1
|
Hannigan MD, Sampson JA, Damaraju L, Weck M. Homochiral Helical Poly(thiophene)s Accessed via Living Catalyst-Transfer Polymerization. Angew Chem Int Ed Engl 2025; 64:e202502104. [PMID: 40029722 DOI: 10.1002/anie.202502104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Synthetic helical polymers form compact, ordered, and inherently chiral structures, enabling their uses in biomimetic applications as well as catalysis. A challenge in using synthetic helical polymers, however, is their tendency to be sensitive to pH and the presence of nucleophiles, Lewis-acids, or metal ions. We report a strategy to overcome these shortcomings by adapting catalyst-transfer polymerization, a living chain-growth polymerization typically used to access linear conjugated polymers, for the synthesis of helical poly(thiophene)s. We demonstrate that the helical poly(thiophene)s can be synthesized with a single helicity, incorporated into block copolymers, and functionalized at the chain-ends, enabling further conjugation and functionalization. The helical poly(thiophene)s are stable to a variety of conditions, providing benefits over other helical polymers which contain sensitive imine or carbonyl-based functional groups. We anticipate that the ability to access homochiral, heterotelechelic helical conjugated polymers and copolymers will enable new uses of these materials in optoelectronics as well as in applications for mimicking biomacromolecules and other polymers with precisely defined sequences.
Collapse
Affiliation(s)
- Matthew D Hannigan
- Molecular Design Institute, Department of Chemistry, New York University, New York, 10003, USA
| | - Jada A Sampson
- Molecular Design Institute, Department of Chemistry, New York University, New York, 10003, USA
| | - Lasya Damaraju
- Molecular Design Institute, Department of Chemistry, New York University, New York, 10003, USA
| | - Marcus Weck
- Molecular Design Institute, Department of Chemistry, New York University, New York, 10003, USA
| |
Collapse
|
2
|
Karton A, Foller T, Joshi R. Catalyzing epoxy oxygen migration on the basal surface of graphene oxide using strong hydrogen-bond donors. Chem Commun (Camb) 2024; 60:7049-7052. [PMID: 38895846 DOI: 10.1039/d4cc01911c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-level double-hybrid DFT simulations reveal that strong hydrogen-bond-donor catalysts (e.g., ethylene glycol, guanidine, and thiourea) significantly accelerate the migration of epoxy oxygen on the surface of graphene oxide, enhancing the reaction rate by 6-12 orders of magnitude. These results shed light on previously puzzling experimental observations.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Ayuso-Carrillo J, Fina F, Galleposo EC, Ferreira RR, Mondal PK, Ward BD, Bonifazi D. One-Step Catalyst-Transfer Macrocyclization: Expanding the Chemical Space of Azaparacyclophanes. J Am Chem Soc 2024; 146:16440-16457. [PMID: 38848549 PMCID: PMC11191698 DOI: 10.1021/jacs.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In this paper, we report on a one-step catalyst-transfer macrocyclization (CTM) reaction, based on the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, selectively affording only cyclic structures. This route offers a versatile and efficient approach to synthesize aza[1n]paracyclophanes (APCs) featuring diverse functionalities and lumens. The method operates at mild reaction temperatures (40 °C) and short reaction times (∼2 h), delivering excellent isolated yields (>75% macrocycles) and up to 30% of a 6-membered cyclophane, all under nonhigh-dilution concentrations (35-350 mM). Structural insights into APCs reveal variations in product distribution based on different endocyclic substituents, with steric properties of exocyclic substituents having minimal influence on the macrocyclization. Aryl-type endocyclic substituents predominantly yield 6-membered macrocycles, while polycyclic aromatic units such as fluorene and carbazole favor 4-membered species. Experimental and computational studies support a proposed mechanism of ring-walking catalyst transfer that promotes the macrocycle formation. It has been found that the macrocyclization is driven by the formation of cyclic conformers during the oligomerization step favoring an intramolecular C-N bond formation that, depending on the cycle size, hinges on either preorganization effect or kinetic increase of the reductive elimination step or a combination of the two. The CTM process exhibits a "living" behavior, facilitating sequential synthesis of other macrocycles by introducing relevant monomers, thus providing a practical synthetic platform for chemical libraries. Notably, CTM operates both under diluted and concentrated regimes, offering scalability potential, unlike typical macrocyclization reactions usually operating in the 0.1-1 mM range.
