other small molecules) have been widely studied, while more complicated processes like C─C coupling remain challenging. Herein, a synergistic heterogeneous/homogeneous PEC strategy is developed to achieve a controllable radical-induced C─C coupling reaction mediated by the copper-coordination effect at the semiconductor/electrolyte interfaces, which additionally exerts a significant impact on the product regioselectivity. Through experimental studies and theoretical simulations, this study reveals that the copper-chloride complex effectively regulates the formation of chloride radicals, a typical hydrogen atom transfer agent, on semiconductor surfaces and stabilizes the heterogeneous interfaces by suppressing the radical-induced surface passivation. Taking the Minisci reaction (the coupling between 2-phenylquinoline and cyclohexane) as a model, the yield of the target C─C coupling product reaches up to 90% on TiO2 photoanodes with a selectivity of 95% and long-term stability over 100 h. Moreover, such a strategy exhibits a broad scope and can be used for the functionalization of various heteroaromatic hydrocarbons.
Collapse
Affiliation(s)
- Qiaozhen Li
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Kun Dang
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lei Wu
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Siqin Liu
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuchao Zhang
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jincai Zhao
- Key Laboratory of PhotochemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Xu S, Yang J, Su P, Wang Q, Yang X, Zhou Z, Li Y. Identifying key intermediates for the oxygen evolution reaction on hematite using ab-initio molecular dynamics. Nat Commun 2024; 15:10411. [PMID: 39613772 DOI: 10.1038/s41467-024-54796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Hematite is a well-known catalyst for the oxygen evolution reaction on photoanodes in photoelectrochemical water-splitting cells. However, the knowledge of hematite-water interfaces and water oxidation mechanisms is still lacking, which limits improvements in photoelectrochemical water-splitting performance. Herein, we use the Fe-terminated hematite (0001) surface as a model and propose a comprehensive mechanism for the oxygen evolution reaction on both non-solvated and solvated surfaces. Key reaction intermediates are identified through ab initio molecular dynamics simulations at the density functional theory level with a Hubbard U correction. Several notable intermediates are proposed, and the effects of water solvent on these intermediates and the overall reaction mechanisms are suggested. The proposed mechanisms align well with experimental observations under photoelectrochemical water oxidation conditions. Additionally, we highlight the potential role of O2 desorption in the oxygen evolution reaction on hematite, as O2 adsorption may block reaction sites and increases surface hydrophobicity, leading to an unfavorable pathway for oxygen evolution.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Jiarui Yang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Peixian Su
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Qiang Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhaohui Zhou
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China.
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China.
| |
Collapse
|
8
|
Xu C, Wang H, Guo H, Liang K, Zhang Y, Li W, Chen J, Lee JS, Zhang H. Parallel multi-stacked photoanodes of Sb-doped p-n homojunction hematite with near-theoretical solar conversion efficiency. Nat Commun 2024; 15:9712. [PMID: 39521777 PMCID: PMC11550853 DOI: 10.1038/s41467-024-53967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Developing transparent and efficient photoanodes is a challenging but essential task in tandem photoelectrochemical cell for unassisted solar water splitting without an external bias. Here we report construction of p-n homojunction hematite photoanodes by hybrid microwave annealing-induced single antimony doping, which results in the gradually-increased valence states from the surface to the inside by the unique features of hybrid microwave annealing. The Sb-doped p-n homojunction hematite photoanode exhibits improved performance and displays a good transparency, achieving a stable photocurrent density of ~4.21 mA cm-2 at 1.23 VRHE under 100 mW cm-2 solar irradiation, which is comparable to the reported state-of-the-art hematite photoanodes. More importantly, a parallel-connected stack of six photoanodes of transparent p-n homojunction records a near-theoretical photocurrent density of ~10 mA cm-2 at 1.23 VRHE under standard photoelectrochemical water splitting conditions, which serves as a useful reference for hematite photoanodes and promises its practical application for unbiased photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Chenyang Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongxin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongying Guo
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ke Liang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuanming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Weicong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Hemin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
9
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Zabara MA, Ölmez B, Buldu‐Akturk M, Yarar Kaplan B, Kırlıoğlu AC, Alkan Gürsel S, Ozkan M, Ozkan CS, Yürüm A. Photoelectrocatalytic Hydrogen Generation: Current Advances in Materials and Operando Characterization. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400011. [PMID: 39130676 PMCID: PMC11316250 DOI: 10.1002/gch2.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Photoelectrochemical (PEC) hydrogen generation is a promising technology for green hydrogen production yet faces difficulties in achieving stability and efficiency. The scientific community is pushing toward the development of new electrode materials and a better understanding of the underlying reactions and degradation mechanisms. Advances in photocatalytic materials are being pursued through the development of heterojunctions, tailored crystal nanostructures, doping, and modification of solid-solid and solid-electrolyte interfaces. Operando and in situ techniques are utilized to deconvolute the charge transfer mechanisms and degradation pathways. In this review, both materials development and Operando characterization are covered for advancing PEC technologies. The recent advances made in the PEC materials are first reviewed including the applied improvement strategies for transition metal oxides, nitrites, chalcogenides, Si, and group III-V semiconductor materials. The efficiency, stability, scalability, and electrical conductivity of the aforementioned materials along with the improvement strategies are compared. Next, the Operando characterization methods and cite selected studies applied for PEC electrodes are described. Operando studies are very successful in elucidating the reaction mechanisms, degradation pathways, and charge transfer phenomena in PEC electrodes. Finally, the standing challenges and the potential opportunities are discussed by providing recommendations for designing more efficient and electrochemically stable PEC electrodes.
Collapse
Affiliation(s)
| | - Burak Ölmez
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Merve Buldu‐Akturk
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Begüm Yarar Kaplan
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Ahmet Can Kırlıoğlu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Selmiye Alkan Gürsel
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| | - Mihrimah Ozkan
- Department of Electrical and Computer EngineeringUniversity of CaliforniaRiversideCA02521USA
| | - Cengiz Sinan Ozkan
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCA02521USA
| | - Alp Yürüm
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
| |
Collapse
|
11
|
Li M, Wu S, Liu D, Ye Z, Wang L, Kan M, Ye Z, Khan M, Zhang J. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO 2 Methanation. J Am Chem Soc 2024; 146:15538-15548. [PMID: 38769050 DOI: 10.1021/jacs.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 μmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Dongni Liu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Lijie Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Miao Kan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Mazhar Khan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Cao G, Liu Y, Hu J, Qu J, Zhang Z, Xiong X, Sun W, Yang X, Li CM. Alternating 3 rd- to 2 nd-Order Charge Reaction Kinetics on Bismuth Vanadate Photoanodes with Ultrathin Bismuth Metal-Organic-Frameworks. Chemphyschem 2024; 25:e202400141. [PMID: 38462507 DOI: 10.1002/cphc.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
The most challenging obstacle for photocatalysts to efficiently harvest solar energy is the sluggish surface redox reaction (e. g., oxygen evolution reaction, OER) kinetics, which is believed to originate from interface catalysis rather than the semiconductor photophysics. In this work, we developed a light-modulated transient photocurrent (LMTPC) method for investigating surface charge accumulation and reaction on the W-doped bismuth vanadate (W : BiVO4) photoanodes during photoelectrochemical water oxidation. Under illuminating conditions, the steady photocurrent corresponds to the charge transfer rate/kinetics, while the integration of photocurrent (I~t) spikes during the dark period is regarded as the charge density under illumination. Quantitative analysis of the surface hole densities and photocurrents at 0.6 V vs. reversible hydrogen electrode results in an interesting rate-law kinetics switch: a 3rd-order charge reaction behavior appeared on W : BiVO4, but a 2nd-order charge reaction occurred on W : BiVO4 surface modified with ultrathin Bi metal-organic-framework (Bi-MOF). Consequently, the photocurrent for water oxidation on W : BiVO4/Bi-MOF displayed a 50 % increment. The reaction kinetics alternation with new interface reconstruction is proposed for new mechanism understanding and/or high-performance photocatalytic applications.
