1
|
Vidal L, Barrena-Espés D, Echeverría J, Munárriz J, Pendás ÁM. Deciphering Pyramidanes: A Quantum Chemical Topology Approach. Chemphyschem 2024; 25:e202400329. [PMID: 39041294 DOI: 10.1002/cphc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
C[C4H4], the simplest compound of the [4]-pyramidane family, has so far eluded experimental characterization, although several of its analogs, E[C4(SiMe3)4] in which the E apex atom is a tetrel group element, have been successfully prepared. The non-classical bonding mode of E, similar to that found in propellanes, has prompted a considerable number of theoretical studies to unravel the nature of the apex-base interaction. Here, we contribute to this knowledge by analyzing the electron localization function (ELF) and classical QTAIM descriptors; as well the statistical distribution of electrons in atomic regions by means of the so-called electron distribution functions (EDFs), calculation of multicenter indices (MCI) as aromaticity descriptors and by performing orbital invariant energy decompositions with the interacting quantum atoms (IQA) approach on a series of E[C4(SiMe3)4] compounds. We find that the bonding evolves from covalent to electrostatic as E changes from C to Pb, with an anomaly when E=Si, which is shown to be the most charged moiety, compatible with an aromatic [C4(SiMe3)4]2- scaffold in the pyramidane base.
Collapse
Affiliation(s)
- Lucía Vidal
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
- Departamento de Química Inorgánica and Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Daniel Barrena-Espés
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| | - Jorge Echeverría
- Departamento de Química Inorgánica and Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Julen Munárriz
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006, Spain
| |
Collapse
|
2
|
Lee VY, Wang J, Sasamori T, Gapurenko OA, Minyaev RM, Minkin VI, Takeuchi K, Fukaya N, Gornitzka H. Electrophilic Behavior of the "Nucleophilic" Pyramidane: Reactivity of Ge-Pyramidane towards Organolithium Reagents. Chemistry 2024:e202401806. [PMID: 38789386 DOI: 10.1002/chem.202401806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
The particular reactivity of the recently discovered class of the main group element polyhedral clusters, pyramidanes, remains largely unexplored. In this communication, we report the reaction of the germapyramidane with tert-butyllithium leading to the rather unusual organogermanium compound [Li+(thf)2]⋅2-, as the product of the formal insertion of a Ge-apex into the C-Li bond. This reactivity mode exemplifies unusual electrophilic behaviour of a pyramidane, which is a priori considered as a nucleophilic reagent. Being highly reactive, [Li+(thf)2]⋅2- readily undergoes reactions with electrophiles (MeI, EtBr), initially forming intermediate germahousenes, which isomerize to the thermodynamically more favourable germoles.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Junkang Wang
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Ruslan M Minyaev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), 305-8565, Tsukuba, Ibaraki, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), 305-8565, Tsukuba, Ibaraki, Japan
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077, Toulouse, France
| |
Collapse
|
3
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
4
|
Bührmann L, Albers L, Beuße M, Schmidtmann M, Müller T. Aluminagerma[5]pyramidanes-Formation and Skeletal Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202401467. [PMID: 38470087 DOI: 10.1002/anie.202401467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
The salt metathesis reaction of dipotassium germacyclopentadienediide with aluminum(III) dichlorides provides either half-sandwich alumole complexes of germanium(II) or aluminylene germole complexes. Their molecular structure and the delocalized bonding situation, revealed by density functional theory (DFT) calculations, are equally described as isomeric aluminagerma[5]pyramidanes with either the germanium or the aluminum atom in the apical position of the pentagonal pyramid. The product formation and the selectivity of the reaction depends on the third substituent of the aluminum dichloride. Aryl-substituents favor the formation of alumole complexes and Cp*-substituents that of the isomeric germole complexes. With amino-substituents at the aluminum atom mixtures of both isomers are formed and the positional exchange of the two heteroatoms is shown by NMR spectroscopy. The alumole complexes of germanium(II) undergo facile reductive elimination of germanium and form the corresponding alumoles.