Collapse
Affiliation(s)
- Josue Ayuso-Carrillo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Federica Fina
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - El Czar Galleposo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Rúben R. Ferreira
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Pradip Kumar Mondal
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14−km 163, 5 in Area Science
Park, Basovizza, Trieste 34149, Italy
| | - Benjamin D. Ward
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Davide Bonifazi
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| |
Collapse
|
4
|
Duran-Camacho G, Bland DC, Li F, Neufeldt SR, Sanford MS. Nickel-Based Catalysts for the Selective Monoarylation of Dichloropyridines: Ligand Effects and Mechanistic Insights. ACS Catal 2024; 14:6404-6412. [PMID: 38911467 PMCID: PMC11192541 DOI: 10.1021/acscatal.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This report describes a detailed study of Ni phosphine catalysts for the Suzuki-Miyaura coupling of dichloropyridines with halogen-containing (hetero)aryl boronic acids. With most phosphine ligands these transformations afford mixtures of mono- and diarylated cross-coupling products as well as competing oligomerization of the boronic acid. However, a ligand screen revealed that PPh2Me and PPh3 afford high yield and selectivity for monoarylation over diarylation as well as minimal competing oligomerization of the boronic acid. Several key observations were made regarding the selectivity of these reactions, including: (1) phosphine ligands that afford high selectivity for monoarylation fall within a narrow range of Tolman cone angles (between 136° and 157°); (2) more electron-rich trialkylphosphines afford predominantly diarylated products, while less-electron rich di- and triarylphosphines favor monoarylation; (3) diarylation proceeds via intramolecular oxidative addition; and (4) the solvent (MeCN) plays a crucial role in achieving high monoarylation selectivity. Experimental and DFT studies suggest that all these data can be explained based on the reactivity of a key intermediate: a Ni0-π complex of the monoarylated product. With larger, more electron-rich trialkylphosphine ligands, this π complex undergoes intramolecular oxidative addition faster than ligand substitution by the MeCN solvent, leading to selective diarylation. In contrast, with relatively small di- and triarylphosphine ligands, associative ligand substitution by MeCN is competitive with oxidative addition, resulting in selective formation of monoarylated products. The generality of this method is demonstrated with a variety of dichloropyridines and chloro-substituted aryl boronic acids. Furthermore, the optimal ligand (PPh2Me) and solvent (MeCN) are leveraged to achieve the Ni-catalyzed monoarylation of a broader set of dichloroarene substrates.
Collapse
Affiliation(s)
- Geraldo Duran-Camacho
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Douglas C. Bland
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, United States
| | - Fangzheng Li
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, United States
| | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| |
Collapse
|
5
|
Larson NG, Norman JP, Neufeldt SR. Mechanistic Origin of Ligand Effects on Exhaustive Functionalization During Pd-Catalyzed Cross-Coupling of Dihaloarenes. ACS Catal 2024; 14:7127-7135. [PMID: 38911468 PMCID: PMC11192547 DOI: 10.1021/acscatal.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We describe a detailed investigation into why bulky ligands-those that enable catalysis at "12e -" Pd0-tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs. difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e - PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e - PdL(L') by a second incoming ligand L'. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e - PdL(L') from the mono-cross-coupled product. This work has practical implications for optimizing selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that precatalyst structure can also impact selectivity.
Collapse
Affiliation(s)
- Nathaniel G. Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jacob P. Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
6
|
King A, Wang J, Liu T, Raghavan A, Tomson NC, Zhukhovitskiy AV. Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold. ACS POLYMERS AU 2023; 3:475-481. [PMID: 38107419 PMCID: PMC10722565 DOI: 10.1021/acspolymersau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2-Csp3 and Csp2-Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2-Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.