Collapse
Affiliation(s)
- Guangming Cao
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkun South Rd., Haikou, Hainan Province, 571158, P.R. China
| | - Yanjie Liu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
| | - Jundie Hu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
| | - Jiafu Qu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
| | - Zhichao Zhang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
| | - Xianqiang Xiong
- School of Pharmaceutical and Materials Engineering, Taizhou University No.1139, Shifu Blvd, Jiao Jiang, Taizhou, Zhejiang Province, 318000, P.R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkun South Rd., Haikou, Hainan Province, 571158, P.R. China
| | - Xiaogang Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Suzhou, Jiangsu Province, 215009, P.R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkun South Rd., Haikou, Hainan Province, 571158, P.R. China
| |
Collapse
|
13
|
Mu Y, Chen B, Zhang H, Fei M, Liu T, Mehta N, Wang DZ, Miller AJM, Diaconescu PL, Wang D. Highly Selective Electrochemical Baeyer-Villiger Oxidation through Oxygen Atom Transfer from Water. J Am Chem Soc 2024; 146:13438-13444. [PMID: 38687695 DOI: 10.1021/jacs.4c02601] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.
Collapse
Affiliation(s)
- Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Neal Mehta
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David Z Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
14
|
Shee U, Sinha D, Mondal S, Rajak KK. Electrochemical water oxidation reaction by dinuclear Re(V) oxo complexes with a 1,4-benzoquinone core via the redox induced electron transfer (RIET) process. Dalton Trans 2024; 53:8254-8263. [PMID: 38656393 DOI: 10.1039/d4dt00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report two dinuclear rhenium(V) oxo complexes 1 and 2 types, [ReV(O)(Cl)3(L2-)ReV(O)(Cl)3][NBu4]2 (1, L2- = dianionic 2,5-dihydroxy 1,4-benzoquinone (DBQ2-)) and (2, L2- = dianionic chloranilic acid (CA2-) ligands), as a homogeneous electrocatalyst for water oxidation reactions in the acetonitrile-water mixture. The evolution of dioxygen gas at the anode was confirmed by a GC-TCD study. In controlled potential electrolysis (CPE), oxidation at 1.30 V (vs. Ag/AgCl) at neutral pH, 1 and 2 afforded 1+ [ReVI(O)(Cl)3(DBQ˙3-)ReVI(O)(Cl)3]- and 2+ [ReVI(O)(Cl)3(CA˙3-)ReVI(O)(Cl)3]- ions, respectively, via the redox induced electron transfer (RIET) process. Electrochemically generated species of 1+ and 2+ could be isolated in dry acetonitrile. 1+ and 2+ ions give strong EPR signals in fluid solution as well as under frozen glass conditions due to the [ReVI(O)(Cl)3(L˙3-)ReVI(O)(Cl)3]- ↔ [ReVI(O)(Cl)3(L2-)ReV(O)(Cl)3]- (where L2- = DBQ2- and CA2-) equilibrium. However, the continuation of the CPE study (1.30 V vs. Ag/AgCl) in the presence of acetonitrile-water mixture oxidised the in situ generated species of 1+ and 2+ to higher valent ReVIO species. These species (1+ and 2+) bound water through the water nucleophilic attack (WNA) to produce peroxide intermediate species of [ReV(OOH)(Cl)3(DBQ2-)ReV(OOH)(Cl)3] (A1) and [ReV(OOH)(Cl)3(CA2-)ReV(OOH)(Cl)3] (A2) for catalysts 1 and 2, respectively. Interestingly, A1 and A2 were authenticated and analysed by ESI mass spectrometry and infrared spectroscopy and were the active precursors of this water oxidation process. The extent of current generation under similar conditions suggested that complex 1 is superior to complex 2 for the water oxidation reaction. Notably, the maximum turnover frequency (TOFmax) of catalysts 1 and 2 were 2.1 and 1.6 s-1 at 0.27 V and 0.24 V over potential, respectively, which is very significant in WOR.
Collapse
Affiliation(s)
- Uday Shee
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| | - Debopam Sinha
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
- Department of Chemistry, Vijaygarh Jyotish Ray College, Kolkata, 700032, India
| | - Sandip Mondal
- Department of Chemistry, Darjeeling Govt. College, Darjeeling, 734101, India.
| | - Kajal Krishna Rajak
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
15
|
Wang L, Su H, Tan G, Xin J, Wang X, Zhang Z, Li Y, Qiu Y, Li X, Li H, Ju J, Duan X, Xiao H, Chen W, Liu Q, Sun X, Wang D, Sun J. Boosting Efficient and Sustainable Alkaline Water Oxidation on a W-CoOOH-TT Pair-Sites Catalyst Synthesized via Topochemical Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302642. [PMID: 37434271 DOI: 10.1002/adma.202302642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
The development of facile methods for constructing highly active, cost-effective catalysts that meet ampere-level current density and durability requirements for an oxygen evolution reaction is crucial. Herein, a general topochemical transformation strategy is posited: M-Co9S8 single-atom catalysts (SACs) are directly converted into M-CoOOH-TT (M = W, Mo, Mn, V) pair-sites catalysts under the role of incorporating of atomically dispersed high-valence metals modulators through potential cycling. Furthermore, in situ X-ray absorption fine structure spectroscopy is used to track the dynamic topochemical transformation process at the atomic level. The W-Co9S8 breaks through the low overpotential of 160 mV at 10 mA cm-2. A series of pair-site catalysts exhibit a large current density of approaching 1760 mA cm-2 at 1.68 V vs reversible hydrogen electrode (RHE) in alkaline water oxidation and achieve a ≈240-fold enhancement in the normalized intrinsic activity compare to that reported CoOOH, and sustainable stability of 1000 h. Moreover, the O─O bond formation is confirmed via a two-site mechanism, supported by in situ synchrotron radiation infrared and density functional theory (DFT) simulations, which breaks the limit of adsorption-energy scaling relationship on conventional single-site.