Collapse
Affiliation(s)
- Lukas Bührmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Lena Albers
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Maximilian Beuße
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Marc Schmidtmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Thomas Müller
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| |
Collapse
|
5
|
Luder DJ, Terefenko N, Sun Q, Eckert H, Mück-Lichtenfeld C, Kehr G, Erker G, Wiegand T. Polar covalent apex-base bonding in borapyramidanes probed by solid-state NMR and DFT calculations. Chemistry 2024; 30:e202303701. [PMID: 38078510 DOI: 10.1002/chem.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 01/04/2024]
Abstract
Pyramidane molecules have attracted chemists for many decades due to their regular shape, high symmetry and their correspondence in the macroscopic world. Recently, experimental access to a number of examples has been reported, in particular the rarely reported square pyramidal bora[4]pyramidanes. To describe the bonding situation of the nonclassical structure of pyramidanes, we present solid-state Nuclear Magnetic Resonance (NMR) as a versatile tool for deciphering such bonding properties for three now accessible bora[4]pyramidane and dibora[5]pyramidane molecules. 11 B solid-state NMR spectra indicate that the apical boron nuclei in these compounds are strongly shielded (around -50 ppm vs. BF3 -Et2 O complex) and possess quadrupolar coupling constants of less than 0.9 MHz pointing to a rather high local symmetry. 13 C-11 B spin-spin coupling constants have been explored as a measure of the bond covalency in the borapyramidanes. While the carbon-boron bond to the -B(C6 F5 )2 substituents of the base serves as an example for a classical covalent 2-center-2-electron (2c-2e) sp2 -carbon-sp2 -boron σ-bond with 1 J(13 C-11 B) coupling constants in the order of 75 Hz, those of the boron(apical)-carbon(basal) bonds in the pyramid are too small to measure. These results suggest that these bonds have a strongly ionic character, which is also supported by quantum-chemical calculations.
Collapse
Affiliation(s)
- Dominique J Luder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Nicole Terefenko
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Qiu Sun
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Hellmut Eckert
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
- Institut für Physikalische Chemie, University of Münster, Corrensstr. 30, 48149, Münster, Germany
| | | | - Gerald Kehr
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Gerhard Erker
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| |
Collapse
|
6
|
Sun Q, Mück-Lichtenfeld C, Kehr G, Erker G. Molecular pyramids - from tetrahedranes to [6]pyramidanes. Nat Rev Chem 2023; 7:732-746. [PMID: 37612459 DOI: 10.1038/s41570-023-00525-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The study of 3D architectures at a molecular scale has fascinated chemists for generations. This includes molecular pyramids with all-carbon frameworks, such as trigonal, tetragonal and pentagonal pyramidal geometries. A small number of substituted tetrahedranes and all-carbon [4]-[5]pyramidanes have been experimentally generated and studied. Although the hypothetical unsubstituted parent [3]-[6]pyramidanes have only been explored computationally, the formal replacement of carbon vertices with isolobal main group element fragments has provided a number of examples of stable hetero[m]pyramidanes, which have been isolated and amply characterized. In this Review, we highlight the synthesis and chemical properties of [3]-[6]pyramidanes and summarize the progress in the development of chemistry of pyramid-shaped molecules.
Collapse
Affiliation(s)
- Qiu Sun
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Gerald Kehr
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
7
|
Lee VY, Gapurenko OA. Pyramidanes: newcomers to the anti-van't Hoff-Le Bel family. Chem Commun (Camb) 2023; 59:10067-10086. [PMID: 37551825 DOI: 10.1039/d3cc02757k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In this feature article, an overview of the chemistry of pyramidanes, as a novel class of main group element clusters, is given. A general introduction sets the scene, briefly presenting the non-classical pyramidal geometry of tetracoordinate carbon, as opposed to the classical tetrahedral configuration. Pyramidanes, as the simplest organic compounds possessing a pyramidal carbon atom, are then discussed from both computational and experimental viewpoints, to show the theoretical predictions on the stability and thus the feasibility of pyramidanes has finally culminated in the isolation of the first stable representatives of the pyramidane family featuring heavy main group elements at the apex of the square pyramid. Synthetic strategies towards pyramidanes, as well as their peculiar structural features, non-classical bonding situations, and specific reactivity, are presented and discussed in this review.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan.