Collapse
Affiliation(s)
- Andrew
J. King
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| | - Jiashu Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianchang Liu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adharsh Raghavan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandr V. Zhukhovitskiy
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| |
Collapse
|
7
|
Kleybolte ME, Vagin SI, Rieger B. A Polymer Lost in the Shuffle: The Perspective of Poly(para)phenylenes. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Moritz E. Kleybolte
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Sergei I. Vagin
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Bernhard Rieger
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
8
|
Hannigan MD, Tami JL, Zimmerman PM, McNeil AJ. Rethinking Catalyst Trapping in Ni-Catalyzed Thieno[3,2- b]thiophene Polymerization. Macromolecules 2022; 55:10821-10830. [PMID: 37396500 PMCID: PMC10312364 DOI: 10.1021/acs.macromol.2c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst-transfer polymerization (CTP) is a chain-growth method used to synthesize conjugated polymers. Although CTP works well for most donor-type monomers, the polymerization stalls with thieno[3,2-b]thiophene when using Ni catalysts. Previous reports have rationalized this result by suggesting that the catalyst is trapped in a Ni0 π-complex with the highly electron-rich arene. In this study, evidence is provided that the catalyst trap is more likely a NiII complex that arises from oxidative insertion of Ni0 into the C-S bonds of thieno[3,2-b]thiophene. This result is consistent with the known reactivity of Ni0 complexes toward S-heteroarenes and is supported herein by 31P nuclear magnetic resonance spectra acquired in situ, as well as data collected from small-molecule model reactions and density-functional theory simulations of the polymerization. We propose that this C-S insertion pathway and related off-cycle reactions may be relevant to understanding or enabling the CTP of other monomers with fused thiophenes.
Collapse
Affiliation(s)
- Matthew D Hannigan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica L Tami
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J McNeil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| |
Collapse
|
9
|
Influence of reaction conditions on kumada catalytic transfer polymerization for synthesis of poly(p-phenylene) for organic semiconductors. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear Block Copolymer Synthesis. Chem Rev 2022; 122:14471-14553. [PMID: 35960550 DOI: 10.1021/acs.chemrev.2c00189] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Glen R Jones
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Dung Nguyen
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Anthony Keyes
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hasaan Rauf
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Estela Ordonez
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Valentin Puchelle
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hatice Basbug Alhan
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Chenying Zhao
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Eva Harth
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| |
Collapse
|
11
|
Kim H, Lee J, Kim T, Cho M, Choi T. Precision Synthesis of Various Low‐Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalyst‐Transfer Polymerization. Angew Chem Int Ed Engl 2022; 61:e202205828. [DOI: 10.1002/anie.202205828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hwangseok Kim
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Jaeho Lee
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Taehyun Kim
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Minyoung Cho
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
12
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
13
|
Rodriguez J, Dhanjee HH, Pentelute BL, Buchwald SL. Palladium Mediated Synthesis of Protein-Polyarene Conjugates. J Am Chem Soc 2022; 144:11706-11712. [PMID: 35749644 DOI: 10.1021/jacs.2c03492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g., controlled radical polymerizations and ring-opening polymerizations), CTP has yet to be adapted for the modification of biopolymers. Here, we report the use of protein-palladium oxidative addition complexes (OACs) that enable catalyst transfer polymerization to furnish protein-polyarene conjugates. These polymerizations occur with electron-deficient monomers in aqueous buffers open to air at mild (≤37 °C) temperatures with full conversion of the protein OAC and an average polymer length of nine repeating units. Proteins with polyarene chains terminated with palladium OACs can be readily isolated. Direct evidence of protein-polyarene OAC formation was obtained using mass spectrometry, and all protein-polyarene chain ends were uniformly functionalized via C-S arylation to terminate the polymerization with a small molecule thiol or a cysteine-containing protein.
Collapse
Affiliation(s)
- Jacob Rodriguez
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heemal H Dhanjee
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Kleybolte ME, Vagin SI, Rieger B. High-Molecular-Weight Bisalkoxy-Substituted Poly(para)phenylenes by Kumada Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moritz E. Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstr. 4, Garching 85748, Germany
| | - Sergei I. Vagin
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstr. 4, Garching 85748, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstr. 4, Garching 85748, Germany
| |
Collapse
|
15
|
Kim H, Lee J, Kim T, Cho M, Choi T. Precision Synthesis of Various Low‐Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalyst‐Transfer Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hwangseok Kim
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Jaeho Lee
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Taehyun Kim
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Minyoung Cho
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
16
|
Ring walking as a regioselectivity control element in Pd-catalyzed C-N cross-coupling. Nat Commun 2022; 13:2869. [PMID: 35610226 PMCID: PMC9130136 DOI: 10.1038/s41467-022-30255-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Ring walking is an important mechanistic phenomenon leveraged in many catalytic C-C bond forming reactions. However, ring walking has been scarcely studied under Buchwald-Hartwig amination conditions despite the importance of such transformations. An in-depth mechanistic study of the Buchwald-Hartwig amination is presented focussing on ligand effects on ring walking behavior. The ability of palladium catalysts to promote or inhibit ring walking is strongly influenced by the chelating nature of the ligand. In stark contrast, the resting state of the catalyst had no impact on ring walking behavior. Furthermore, the complexity of the targeted system enabled the differentiation between catalysts which undergo ring walking versus diffusion-controlled coupling. The insights gained in this study were leveraged to achieve desymmetrization of a tetrabrominated precursor. A small library of asymmetric 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’spirobifluorene (SpiroOMeTAD) derivatives were successfully synthesized using this strategy highlighting the ease with which libraries of these compounds can be accessed for screening. The phenomenon of „ring-walking‟, wherein a metal catalyst remains bound to a pi system as it migrates to another coupling site, is supported largely by circumstantial evidence. Here the authors perform an in-depth kinetic study of Buchwald- Hartwig animations with several catalytic systems delineating the phenomenon of ring walking from diffusion-controlled coupling.