Collapse
Affiliation(s)
- Ligang Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Guoying Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xiaoge Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Zhuang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xiaohui Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Haisheng Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xinxuan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| |
Collapse
|
16
|
Miao J, Lin C, Yuan X, An Y, Yang Y, Li Z, Zhang K. Supramolecular catalyst with [FeCl 4] unit boosting photoelectrochemical seawater splitting via water nucleophilic attack pathway. Nat Commun 2024; 15:2023. [PMID: 38448472 PMCID: PMC10918074 DOI: 10.1038/s41467-024-46342-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Propelled by the structure of water oxidation co-catalysts in natural photosynthesis, molecular co-catalysts have long been believed to possess the developable potential in artificial photosynthesis. However, the interfacial complexity between light absorber and molecular co-catalyst limits its structural stability and charge transfer efficiency. To overcome the challenge, a supramolecular scaffold with the [FeCl4] catalytic units is reported, which undergo a water-nucleophilic attack of the water oxidation reaction, while the supramolecular matrix can be in-situ grown on the surface of photoelectrode through a simple chemical polymerization to be a strongly coupled interface. A well-defined BiVO4 photoanode hybridized with [FeCl4] units in polythiophene reaches 4.72 mA cm-2 at 1.23 VRHE, which also exhibits great stability for photoelectrochemical seawater splitting due to the restraint on chlorine evolution reaction by [FeCl4] units and polythiophene. This work provides a novel solution to the challenge of the interface charge transfer of molecular co-catalyst hybridized photoelectrode.
Collapse
Affiliation(s)
- Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaojia Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang An
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhaosheng Li
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
17
|
Tang D, Wu L, Li L, Fu N, Chen C, Zhang Y, Zhao J. A controlled non-radical chlorine activation pathway on hematite photoanodes for efficient oxidative chlorination reactions. Chem Sci 2024; 15:3018-3027. [PMID: 38404385 PMCID: PMC10882502 DOI: 10.1039/d3sc06337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Photo(electro)catalytic chlorine oxidation has emerged as a useful method for chemical transformation and environmental remediation. However, the reaction selectivity usually remains low due to the high activity and non-selectivity characteristics of free chlorine radicals. In this study, we report a photoelectrochemical (PEC) strategy for achieving controlled non-radical chlorine activation on hematite (α-Fe2O3) photoanodes. High selectivity (up to 99%) and faradaic efficiency (up to 90%) are achieved for the chlorination of a wide range of aromatic compounds and alkenes by using NaCl as the chlorine source, which is distinct from conventional TiO2 photoanodes. A comprehensive PEC study verifies a non-radical "Cl+" formation pathway, which is facilitated by the accumulation of surface-trapped holes on α-Fe2O3 surfaces. The new understanding of the non-radical Cl- activation by semiconductor photoelectrochemistry is expected to provide guidance for conducting selective chlorine atom transfer reactions.
Collapse
Affiliation(s)
- Daojian Tang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liubo Li
- Key Laboratory of Molecular Recognition and Function, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Niankai Fu
- Key Laboratory of Molecular Recognition and Function, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Matsumoto Y, Nagatsuka K, Yamaguchi Y, Kudo A. Understanding the reaction mechanism and kinetics of photocatalytic oxygen evolution on CoOx-loaded bismuth vanadate. J Chem Phys 2023; 159:214706. [PMID: 38047512 DOI: 10.1063/5.0177506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Photocatalytic water splitting for green hydrogen production is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Loading a co-catalyst is essential for accelerating the kinetics, but the detailed reaction mechanism and role of the co-catalyst are still obscure. Here, we focus on cobalt oxide (CoOx) loaded on bismuth vanadate (BiVO4) to investigate the impact of CoOx on the OER mechanism. We employ photoelectrochemical impedance spectroscopy and simultaneous measurements of photoinduced absorption and photocurrent. The reduction of V5+ in BiVO4 promotes the formation of a surface state on CoOx that plays a crucial role in the OER. The third-order reaction rate with respect to photohole charge density indicates that reaction intermediate species accumulate in the surface state through a three-electron oxidation process prior to the rate-determining step. Increasing the excitation light intensity onto the CoOx-loaded anode improves the photoconversion efficiency significantly, suggesting that the OER reaction at dual sites in an amorphous CoOx(OH)y layer dominates over single sites. Therefore, CoOx is directly involved in the OER by providing effective reaction sites, stabilizing reaction intermediates, and improving the charge transfer rate. These insights help advance our understanding of co-catalyst-assisted OER to achieve efficient water splitting.
Collapse
Affiliation(s)
- Yoshiyasu Matsumoto
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| | - Kengo Nagatsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Yuichi Yamaguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Xue Y, Zhao J, Huang L, Lu YR, Malek A, Gao G, Zhuang Z, Wang D, Yavuz CT, Lu X. Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers. Nat Commun 2023; 14:8093. [PMID: 38062017 PMCID: PMC10703920 DOI: 10.1038/s41467-023-43977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/27/2023] [Indexed: 09/14/2024] Open
Abstract
Ruthenium dioxide is the most promising alternative to the prevailing but expensive iridium-based catalysts for the oxygen evolution reaction in proton-exchange membrane water electrolyzers. However, the under-coordinated lattice oxygen of ruthenium dioxide is prone to over-oxidation, and oxygen vacancies are formed at high oxidation potentials under acidic corrosive conditions. Consequently, ruthenium atoms adjacent to oxygen vacancies are oxidized into soluble high-valence derivatives, causing the collapse of the ruthenium dioxide crystal structure and leading to its poor stability. Here, we report an oxyanion protection strategy to prevent the formation of oxygen vacancies on the ruthenium dioxide surface by forming coordination-saturated lattice oxygen. Combining density functional theory calculations, electrochemical measurements, and a suite of operando spectroscopies, we showcase that barium-anchored sulfate can greatly impede ruthenium loss and extend the lifetime of ruthenium-based catalysts during acidic oxygen evolution, while maintaining the activity. This work paves a new way for designing stable and active anode catalysts toward acidic water splitting.
Collapse
Affiliation(s)
- Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Jiwu Zhao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Liang Huang
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Abdul Malek
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Ge Gao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Cafer T Yavuz
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
20
|
Lin C, Shan Z, Dong C, Lu Y, Meng W, Zhang G, Cai B, Su G, Park JH, Zhang K. Covalent organic frameworks bearing Ni active sites for free radical-mediated photoelectrochemical organic transformations. SCIENCE ADVANCES 2023; 9:eadi9442. [PMID: 37939175 PMCID: PMC10631720 DOI: 10.1126/sciadv.adi9442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Photoelectrochemical (PEC) organic transformations occurring at anodes are a promising strategy for circumventing the sluggish kinetics of the oxygen evolution reaction. Here, we report a free radical-mediated reaction instead of direct hole transfer occurring at the solid/liquid interface for PEC oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) with high selectivity. A bismuth vanadate (BiVO4) photoanode coated with a 2,2'-bipyridine-based covalent organic framework bearing single Ni sites (Ni-TpBpy) was developed to drive the transformation. Experimental studies reveal that the reaction at the Ni-TpBpy/BiVO4 photoanode followed first-order reaction kinetics, boosting the formation of surface-bound ·OH radicals, which suppressed further BAD oxidation and provided a nearly 100% selectivity and a rate of 80.63 μmol hour-1 for the BA-to-BAD conversion. Because alcohol-to-aldehyde conversions are involved in the valorizations of biomass and plastics, this work is expected to open distinct avenues for producing key intermediates of great value.