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation.
| |
Collapse
|
8
|
Sarcevic J, Heitkemper T, Ruth PN, Naß L, Kubis M, Stalke D, Sindlinger CP. A donor-supported silavinylidene and silylium ylides: boroles as a flexible platform for versatile Si(ii) chemistry. Chem Sci 2023; 14:5148-5159. [PMID: 37206392 PMCID: PMC10189903 DOI: 10.1039/d3sc00808h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 09/22/2024] Open
Abstract
Electron-deficient, anti-aromatic 2,5-disilyl boroles are shown to be a flexibly adaptive molecular platform with regards to SiMe3 mobility in their reaction with the nucleophilic donor-stabilised precursor dichloro silylene SiCl2(IDipp). Depending on the substitution pattern, selective formation of two fundamentally different products of rivalling formation pathways is achieved. Formal addition of the dichlorosilylene gives the 5,5-dichloro-5-sila-6-borabicyclo[2.1.1]hex-2-ene derivatives. Under kinetically controlled conditions, SiCl2(IDipp) induces 1,3-trimethylsilyl migration and adds exocyclically to the generated carbene fragment giving an NHC-supported silylium ylide. In some cases interconversion between these compound classes was triggered by temperature or NHC-addition. Reduction of silaborabicyclo[2.1.1]hex-2-ene derivatives under forcing conditions gave clean access to recently described nido-type cluster Si(ii) half-sandwich complexes of boroles. Reduction of a NHC-supported silylium ylide gave an unprecedented NHC-supported silavinylidene which rearranges to the nido-type cluster at elevated temperatures.
Collapse
Affiliation(s)
- Julijan Sarcevic
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| | - Tobias Heitkemper
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| | - Paul Niklas Ruth
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Leonard Naß
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Maximilian Kubis
- Institut für Anorganische Chemie, RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| |
Collapse
|
9
|
Imagawa T, Giarrana L, Andrada DM, Morgenstern B, Nakamoto M, Scheschkewitz D. Stable Silapyramidanes. J Am Chem Soc 2023; 145:4757-4764. [PMID: 36787446 DOI: 10.1021/jacs.2c13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Starting from tetrakis(trimethylsilyl)cyclobutadiene and an amidinate-supported silylene of the Roesky-type, a sequence of addition and reduction cleanly gives the elusive silapyramidane via an isolable cyclobutene intermediate with an exocyclic Si═C bond. The silapyramidane features an unusually shielded 29Si NMR resonance at -448.3 ppm for the apex silicon atom. Treatment with Fe2(CO)9 results in the formation of the corresponding silapyramidane-iron complex. Silapyramidane also reacts with the cyclobutadiene starting material to cleanly afford a fluorescent spirobis(silole).