Collapse
|
17
|
Park H, Lee J, Hwang SH, Kim D, Hong SH, Choi TL. Modulating the Rate of Controlled Suzuki–Miyaura Catalyst-Transfer Polymerization by Boronate Tuning. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyunwoo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Daeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Kawakami M, Schulz KHG, Varni A, Tormena CF, Gil RR, Noonan K. Statistical Copolymers of Thiophene-3-Carboxylates and Selenophene-3-Carboxylates; 77Se NMR as a Tool to Examine Copolymer Sequence in Selenophene-Based Conjugated Polymers. Polym Chem 2022. [DOI: 10.1039/d2py00777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate that homopolymerization and statistical copolymerization of 2-ethylhexyl thiophene-3-carboxylate and 2-ethylhexyl selenophene-3-carboxylate monomers is possible via Suzuki-Miyaura cross-coupling. A commercially available palladium catalyst ([1,3-bis(2,6-di-3-pentylphenyl)imidazol-2-ylidene](3-chloropyridyl)dichloropalladium(II) or PEPPSI-IPent) was employed...
Collapse
|
19
|
Cheng S, Zhao R, Seferos DS. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Acc Chem Res 2021; 54:4203-4214. [PMID: 34726058 DOI: 10.1021/acs.accounts.1c00556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of conductive poly(acetylene), the study of conjugated polymers has remained an active and interdisciplinary frontier between polymer chemistry, polymer physics, computation, and device engineering. One of the ultimate goals of polymer science is to reliably synthesize structures, similar to small molecule synthesis. Kumada catalyst-transfer polymerization (KCTP) is a powerful tool for synthesizing conjugated polymers with predictable molecular weights, narrow dispersities, specific end groups, and complex backbone architectures. However, expanding the monomer scope beyond the well-studied 3-alkylthiophenes to include electron-deficient and complex heterocycles has been difficult. Revisiting the successful applications of KCTP can help us gain new insight into the CTP mechanisms and thus inspire breakthroughs in the controlled polymerization of challenging π-conjugated monomers.In this Account, we highlight our efforts over the past decade to achieve controlled synthesis of homopolymers (p-type and n-type), copolymers (diblock and statistical), and monodisperse high oligomers. We first give a brief introduction of the mechanism and state-of-the-art of KCTP. Since the extent of polymerization control is determined by steric and electronic effects of both the catalyst and monomer, the polymerization can be optimized by modifying monomer and catalyst structures, as well as finding a well-matched monomer-catalyst system. We discuss the effects of side-chain steric hindrance and halogens in the context of heavy atom substituted monomers. By moving the side-chain branch point one carbon atom away from the heterocycle to alleviate steric crowding and stabilize the catalyst resting state, we were able to successfully control the polymerization of new tellurophene monomers. Inspired by innocent role of the sterically encumbered 2-transmetalated 3-alkylthiophene monomer, we introduce the treatment of hygroscopic monomers with a bulky Grignard compound as a water-scavenger for the improved synthesis of water-soluble conjugated polymers. For challenging electron-deficient monomers, we discuss the design of new Ni(II)diimine catalysts with electron-donating character which enhance the stability of the association complex between the catalyst and the growing polymer chain, resulting in the quasi-living synthesis of n-type polymers. Beyond n-type homopolymers, the Ni(II)diimine catalysts are also capable of producing electron-rich and electron-deficient diblock and statistical copolymers. We discuss how density functional theory (DFT) calculations elucidate the role of catalyst steric and electronic effects in controlling the synthesis of π-conjugated polymers. Moreover, we demonstrate the synthesis of monodisperse high oligomers by temperature cycling, which takes full advantage of the unique character of KCTP in that it proceeds through distinct intermediates that are not reactive. The insight we gained thus far leads to the first example of isolated living conjugated polymer chains prepared by a standard KCTP procedure, with general applicability to different monomers and catalytic systems. In summarizing a decade of innovation in KCTP, we hope this Account will inspire future development in the field to overcome key challenges including the controlled synthesis of electron-deficient heterocycles, complex and high-performance systems, and degradable and recyclable materials as well as cutting-edge catalyst design.