Collapse
Affiliation(s)
- Cheng Lin
- Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Zhen Shan
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chaoran Dong
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan Lu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Weikun Meng
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gen Zhang
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bo Cai
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guanyong Su
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Kan Zhang
- Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
21
|
Liu S, Wu L, Tang D, Xue J, Dang K, He H, Bai S, Ji H, Chen C, Zhang Y, Zhao J. Transition from Sequential to Concerted Proton-Coupled Electron Transfer of Water Oxidation on Semiconductor Photoanodes. J Am Chem Soc 2023; 145:23849-23858. [PMID: 37861695 DOI: 10.1021/jacs.3c09410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., α-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.
Collapse
Affiliation(s)
- Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanbin He
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuming Bai
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Malek A, Xue Y, Lu X. Dynamically Restructuring Ni x Cr y O Electrocatalyst for Stable Oxygen Evolution Reaction in Real Seawater. Angew Chem Int Ed Engl 2023; 62:e202309854. [PMID: 37578684 DOI: 10.1002/anie.202309854] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a Nix Cry O electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, Nix Cry O required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm-2 , respectively, with excellent long-term stability exceeding 475 h at 100 mA cm-2 and 280 h at 500 mA cm-2 . The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. Nix Cry O was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, Nix Cry O exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm-2 , respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.
Collapse
Affiliation(s)
- Abdul Malek
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| |
Collapse
|
23
|
Li D, Wei R, Sun F, Cheng Z, Yin H, Fan F, Wang X, Li C. Determining the Transformation Kinetics of Water Oxidation Intermediates on Hematite Photoanode. J Phys Chem Lett 2023; 14:8069-8076. [PMID: 37656051 DOI: 10.1021/acs.jpclett.3c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The oxygen evolution reaction (OER) from water is a sequential oxidation reaction process, involved in transformation of multiple reaction intermediates. For photo(electro)catalytic OER, revealing the intermediates transformation kinetics is quite challenging due to its coupling with photogenerated charge dynamics. Herein, we specifically study the transformation kinetics of the OER intermediates in rationally thin hematite photoanodes through increasing the ratio between surface intermediates and photogenerated charges in bulk. We directly identify the formation and consumption kinetics of one-hole OER intermediate (FeIV═O) in photoelectrochemical water oxidation using operando transient absorption (TA) spectroscopy. The microsecond formation kinetics of the FeIV═O species are sensitively changed by the excitation mode of Fe2O3. The subsecond consumption kinetics are closely dependent on surface FeIV═O species density, demonstrating that the cooperation of FeIV═O intermediates is the key to accelerating water oxidation kinetics on the Fe2O3 surface. This work provides insight into understanding and controlling water oxidation reaction kinetics on Fe2O3 surface.
Collapse
Affiliation(s)
- Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fusai Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Qu S, Wu H, Ng YH. Thin Zinc Oxide Layer Passivating Bismuth Vanadate for Selective Photoelectrochemical Water Oxidation to Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300347. [PMID: 37026677 DOI: 10.1002/smll.202300347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Selective photoelectrochemical (PEC) water oxidation to hydrogen peroxide is an underexplored option as opposed to the mainstream oxygen reduction reaction. Albeit interesting, selective H2 O2 production via oxidative pathway is plagued by the noncontrollable two-electron transfer reaction and the overoxidation of the thus-formed H2 O2 to O2 . Here, ZnO passivator-coated BiVO4 photoanode is reported for selective PEC H2 O2 production. Both the H2 O2 selectivity and production rate increase in the range of 1.0-2.0 V versus RHE under simulated sunlight irradiation. The photoelectrochemical impedance spectra and open-circuit potentials suggest a flattened band bending and positively shifted quasi-Fermi level of BiVO4 upon ZnO coating, facilitating H2 O2 generation and suppressing the competitive reaction of O2 evolution. The ZnO overlayer also inhibits H2 O2 decomposition, accelerates charge extraction from BiVO4 , and serves as a hole reservoir under photoexcitation. This work offers insights into surface states and the role of the coating layer in manipulating two/four-electron transfer for selective H2 O2 synthesis from PEC water oxidation.
Collapse
Affiliation(s)
- Songying Qu
- Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong S.A.R
| | - Hao Wu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR
| | - Yun Hau Ng
- Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong S.A.R
- School of Energy and Environment, City University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518000, China
| |
Collapse
|
25
|
Ouyang J, Lu QC, Shen S, Yin SF. Surface Oxygen Species in Metal Oxide Photoanodes for Solar Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1919. [PMID: 37446435 DOI: 10.3390/nano13131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.
Collapse
Affiliation(s)
- Jie Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qi-Chao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
26
|
Yin D, Ning X, Zhang Q, Du P, Lu X. Dual modification of BiVO 4 photoanode for synergistically boosting photoelectrochemical water splitting. J Colloid Interface Sci 2023; 646:238-244. [PMID: 37196497 DOI: 10.1016/j.jcis.2023.04.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Bismuth vanadate (BiVO4) is a promising nanomaterial for photoelectrochemical (PEC) water oxidation. However, the serious charge recombination and sluggish water oxidation kinetics limit its performance. Herein, an integrated photoanode was successfully constructed by modifying BiVO4 (BV) with In2O3 (In) layer and further decorating amorphous FeNi hydroxides (FeNi). The BV/In/FeNi photoanode exhibited a remarkable photocurrent density of 4.0 mA cm-2 at 1.23 VRHE, which is approximately 3.6 times larger than that of pure BV. And the water oxidation reaction kinetics has an over 200% increased. This improvement was mainly because the formation of BV/In heterojunction inhibited charge recombination, and the decoration of cocatalyst FeNi facilitated the water oxidation reaction kinetics and accelerated hole transfer to electrolyte. Our work provides another possible route to develop high-efficiency photoanodes for practical applications in solar conversion.
Collapse
Affiliation(s)
- Dan Yin
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, PR China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xingming Ning
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, PR China
| | - Qi Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, PR China
| | - Peiyao Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
27
|
Wu Z, Liu X, Li H, Sun Z, Cao M, Li Z, Fang C, Zhou J, Cao C, Dong J, Zhao S, Chen Z. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nat Commun 2023; 14:2574. [PMID: 37142577 PMCID: PMC10160110 DOI: 10.1038/s41467-023-38285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Photoelectrochemical water splitting has long been considered an ideal approach to producing green hydrogen by utilizing solar energy. However, the limited photocurrents and large overpotentials of the anodes seriously impede large-scale application of this technology. Here, we use an interfacial engineering strategy to construct a nanostructural photoelectrochemical catalyst by incorporating a semiconductor CdS/CdSe-MoS2 and NiFe layered double hydroxide for the oxygen evolution reaction. Impressively, the as-prepared photoelectrode requires an low potential of 1.001 V vs. reversible hydrogen electrode for a photocurrent density of 10 mA cm-2, and this is 228 mV lower than the theoretical water splitting potential (1.229 vs. reversible hydrogen electrode). Additionally, the generated current density (15 mA cm-2) of the photoelectrode at a given overpotential of 0.2 V remains at 95% after long-term testing (100 h). Operando X-ray absorption spectroscopy revealed that the formation of highly oxidized Ni species under illumination provides large photocurrent gains. This finding opens an avenue for designing high-efficiency photoelectrochemical catalysts for successive water splitting.