Collapse
Affiliation(s)
- Taiki Imagawa
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.,Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Higashi-Hiroshima, Japan
| | - Luisa Giarrana
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Diego M Andrada
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray Diffraction, Saarland University, 66123 Saarbrücken, Germany
| | - Masaaki Nakamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Higashi-Hiroshima, Japan
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Coburger P, Masero F, Bösken J, Mougel V, Grützmacher H. A Germapyramidane Switches Between 3D Cluster and 2D Cyclic Structures in Single-Electron Steps. Angew Chem Int Ed Engl 2022; 61:e202211749. [PMID: 36152009 PMCID: PMC9828763 DOI: 10.1002/anie.202211749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Reaction of the imidazolium-substituted iphosphate-diide, (Ipr)2 C2 P2 (IDP), with GeCl2 ⋅ dioxane and KBArF24 [(BarF24 )- =tetrakis[(3,5-trifluoromethyl)phenyl]borate)] afforded the dicationic spherical-aromatic nido-cluster [Ge(η4 -IDP)]2+ ([1]2+ ) (Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolium-2-ylidene). This complex is a rare heavy analogue of the elusive pyramidane [C(η4 -C4 H4 )]. [1]2+ undergoes two reversible one-electron reductions, which yield the radical cation [2]⋅+ and the neutral GeII species 3. Both [2]⋅+ and 3 rearrange in solution forming the 2D aromatic and planar imidazolium-substituted digermolide [4]2+ and germole-diide 5, respectively. Both planar species can be oxidized back to [1]2+ using AgSbF6 . These redox-isomerizations correspond to the fundamental transformation of a 3D aromatic cluster into a 2D aromatic ring compound upon reduction and vice versa. The mechanism of these reactions was elucidated using DFT calculations and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Peter Coburger
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Fabio Masero
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Jonas Bösken
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
11
|
Sun Q, Daniliuc CG, Yu X, Mück-Lichtenfeld C, Kehr G, Erker G. Borole/Borapyramidane Relationship. J Am Chem Soc 2022; 144:7815-7821. [PMID: 35438485 DOI: 10.1021/jacs.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boroles and borapyramidanes are classical and nonclassical constitutional isomers, respectively. It is here shown that they can indeed be interconverted. Treatment of the bis(alkynyl)B(C6F5) SMe2 adduct 3·SMe2 with HB(C6F5)2 gave borole 1·SMe2, featuring trimethylsilyl substituents in both α positions to boron, by means of a 1,1-hydroboration/alkenylboration sequence. Photolysis of the classical borole adduct 1·SMe2 resulted in rearrangement to its nonclassical structural isomer, borapyramidane 2, in high yield, which exhibits a vicinal pair of trimethylsilyl substituents at the square pyramidane base. Neutral borapyramidane 2 is a rare example of an isoster of the (CH)5+ pyramidane cation. Thermolysis of borapyramidane 2 in the presence of SMe2 at 60 °C re-formed borole 1·SMe2, which converted at 100 °C to 2,3-bis-silyl-substituted borole isomer 8·SMe2. Its photolysis also gave borapyramidane 2. Prolonged photolysis of 2 at elevated temperatures converted this to borapyramidane isomer 10 containing a pair of trimethylsilyl groups in 1,3-position at its square C4-pyramidal base. The borole and borapyramidane isomers were characterized by X-ray diffraction, and the system was analyzed by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qiu Sun
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Xiaoye Yu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
12
|
Lee VY, Sugasawa H, Gapurenko OA, Minyaev RM, Minkin VI, Gornitzka H, Sekiguchi A. 1-Chloroalumole. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vladimir Ya. Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Haruka Sugasawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Olga A. Gapurenko
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Ruslan M. Minyaev
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Heinz Gornitzka
- CNRS, LCC, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077 CEDEX 4 Toulouse, France
| | - Akira Sekiguchi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
13
|
Ito S, Ishii Y, Kuwabara T. Inorganic salt-assisted assembly of anionic π-conjugated rings enabling 7Li NMR-based evaluation of antiaromaticity. Dalton Trans 2022; 51:16397-16402. [DOI: 10.1039/d2dt02649j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cluster composed of three dilithium dibenzosilepinides and two Li2O molecules showed downfield shifted 7Li{1H} NMR signals (δ = 6.3, 4.4) due to the paratropic ring currents of the dianionic dibenzosilepins.