Collapse
Affiliation(s)
- Susan Cheng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
20
|
Woods EF, Berl AJ, Kantt LP, Eckdahl CT, Wasielewski MR, Haines BE, Kalow JA. Light Directs Monomer Coordination in Catalyst-Free Grignard Photopolymerization. J Am Chem Soc 2021; 143:18755-18765. [PMID: 34699721 DOI: 10.1021/jacs.1c09595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
π-Conjugated polymers can serve as active layers in flexible and lightweight electronics and are conventionally synthesized by transition-metal-mediated polycondensation at elevated temperatures. We recently reported a photopolymerization of electron-deficient heteroaryl Grignard monomers that enables the catalyst-free synthesis of n-type π-conjugated polymers. Herein, we describe an experimental and computational investigation into the mechanism of this photopolymerization. Spectroscopic studies performed in situ and after quenching reveal that the propagating chain is a radical anion with halide end groups. DFT calculations for model oligomers suggest a Mg-templated SRN1-type coupling, in which Grignard monomer coordination to the radical anion chain avoids the formation of free sp2 radicals and allows C-C bond formation with very low barriers. We find that light plays an unusual role in the reaction, photoexciting the radical anion chain to shift electron density to the termini and thus enabling productive monomer binding.
Collapse
Affiliation(s)
- Eliot F Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Alexandra J Berl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Leanna P Kantt
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Christopher T Eckdahl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, 955 La Paz Rd, Santa Barbara, California 93108, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Guo C, Qiu Z, Xie Z. Catalytic Cage BH Functionalization of Carboranes via “Cage Walking” Strategy. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, People’s Republic of China
| |
Collapse
|
22
|
Kubo T, Young MS, Souther KD, Hannigan MD, McNeil AJ. Air‐tolerant
poly(3‐hexylthiophene) synthesis via
catalyst‐transfer
polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomohiro Kubo
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Morgan S. Young
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Kendra D. Souther
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Matthew D. Hannigan
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
23
|
Malig TC, Yunker LPE, Steiner S, Hein JE. Online High-Performance Liquid Chromatography Analysis of Buchwald–Hartwig Aminations from within an Inert Environment. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas C. Malig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lars P. E. Yunker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sebastian Steiner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
24
|
Elacqua E, Koehler SJ, Hu J. Electronically Governed ROMP: Expanding Sequence Control for Donor–Acceptor Conjugated Polymers. Synlett 2020. [DOI: 10.1055/s-0040-1707180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Controlling the primary sequence of synthetic polymers remains a grand challenge in chemistry. A variety of methods that exert control over monomer sequence have been realized wherein differential reactivity, pre-organization, and stimuli-response have been key factors in programming sequence. Whereas much has been established in nonconjugated systems, π-extended frameworks remain systems wherein subtle structural changes influence bulk properties. The recent introduction of electronically biased ring-opening metathesis polymerization (ROMP) extends the repertoire of feasible approaches to prescribe donor–acceptor sequences in conjugated polymers, by enabling a system to achieve both low dispersity and controlled polymer sequences. Herein, we discuss recent advances in obtaining well-defined (i.e., low dispersity) polymers featuring donor–acceptor sequence control, and present our design of an electronically ambiguous (4-methoxy-1-(2-ethylhexyloxy) and benzothiadiazole-(donor–acceptor-)based [2.2]paracyclophanediene monomer that undergoes electronically dictated ROMP. The resultant donor–acceptor polymers were well-defined (Đ = 1.2, Mn > 20 k) and exhibited lower energy excitation and emission in comparison to ‘sequence-ill-defined’ polymers. Electronically driven ROMP expands on prior synthetic methods to attain sequence control, while providing a promising platform for further interrogation of polymer sequence and resultant properties.1 Introduction to Sequence Control2 Sequence Control in Polymers3 Multistep-Synthesis-Driven Sequence Control4 Catalyst-Dictated Sequence Control5 Electronically Governed Sequence Control6 Conclusions
Collapse
|
25
|