Collapse
Affiliation(s)
- Zilong Wu
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiangyu Liu
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhiyi Sun
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Maosheng Cao
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zezhou Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Chaohe Fang
- CNPC Research Institute of Petroleum Exploration & Development, Beijing, 100083, China
| | - Jihan Zhou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Chuanbao Cao
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia.
| | - Zhuo Chen
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
28
|
Tayebi M, Masoumi Z, Tayyebi A, Kim JH, Lee H, Seo B, Lim CS, Kim HG. Photoelectrochemical Epoxidation of Cyclohexene on an α-Fe 2O 3 Photoanode Using Water as the Oxygen Source. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20053-20063. [PMID: 37040426 DOI: 10.1021/acsami.2c22603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study developed a safe and sustainable route for the epoxidation of cyclohexene using water as the source of oxygen at room temperature and ambient pressure. Here, we optimized the cyclohexene concentration, volume of solvent/water (CH3CN, H2O), time, and potential on the photoelectrochemical (PEC) cyclohexene oxidation reaction of the α-Fe2O3 photoanode. The α-Fe2O3 photoanode epoxidized cyclohexene to cyclohexene oxide with a 72.4 ± 3.6% yield and a 35.2 ± 1.6% Faradaic efficiency of 0.37 V vs Fc/Fc+ (0.8 VAg/AgCl) under 100 mW cm-2. Furthermore, the irradiation of light (PEC) decreased the applied voltage of the electrochemical cell oxidation process by 0.47 V. This work supplies an energy-saving and environment-benign approach for producing value-added chemicals coupled with solar fuel generation. Epoxidation with green solvents via PEC methods has a high potential for different oxidation reactions of value-added and fine chemicals.
Collapse
Affiliation(s)
- Meysam Tayebi
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Ahmad Tayyebi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jun-Hwan Kim
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Hyungwoo Lee
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Bongkuk Seo
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| |
Collapse
|
29
|
Chen R, Zhang D, Wang Z, Li D, Zhang L, Wang X, Fan F, Li C. Linking the Photoinduced Surface Potential Difference to Interfacial Charge Transfer in Photoelectrocatalytic Water Oxidation. J Am Chem Soc 2023; 145:4667-4674. [PMID: 36795953 DOI: 10.1021/jacs.2c12704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Charge transfer at the semiconductor/solution interface is fundamental to photoelectrocatalytic water splitting. Although insights into charge transfer in the electrocatalytic process can be gained from the phenomenological Butler-Volmer theory, there is limited understanding of interfacial charge transfer in the photoelectrocatalytic process, which involves intricate effects of light, bias, and catalysis. Here, using operando surface potential measurements, we decouple the charge transfer and surface reaction processes and find that the surface reaction enhances the photovoltage via a reaction-related photoinduced charge transfer regime as demonstrated on a SrTiO3 photoanode. We show that the reaction-related charge transfer induces a change in the surface potential that is linearly correlated to the interfacial charge transfer rate of water oxidation. The linear behavior is independent of the applied bias and light intensity and reveals a general rule for interfacial transfer of photogenerated minority carriers. We anticipate the linear rule to be a phenomenological theory for describing interfacial charge transfer in photoelectrocatalysis.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China
| | - Deyun Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China.,College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen 361005, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingcong Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Cheng W, Xu Y, Yang C, Su H, Liu Q. Monitoring surface dynamics of electrodes during electrocatalysis using in situ synchrotron FTIR spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:340-346. [PMID: 36891847 PMCID: PMC10000798 DOI: 10.1107/s1600577523000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Monitoring the surface dynamics of catalysts under working conditions is important for a deep understanding of the underlying electrochemical mechanisms towards efficient energy conversion and storage. Fourier transform infrared (FTIR) spectroscopy with high surface sensitivity has been considered as a powerful tool for detecting surface adsorbates, but it faces a great challenge when being adopted in surface dynamics investigations during electrocatalysis due to the complication and influence of aqueous environments. This work reports a well designed FTIR cell with tunable micrometre-scale water film over the surface of working electrodes and dual electrolyte/gas channels for in situ synchrotron FTIR tests. By coupling with a facile single-reflection infrared mode, a general in situ synchrotron radiation FTIR (SR-FTIR) spectroscopic method is developed for tracking the surface dynamics of catalysts during the electrocatalytic process. As an example, in situ formed key *OOH is clearly observed on the surface of commercial benchmark IrO2 catalysts during the electrochemical oxygen evolution process based on the developed in situ SR-FTIR spectroscopic method, which demonstrates its universality and feasibility in surface dynamics studies of electrocatalysts under working conditions.
Collapse
Affiliation(s)
- Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|
31
|
Kumar Tiwari C, Roy S, Tubul-Sterin T, Baranov M, Leffler N, Li M, Yin P, Neyman A, Weinstock IA. Emergence of Visible-Light Water Oxidation Upon Hexaniobate-Ligand Entrapment of Quantum-Confined Copper-Oxide Cores. Angew Chem Int Ed Engl 2023; 62:e202213762. [PMID: 36580402 DOI: 10.1002/anie.202213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
The formation of small 1 to 3 nm organic-ligand free metal-oxide nanocrystals (NCs) is essential to utilization of their attractive size-dependent properties in electronic devices and catalysis. We now report that hexaniobate cluster-anions, [Nb6 O19 ]8- , can arrest the growth of metal-oxide NCs and stabilize them as water-soluble complexes. This is exemplified by formation of hexaniobate-complexed 2.4-nm monoclinic-phase CuO NCs (1), whose ca. 350 Cu-atom cores feature quantum-confinement effects that impart an unprecedented ability to catalyze visible-light water oxidation with no added photosensitizers or applied potentials, and at rates exceeding those of hematite NCs. The findings point to polyoxoniobate-ligand entrapment as a potentially general method for harnessing the size-dependent properties of very small semiconductor NCs as the cores of versatile, entirely-inorganic complexes.
Collapse
Affiliation(s)
- Chandan Kumar Tiwari
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shubasis Roy
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Tal Tubul-Sterin
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
32
|
Li D, Wei R, Yin H, Zhang H, Wang X, Li C. Dynamic charge collecting mechanisms of cobalt phosphate on hematite photoanodes studied by photoinduced absorption spectroscopy. Chem Sci 2023; 14:1861-1870. [PMID: 36819856 PMCID: PMC9930927 DOI: 10.1039/d2sc05802b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Reaction sites, surface states, and surface loaded electrocatalysts are photoinduced charge storage sites and critical to photoelectrochemical (PEC) performance, however the charge transfer mechanisms involved in the three remain poorly understood. Herein, we studied the charge transfer processes in hematite (Fe2O3) without/with loaded cobalt phosphate (CoPi) by operando photoinduced absorption (PIA) spectroscopy. The loaded CoPi receives trapped holes in surface states at low potential and directly captures holes in the valence band at high potential. Through the dynamic hole storage mechanisms, loaded CoPi on Fe2O3 facilitates spatial charge separation and serves as a charge transfer mediator, instead of serving as a catalyst to change the water oxidation mechanism (constant third-order reaction). The spatial separation of photoinduced charges between Fe2O3 and CoPi results in more long-lived holes on the Fe2O3 surface to improve PEC water oxidation kinetically. The dynamic charge collecting mechanism sheds light on the understanding and designing of electrocatalyst loaded photoanodes.