Collapse
Affiliation(s)
- Shotaro Ito
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takuya Kuwabara
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
14
|
Sarcevic J, Heitkemper T, Sindlinger CP. Borole-based half-sandwich complexes of germanium and tin. Chem Commun (Camb) 2021; 58:246-249. [PMID: 34878448 DOI: 10.1039/d1cc06227a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and initial observations regarding the reactivity of borole-based half-sandwich complexes with apical divalent group 14 elements germanium and tin are described. The 2,5-disilylborole substitution pattern allows their access via salt metathesis of the respective borole dianions.
Collapse
Affiliation(s)
- Julijan Sarcevic
- Insitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Tobias Heitkemper
- Insitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.,Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| | - Christian P Sindlinger
- Insitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.,Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| |
Collapse
|
15
|
Pearce KG, Canham EPF, Nixon JF, Crossley IR. A Benzodiphosphaborolediide. Chemistry 2021; 27:16342-16346. [PMID: 34586681 DOI: 10.1002/chem.202103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 01/06/2023]
Abstract
The first example of a diphosphaborolediide, the benzo-fused [C6 H4 P2 BPh]2- (12- ), is prepared from ortho-bis(phosphino)benzene (C6 H4 {PH2 }) and dichlorophenylborane, via a sequential lithiation approach. The dilithio-salt can be obtained as an oligomeric THF solvate or discrete TMEDA adduct, both of which are fully characterized, including by X-ray diffraction. Alongside NICS calculations, data strongly suggest some aromaticity within 12- , which is further supported by preliminary coordination studies that demonstrate η5 -coordination to a zerovalent molybdenum center, as observed crystallographically for the oligomeric [{Mo(CO)3 (η5 -1)}{μ-η1 -Mo(CO)3 (TMEDA)}2 ] ⋅ [μ-Li(THF)][μ-Li(TMEDA)].
Collapse
Affiliation(s)
- Kyle G Pearce
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Elinor P F Canham
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - John F Nixon
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Ian R Crossley
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| |
Collapse
|
16
|
Yruegas S, Tang H, Bornovski GZ, Su X, Sung S, Hall MB, Nippe M, Martin CD. Nickel-Borolide Complexes and Their Complex Electronic Structure. Inorg Chem 2021; 60:16160-16167. [PMID: 34637613 DOI: 10.1021/acs.inorgchem.1c01845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borolides (BC42-) can be considered as dianionic heterocyclic analogues of monoanionic cyclopentadienides. Although both are formally six-π-electron donors, we herein demonstrate that the electronic structure of their corresponding transition metal complexes differs significantly, leading to altered properties. Specifically, the 18-electron sandwich complex Ni(iPr2NBC4Ph2)2 (1) features an ∼90° angle between the Ni-B-N planes and is best described as a combination of three limiting resonance structures with the major contribution stemming from a formally Ni2+ species bound to two monoanionic radical (BC4•-) ligands. Compound 1 displays two sequential one-electron oxidation events over a small potential range of <0.2 V, which strikingly contrasts the large potential separations between redox partners in the family of metallocenes, and the potential reasons for this unusual observation are discussed.
Collapse
Affiliation(s)
- Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Hao Tang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Gayle Z Bornovski
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Siyoung Sung
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
17
|
Aysin RR, Bukalov SS. Three dimensional aromaticity in pyramidanes C4R4E and Ge4R4Ge. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Heitkemper T, Sarcevic J, Sindlinger CP. A Neutral Silicon(II) Half-Sandwich Compound. J Am Chem Soc 2020; 142:21304-21309. [PMID: 33315393 DOI: 10.1021/jacs.0c11904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metathesis reaction of a dilithio borole dianion, a cyclic π-ligand isoelectronic to ubiquitous cyclopentadienyls, with two equivalents of "silicocenium" cation [Cp*Si]+ as a source of low-valent Si(II), cleanly gives a borole half-sandwich π-complex of Si(II) and silicocene. The resulting half-sandwich complex is a neutral isoelectronic analogue to the iconic silicocenium cation and features the rare structural motif of an apical silicon(II) atom with an energetically high lying lone pair of electrons that is shown to be accessible for coordination chemistry toward tungsten carbonyl. Protonation at the Si(II) atom with [H(OEt2)2][Al{OC(CF3)3}4] induces formal oxidation, and the compound rearranges to incorporate the Si atom into the carbocyclic base to give an unprecedented cationic 5-sila-6-borabicyclo[2.1.1]hex-2-ene. This rearrangement is accompanied by drastic changes in the 11B and 29Si NMR chemical shifts.