Ye S, Cheng S, Pollit AA, Forbes MW, Seferos DS. Isolation of Living Conjugated Polymer Chains. J Am Chem Soc 2020; 142:11244-11251. [PMID: 32460487 DOI: 10.1021/jacs.0c04379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Living polymerizations currently play a central role in polymer chemistry. However, one feature of these polymerizations is often overlooked, namely, the isolation of living polymer chains. Herein we report the isolation of living π-conjugated polymer chains, synthesized by catalyst-transfer polycondensation. Successful preservation of the nickel complex at polymer chain ends is evidenced by nuclear magnetic resonance spectroscopy, end group analysis, and chain extension experiments. When characterizing living chains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we discovered a unique photoionization-photodissociation fragmentation process for polymers containing a nickel phosphine end group. Living chains are isolated for several types of conjugated polymers as well as discrete living oligomers. Additionally, we are able to recycle the catalysts from the isolated polymer chains. Catalyst recycling after π-conjugated polymerization has previously been impossible without chain isolation. This strategy not only exhibits general applicability to different monomers but also has far-reaching potential for other catalytic systems.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Susan Cheng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Adam A Pollit
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Matthew W Forbes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
26
|
Jarrett-Wilkins CN, Pollit AA, Seferos DS. Polymerization Catalysts Take a Walk on the Wild Side. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Lee J, Park H, Hwang SH, Lee IH, Choi TL. RuPhos Pd Precatalyst and MIDA Boronate as an Effective Combination for the Precision Synthesis of Poly(3-hexylthiophene): Systematic Investigation of the Effects of Boronates, Halides, and Ligands. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunwoo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon16499, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Liu HH, Liang WW, Lai YY, Su YC, Yang HR, Cheng KY, Huang SC, Cheng YJ. Synthesis of side-chain regioregular and main-chain alternating poly(bichalcogenophene)s and an ABC-type periodic poly(terchalcogenophene). Chem Sci 2020; 11:3836-3844. [PMID: 34122851 PMCID: PMC8152668 DOI: 10.1039/d0sc00404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s-PSSe, PSTe, and PSeTe-through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)-from a thiophene unit via a selenophene unit to a tellurophene unit-to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.
Collapse
Affiliation(s)
- Huai-Hsuan Liu
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Wei-Wei Liang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Chen Su
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Hau-Ren Yang
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Yi Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Sheng-Cih Huang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| |
Collapse
|
29
|
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Hyatt
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susannah A. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
McKeown GR, Ye S, Cheng S, Seferos DS. Homogenous Synthesis of Monodisperse High Oligomers of 3-Hexylthiophene by Temperature Cycling. J Am Chem Soc 2019; 141:17053-17056. [PMID: 31638385 DOI: 10.1021/jacs.9b08240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whereas monodisperse polymers are ubiquitous in Nature, they remain elusive to synthetic chemists. Absolute control over polymer length and structure is essential to imparting chemical functionality, reproducible properties, and specific solid-state behavior. Precise polymer length has proven to be extremely difficult to control. The most successful examples are generally similar to solid-phase oligo nucleotide or peptide synthesis, wherein the polymer is built up one unit at a time with each sequential monomer addition requiring purification and deprotection (or other functional group activation) step. We have discovered a stepwise homogeneous catalyst-transfer polymerization to prepare monodisperse oligo(3-hexylthiophene) using temperature to limit additions to one unit per chain per cycle. This is the first reported example of a one-pot synthesis of monodisperse oligomers that requires no additional purification or intermediate steps. It is our hope that the strategy of temperature cycling to "freeze" intermediates will be generalizable to other living polymerization techniques, such as other catalyst-transfer polymerization systems, and those where a resting state involves an association between the catalyst and growing chain.