Collapse
Affiliation(s)
- Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Hemin Zhang
- College of Materials Science and Engineering, Sichuan University, Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education Chengdu 610065 China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
33
|
Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
34
|
SO2 pollutant conversion to sulfuric acid inside a stand-alone photoelectrochemical reactor: a novel, green, and safe strategy for H2SO4 photosynthesis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
35
|
Wu LW, Liu C, Han Y, Yu Y, Liu Z, Huang YF. In Situ Spectroscopic Identification of the Electron-Transfer Intermediates of Photoelectrochemical Proton-Coupled Electron Transfer of Water Oxidation on Au. J Am Chem Soc 2023; 145:2035-2039. [PMID: 36649589 DOI: 10.1021/jacs.2c11882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Experimental elucidation of the decoupling of electron and proton transfer at a molecular level is essential for thoroughly understanding the kinetics of heterogeneous (photo)electrochemical proton-coupled electron transfer water oxidation. Here we illustrate the electron-transfer intermediates of positively charged surface oxygenated species on Au (Au-OH+) and their correlations with the rate of water oxidation by in situ microphotoelectrochemical surface-enhanced Raman spectroscopy (SERS) and ambient-pressure X-ray photoelectron spectroscopy. At the intermediate stage of water oxidation, a characteristic blue shift of the vibration of Au-OH species in laser-power-density-dependent measurements was assigned to the light-induced production of Au-OH+ in water oxidation. The photothermal effect was excluded according to the vibrational frequencies of Au-OH species as the temperature was increased in a variable-temperature SERS measurement. Density functional theory calculations evidenced that the frequency blue shift is from the positively charged Au-OH species. The photocurrent-dependent frequency blue shift indicated that Au-OH+ is the key electron-transfer intermediate in water oxidation by decoupled electron and proton transfer.
Collapse
Affiliation(s)
- Li-Wen Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chiyan Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Guo Q, Zhao Q, Crespo-Otero R, Di Tommaso D, Tang J, Dimitrov SD, Titirici MM, Li X, Jorge Sobrido AB. Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator? J Am Chem Soc 2023; 145:1686-1695. [PMID: 36631927 PMCID: PMC9880996 DOI: 10.1021/jacs.2c09974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Single-atom catalysts (SACs) on hematite photoanodes are efficient cocatalysts to boost photoelectrochemical performance. They feature high atom utilization, remarkable activity, and distinct active sites. However, the specific role of SACs on hematite photoanodes is not fully understood yet: Do SACs behave as a catalytic site or as a spectator? By combining spectroscopic experiments and computer simulations, we demonstrate that single-atom iridium (sIr) catalysts on hematite (α-Fe2O3/sIr) photoanodes act as a true catalyst by trapping holes from hematite and providing active sites for the water oxidation reaction. In situ transient absorption spectroscopy showed a reduced number of holes and shortened hole lifetime in the presence of sIr. This was particularly evident on the second timescale, indicative of fast hole transfer and depletion toward water oxidation. Intensity-modulated photocurrent spectroscopy evidenced a faster hole transfer at the α-Fe2O3/sIr/electrolyte interface compared to that at bare α-Fe2O3. Density functional theory calculations revealed the mechanism for water oxidation using sIr as a catalytic center to be the preferred pathway as it displayed a lower onset potential than the Fe sites. X-ray photoelectron spectroscopy demonstrated that sIr introduced a mid-gap of 4d state, key to the fast hole transfer and hole depletion. These combined results provide new insights into the processes controlling solar water oxidation and the role of SACs in enhancing the catalytic performance of semiconductors in photo-assisted reactions.
Collapse
Affiliation(s)
- Qian Guo
- School
of Engineering and Materials Science, Queen
Mary University of London, E1 4NS London, U.K.
| | - Qi Zhao
- School
of Physical and Chemical Sciences, Queen
Mary University of London, E1 4NS London, U.K.
| | - Rachel Crespo-Otero
- School
of Physical and Chemical Sciences, Queen
Mary University of London, E1 4NS London, U.K.
| | - Devis Di Tommaso
- School
of Physical and Chemical Sciences, Queen
Mary University of London, E1 4NS London, U.K.
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, WC1E 7JE London, U.K.
| | - Stoichko D. Dimitrov
- School
of Physical and Chemical Sciences, Queen
Mary University of London, E1 4NS London, U.K.
| | | | - Xuanhua Li
- State
Key Laboratory of Solidification Processing, Center for Nano Energy
Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, E1 4NS London, U.K.,
| |
Collapse
|
37
|
Chemical Kinetics of Serial Processes for Photogenerated Charges at Semiconductor Surface: A Classical Theoretical Calculation. Catal Letters 2023. [DOI: 10.1007/s10562-022-04267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Li H, Lin C, Yang Y, Dong C, Min Y, Shi X, Wang L, Lu S, Zhang K. Boosting Reactive Oxygen Species Generation Using Inter-Facet Edge Rich WO 3 Arrays for Photoelectrochemical Conversion. Angew Chem Int Ed Engl 2023; 62:e202210804. [PMID: 36351869 DOI: 10.1002/anie.202210804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/11/2022]
Abstract
Water oxidation reaction leaves room to be improved in the development of various solar fuel productions, because of the kinetically sluggish 4-electron transfer process of oxygen evolution reaction. In this work, we realize reactive oxygen species (ROS), H2 O2 and OH⋅, formations by water oxidation with total Faraday efficiencies of more than 90 % by using inter-facet edge (IFE) rich WO3 arrays in an electrolyte containing CO3 2- . Our results demonstrate that the IFE favors the adsorption of CO3 2- while reducing the adsorption energy of OH⋅, as well as suppresses surface hole accumulation by direct 1-electron and indirect 2-electron transfer pathways. Finally, we present selective oxidation of benzyl alcohol by in situ using the formed OH⋅, which delivers a benzaldehyde production rate of ≈768 μmol h-1 with near 100 % selectivity. This work offers a promising approach to tune or control the oxidation reaction in an aqueous solar fuel system towards high efficiency and value-added product.
Collapse
Affiliation(s)
- He Li
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng Lin
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yilong Yang
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chaoran Dong
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xiaoqin Shi
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Kan Zhang
- School of Materials Science and Engineering and School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
39
|
Zhou P, Navid IA, Ma Y, Xiao Y, Wang P, Ye Z, Zhou B, Sun K, Mi Z. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023; 613:66-70. [PMID: 36600066 DOI: 10.1038/s41586-022-05399-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/29/2022] [Indexed: 01/05/2023]
Abstract
Production of hydrogen fuel from sunlight and water, two of the most abundant natural resources on Earth, offers one of the most promising pathways for carbon neutrality1-3. Some solar hydrogen production approaches, for example, photoelectrochemical water splitting, often require corrosive electrolyte, limiting their performance stability and environmental sustainability1,3. Alternatively, clean hydrogen can be produced directly from sunlight and water by photocatalytic water splitting2,4,5. The solar-to-hydrogen (STH) efficiency of photocatalytic water splitting, however, has remained very low. Here we have developed a strategy to achieve a high STH efficiency of 9.2 per cent using pure water, concentrated solar light and an indium gallium nitride photocatalyst. The success of this strategy originates from the synergistic effects of promoting forward hydrogen-oxygen evolution and inhibiting the reverse hydrogen-oxygen recombination by operating at an optimal reaction temperature (about 70 degrees Celsius), which can be directly achieved by harvesting the previously wasted infrared light in sunlight. Moreover, this temperature-dependent strategy also leads to an STH efficiency of about 7 per cent from widely available tap water and sea water and an STH efficiency of 6.2 per cent in a large-scale photocatalytic water-splitting system with a natural solar light capacity of 257 watts. Our study offers a practical approach to produce hydrogen fuel efficiently from natural solar light and water, overcoming the efficiency bottleneck of solar hydrogen production.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yongjin Ma
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Ping Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Zhengwei Ye
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Baowen Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Li J, Zheng L, Huang B, Hu Y, An L, Yao Y, Lu M, Jin J, Zhang N, Xi P, Yan CH. Activated Ni-O-Ir Enhanced Electron Transfer for Boosting Oxygen Evolution Reaction Activity of LaNi 1-x Ir x O 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204723. [PMID: 36316242 DOI: 10.1002/smll.202204723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Tuning the structure of the active center of catalysts to atomic level provides the most efficient utilization of the active component, which plays an especially important role for precious metals. In this study, the liquid phase ion exchange method is used to introduce atomic Ir into LaNiO3 perovskite oxide, which shows excellent catalytic performance in the oxygen evolution reaction (OER). The catalyst, LaNi0.96 Ir0.04 O3 , with the optimal concentration of Ir, displays an overpotential of just 280 mV at 10 mA cm-2 . The introduced Ir enriches the surface electron density significantly, which not only improves site-to-site electron transfer between O and Ni sites but also allows stable adsorption of the intermediates. The results of cyclic voltammetry tests reveal the superior overpotential and remarkable efficiency of the OER process because of the strong interactions in Ni-O-Ir. Moreover, the Ir atom inhibits the participation of a lattice oxygen oxidation mechanism (LOM) in LaNiO3 that guarantees the stability of the catalyst in alkaline conditions. It is anticipated that this work will be instrumental for the preparation and study of a broad range of atomic metal-doped perovskite oxides for water splitting.
Collapse
Affiliation(s)
- Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yaxiong Yao
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
41
|
Wu L, Tang D, Xue J, Liu S, Wang J, Ji H, Chen C, Zhang Y, Zhao J. Competitive Non‐Radical Nucleophilic Attack Pathways for NH
3
Oxidation and H
2
O Oxidation on Hematite Photoanodes. Angew Chem Int Ed Engl 2022; 61:e202214580. [DOI: 10.1002/anie.202214580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Lei Wu
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Siqin Liu
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiaming Wang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
42
|
Liu H, Patel DM, Chen Y, Lee J, Lee TH, Cady SD, Cochran EW, Roling LT, Li W. Unraveling Electroreductive Mechanisms of Biomass-Derived Aldehydes via Tailoring Interfacial Environments. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Deep M. Patel
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Yifu Chen
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Jungkuk Lee
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Sarah D. Cady
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa50011, United States
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Luke T. Roling
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa50011, United States
| |
Collapse
|
43
|
Righi G, Plescher J, Schmidt FP, Campen RK, Fabris S, Knop-Gericke A, Schlögl R, Jones TE, Teschner D, Piccinin S. On the origin of multihole oxygen evolution in haematite photoanodes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractThe oxygen evolution reaction (OER) plays a crucial role in (photo)electrochemical devices that use renewable energy to produce synthetic fuels. Recent measurements on semiconducting oxides have found a power law dependence of the OER rate on surface hole density, suggesting a multihole mechanism. In this study, using transient photocurrent measurements, density functional theory simulations and microkinetic modelling, we have uncovered the origin of this behaviour in haematite. We show here that the OER rate has a third-order dependence on the surface hole density. We propose a mechanism wherein the reaction proceeds by accumulating oxidizing equivalents through a sequence of one-electron oxidations of surface hydroxy groups. The key O–O bond formation step occurs by the dissociative chemisorption of a hydroxide ion involving three oxyl sites. At variance with the case of metallic oxides, the activation energy of this step is weakly dependent on the surface hole coverage, leading to the observed power law.
Collapse
|
44
|
Frei H. Time-Resolved Vibrational and Electronic Spectroscopy for Understanding How Charges Drive Metal Oxide Catalysts for Water Oxidation. J Phys Chem Lett 2022; 13:7953-7964. [PMID: 35981106 DOI: 10.1021/acs.jpclett.2c01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporally resolved spectroscopy is a powerful approach for gaining detailed mechanistic understanding of water oxidation at robust Earth-abundant metal oxide catalysts for guiding efficiency improvement of solar fuel conversion systems. Beyond detecting and structurally identifying surface intermediates by vibrational and accompanying optical spectroscopy, knowledge of how charges, sequentially delivered to the metal oxide surface, drive the four-electron water oxidation cycle is critical for enhancing catalytic efficiency. Key issues addressed in this Perspective are the experimental requirements for establishing the kinetic relevancy of observed surface species and the discovery of the rate-boosting role of encounters of two or more one-electron surface hole charges, often in the form of randomly hopping metal oxo or oxyl moieties, for accessing very low-barrier O-O bond-forming pathways. Recent spectroscopic breakthroughs of metal oxide photo- and electrocatalysts inspire future research poised to take advantage of new highly sensitive spectroscopic tools and of methods for fast catalysis triggering.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Yang F, Jin R, Jiang D. High spatial resolution imaging of the charge injection yield at hematite using scanning electrochemical cell microscopy. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
46
|
Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting. J Colloid Interface Sci 2022; 626:879-888. [PMID: 35835039 DOI: 10.1016/j.jcis.2022.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022]
Abstract
Rapid charge recombination in hematite (Fe2O3) during photoelectrochemical water splitting is a major obstacle to achieving high-efficiency photoelectrodes. Surface defect engineering is considered as a viable strategy for enhancing photoelectrochemical activity of oxide photoanodes. Herein, a one-dimensional (1D) defective γ-Fe2O3 nanorods (DFNRs) photoanode is prepared using solvothermal and high-temperature hydrogenation strategies. The as-prepared DFNRs possess superior visible-light absorption capacity and exhibit excellent photoelectrochemical performance (0.98 mA cm-2), with approximately three-fold higher photocurrent density than that of pristine Fe2O3 (FNRs, 0.32 mA cm-2). The enhanced activity of the DFNRs results from the moderate formation of oxygen vacancy defects, which promotes spatial charge separation and transfer at the DFNRs/electrolyte interface, as well as the 1D nanorod structure, which favors rapid charge transfer. The surface of γ-Fe2O3 with hydroxyl (OH) groups provides sufficient surface-active sites. This result suggests that surface-oxygen deficiency of γ-Fe2O3 can not only expand the light absorption range but also facilitating photo-generated charge carriers separation. This surface engineering strategy provides an alternative method for preparing stable and highly active metal oxide photoanodes for photoelectrochemical water splitting.