Collapse
Affiliation(s)
- George R McKeown
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Shuyang Ye
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Susan Cheng
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Dwight S Seferos
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada.,Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|
31
|
A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0259-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Elacqua E, Gregor M. Poly(arylenevinylene)s through Ring-Opening Metathesis Polymerization of an Unsymmetrical Donor-Acceptor Cyclophane. Angew Chem Int Ed Engl 2019; 58:9527-9532. [PMID: 31042326 DOI: 10.1002/anie.201905137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 02/03/2023]
Abstract
Reported are well-defined donor-acceptor alternating copolymers prepared using ring-opening metathesis polymerization (ROMP). Unsymmetrical cyclophanedienes comprising electron-donating (4-methoxy-1-(2-ethylhexyl)oxy)benzene (MEH) and electron-accepting benzothiadiazole (BT) rings were synthesized from the corresponding [3.3]dithiaparacyclophanes. ROMP of the strained unsymmetrical and "electronically-ambiguous" cyclophanedienes proceeded in a controlled manner in the presence of either Hoveyda-Grubbs II or Grubbs II initiator in wake of both steric and electronic encumbrance. The resulting polymers, comprising alternating BT and MEH-PPV units, are achieved in molecular weights exceeding 20k with Đ values ranging from 1.1-1.4. The living nature of the polymerization is verified through the formation of rod-coil and rod-rod block copolymers. Our strategy to develop previously unrealized polymers from functional building blocks featuring a locked-in D-A unit is significant in a field striving to achieve well-defined and sequence-specific materials.
Collapse
Affiliation(s)
- Elizabeth Elacqua
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Maria Gregor
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
33
|
Elacqua E, Gregor M. Poly(arylenevinylene)s through Ring‐Opening Metathesis Polymerization of an Unsymmetrical Donor‐Acceptor Cyclophane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Elizabeth Elacqua
- Department of Chemistry and Materials Research InstituteThe Pennsylvania State University University Park PA 16802 USA
| | - Maria Gregor
- Department of Chemistry and Materials Research InstituteThe Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
34
|
Takagi K, Tanaka H, Mikami K. Ladderization of polystyrene derivatives by palladium-catalyzed polymer direct arylation. Polym Chem 2019. [DOI: 10.1039/c9py00359b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pseudo-ladderized polystyrenes could be obtained in high yield by the palladium-catalyzed polymer direct arylation using poly(2-bromostyrene) as a prepolymer.
Collapse
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Hidetoshi Tanaka
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | | |
Collapse
|
35
|
Ye S, Foster SM, Pollit AA, Cheng S, Seferos DS. The role of halogens in the catalyst transfer polycondensation for π-conjugated polymers. Chem Sci 2018; 10:2075-2080. [PMID: 30842865 PMCID: PMC6375363 DOI: 10.1039/c8sc04808h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Catalyst transfer polycondensation is the only method to prepare π-conjugated polymers in a chain-growth manner, yet several aspects that underlie this polymerization are not fully understood. Here, we investigate the nickel-catalyzed polymerization mechanisms of a series of thiophene monomers bearing different halogen functionalities (Cl, Br, I). We have discovered the significant role that halogens and magnesium salts play in this polymerization. More specifically, the catalyst resting state changes depending on the type of halogenated monomer. For chlorinated monomers a mixture of Ni(ii)-dithienyl and dissociated Ni(phosphine) complexes are the resting states, which results in uncontrolled polymerization. For brominated monomers, a Ni(ii)-dithienyl complex is the resting state, which leads to controlled polymerization. For iodinated monomers, a Ni(ii)-thienyl iodide complex is the resting state, and notable inhibition by magnesium salt by-products is observed. The catalyst resting state changes to a Ni(ii)-dithienyl complex when a turbo Grignard reagent (i-PrMgCl·LiCl) is used. These findings are used to guide the design of a new monomer, 2-bromo-3-(2-ethylhexyl)-5-iodotellurophene, which enables the first controlled polymerization of a tellurophene monomer containing a sterically encumbered 2-ethylhexyl side chain. These insights are crucial for deepening the mechanistic understanding of Kumada cross coupling reactions and the controlled synthesis of π-conjugated polymers.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada .
| | - Scott M Foster
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada .
| | - Adam A Pollit
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada .
| | - Susan Cheng
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada .
| | - Dwight S Seferos
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada . .,Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|
36
|
Lutz JP, Hannigan MD, McNeil AJ. Polymers synthesized via catalyst-transfer polymerization and their applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Leone AK, Mueller EA, McNeil AJ. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. J Am Chem Soc 2018; 140:15126-15139. [DOI: 10.1021/jacs.8b09103] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amanda K. Leone
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Emily A. Mueller
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|