Collapse
|
47
|
Duc Quang N, Cao Van P, Majumder S, Jeong JR, Kim D, Kim C. Rational construction of S-doped FeOOH onto Fe 2O 3 nanorods for enhanced water oxidation. J Colloid Interface Sci 2022; 616:749-758. [PMID: 35247813 DOI: 10.1016/j.jcis.2022.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
Hematite-based photoanode (α-Fe2O3) is considered the promising candidate for photoelectrochemical (PEC) water splitting due to its relatively small optical bandgap. However, severe charge recombination in the bulk and poor surface water oxidation kinetics have limited the PEC performance of Fe2O3 photoelectrodes, which is far below the theoretical value. Herein, a new catalyst, S-doped FeOOH (S-FeOOH), has been immobilized onto the surface of the Fe2O3 nanorod (NR) array by a facile chemical bath deposition incorporated thermal sulfuration process. The grown S-FeOOH layer acts not only as an efficient catalyst layer to accelerate the water oxidation on the surface of photoelectrode but also constructs a heterojunction with the light absorption layer to facilitate the interface charge carrier separation and transfer. As expected, the modified S-FeOOH@Fe2O3 photoanode achieves a remarkable increase in PEC performance of 2.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE) andan apparent negative shifted onset potential of 250 mV in comparison with pristine Fe2O3 (0.95 mA cm-2 at 1.23 VRHE). These results provide a simple and effective strategy to coupling oxygen evolution catalysts with photoanodes for practically high-performance PEC applications.
Collapse
Affiliation(s)
- Nguyen Duc Quang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Phuoc Cao Van
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sutripto Majumder
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Ryul Jeong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dojin Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
48
|
Yang H, Li F, Zhan S, Liu Y, Li W, Meng Q, Kravchenko A, Liu T, Yang Y, Fang Y, Wang L, Guan J, Furó I, Ahlquist MSG, Sun L. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat Catal 2022. [DOI: 10.1038/s41929-022-00783-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractExploration of efficient water oxidation catalysts (WOCs) is the primary challenge in conversion of renewable energy into fuels. Here we report a molecularly well-defined heterogeneous WOC with Aza-fused, π-conjugated, microporous polymer (Aza-CMP) coordinated single cobalt sites (Aza-CMP-Co). The single cobalt sites in Aza-CMP-Co exhibited superior activity under alkaline and near-neutral conditions. Moreover, the molecular nature of the isolated catalytic sites makes Aza-CMP-Co a reliable model for studying the heterogeneous water oxidation mechanism. By a combination of experimental and theoretical results, a pH-dependent nucleophilic attack pathway for O-O bond formation was proposed. Under alkaline conditions, the intramolecular hydroxyl nucleophilic attack (IHNA) process with which the adjacent -OH group nucleophilically attacks Co4+=O was identified as the rate-determining step. This process leads to lower activation energy and accelerated kinetics than those of the intermolecular water nucleophilic attack (WNA) pathway. This study provides significant insights into the crucial function of electrolyte pH in water oxidation catalysis and enhancement of water oxidation activity by regulation of the IHNA pathway.
Collapse
|
49
|
Sun Z, Lin L, He J, Ding D, Wang T, Li J, Li M, Liu Y, Li Y, Yuan M, Huang B, Li H, Sun G. Regulating the Spin State of Fe III Enhances the Magnetic Effect of the Molecular Catalysis Mechanism. J Am Chem Soc 2022; 144:8204-8213. [PMID: 35471968 DOI: 10.1021/jacs.2c01153] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aqueous-phase oxygen evolution reaction (OER) is the bottleneck of water splitting. The formation of the O-O bond involves the generation of paramagnetic oxygen molecules from the diamagnetic hydroxides. The spin configurations might play an important role in aqueous-phase molecular electrocatalysis. However, spintronic electrocatalysis is almost an uncultivated land for the exploration of the oxygen molecular catalysis process. Herein, we present a novel magnetic FeIII site spin-splitting strategy, wherein the electronic structure and spin states of the FeIII sites are effectively induced and optimized by the Jahn-Teller effect of Cu2+. The theoretical calculations and operando attenuated total reflectance-infrared Fourier transform infrared (ATR FT-IR) reveal the facilitation for the O-O bond formation, which accelerates the production of O2 from OH- and improves the OER activity. The Cu1-Ni6Fe2-LDH catalyst exhibits a low overpotential of 210 mV at 10 mA cm-2 and a low Tafel slope (33.7 mV dec-1), better than those of the initial Cu0-Ni6Fe2-LDHs (278 mV, 101.6 mV dec-1). With the Cu2+ regulation, we have realized the transformation of NiFe-LDHs from ferrimagnets to ferromagnets and showcase that the OER performance of Cu-NiFe-LDHs significantly increases compared with that of NiFe-LDHs under the effect of a magnetic field for the first time. The magnetic-field-assisted Cu1-Ni6Fe2-LDHs provide an ultralow overpotential of 180 mV at 10 mA cm-2, which is currently one of the best OER performances. The combination of the magnetic field and spin configuration provides new principles for the development of high-performance catalysts and understandings of the catalytic mechanism from the spintronic level.
Collapse
Affiliation(s)
- Zemin Sun
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.,Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liu Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinlu He
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dajie Ding
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyue Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Jie Li
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yicheng Liu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yayin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Binbin Huang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.,Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
50
|
Samanta B, Morales-García Á, Illas F, Goga N, Anta JA, Calero S, Bieberle-Hütter A, Libisch F, Muñoz-García AB, Pavone M, Caspary Toroker M. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem Soc Rev 2022; 51:3794-3818. [PMID: 35439803 DOI: 10.1039/d1cs00648g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently available theoretical methods at different length and accuracy scales. Understanding the surface-active site through Density Functional Theory (DFT) using new, more accurate exchange-correlation functionals plays a key role for surface engineering. Larger scale dynamics of the catalyst/electrolyte interface can be treated with Molecular Dynamics albeit there is a need for more generalizations of force fields. Monte Carlo and Continuum Modeling techniques are so far not the prominent path for modeling water splitting but interest is growing due to the lower computational cost and the feasibility to compare the modeling outcome directly to experimental data. The future challenges in modeling complex nano-photocatalysts involve combining different methods in a hierarchical way so that resources are spent wisely at each length scale, as well as accounting for excited states chemistry that is important for photocatalysis, a path that will bring devices closer to the theoretical limit of photocatalytic efficiency.
Collapse
Affiliation(s)
- Bipasa Samanta
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Nicolae Goga
- Faculty of Engineering in Foreign Languages, Universitatea Politehnica din Bucuresti, Bucuresti, Romania.
| | - Juan Antonio Anta
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Crta. De Utrera km. 1, 41089 Sevilla, Spain.
| | - Sofia Calero
- Materials Simulation & Modeling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anja Bieberle-Hütter
- Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), 5600 HH Eindhoven, The Netherlands.
| | - Florian Libisch
- Institute for Theoretical Physics, TU Wien, 1040 Vienna, Austria.
| | - Ana B Muñoz-García
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy.
| | - Michele Pavone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy.
| | - Maytal Caspary Toroker
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel.,The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3600003, Israel.
| |
Collapse
|