Collapse
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Julijan Sarcevic
- Institut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Heitkemper T, Naß L, Sindlinger CP. 2,5-Bis-trimethylsilyl substituted boroles. Dalton Trans 2020; 49:2706-2714. [PMID: 32049092 DOI: 10.1039/d0dt00393j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript includes a comprehensive study of the synthesis and spectroscopic features of 2,5-disilyl boroles.
Collapse
Affiliation(s)
| | - Leonard Naß
- Institut für Anorganische Chemie
- 37077 Göttingen
- Germany
| | | |
Collapse
|
20
|
Viability of half sandwich complexes of borole with group 14 (II) ions: Structure, stability and reactivity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Theoretical Prediction for Synthetic Realization: Pyramidal Systems ClE[E′4R4] (E = B–Ga, E′ = C–Ge, R = SiMe3, SiMetBu2): A DFT Study. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/3659287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structure and bonding of hybrid group 13/14 pyramidal molecules ClE[E′4R4] (E = B–Ga, E′ = C–Ge, R = SiMe3, SiMetBu2) were studied by DFT calculations. Six pyramidal structures are suggested for their potential synthetic realization.
Collapse
|
22
|
Heitkemper T, Sindlinger CP. Electronic Push-Pull Modulation by Peripheral Substituents in Pentaaryl Boroles. Chemistry 2019; 25:6628-6637. [PMID: 30861220 DOI: 10.1002/chem.201900826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/07/2019] [Indexed: 11/06/2022]
Abstract
Establishing access to a bulky tetraaryl dilithiobutadiene (Ph*C)4 Li2 (Ph*=3,5-tBu2 (C6 H3 )) allowed for the synthesis of five-membered heterocycles with incorporated main-group elements. Along with an amino borole, a set of substituted pentaaryl boroles (Ph*C)4 BAr has been synthesized. The examination of their absorption spectra and computational studies by means of DFT granted insight into the influence of peripheral substituents on the electronic features of the parent pentaphenyl borole (PhC)4 BPh. Introduction of the more electron-rich Ph* residue at the carbon atoms increases the HOMO energy, redshifting the visible π/π*-absorption bands compared with the parent pentaphenyl borole. The influence on the frontier orbitals of three different boron-bound aryls with electronically modulating substituents in the remote 3,5-positions Ar=3,5-R2 -C6 H3 (R=Me, H, CF3 ) was studied. The substituents were found to increase (+I effect, Me) or decrease (-I effect, CF3 ) the LUMO energy, thus directly affecting the visible absorption spectra. This represents the first study on HOMO-LUMO-gap adjustments by a combined push-pull approach of a substituted pentaphenylborole.
Collapse
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
23
|
Chen J, Feng H, Xie Y, King RB. Agostic hydrogen atoms versus cobalt-cobalt multiple bonding in binuclear borole cobalt carbonyls. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
|
25
|
Day BM, Guo FS, Giblin SR, Sekiguchi A, Mansikkamäki A, Layfield RA. Rare-Earth Cyclobutadienyl Sandwich Complexes: Synthesis, Structure and Dynamic Magnetic Properties. Chemistry 2018; 24:16779-16782. [PMID: 30230639 DOI: 10.1002/chem.201804776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/08/2022]
Abstract
The potassium cyclobutadienyl [K2 {η4 -C4 (SiMe3 )4 }] (1) reacts with MCl3 (THF)3.5 (M=Y, Dy) to give the first rare-earth cyclobutadienyl complexes, that is, the complex anions [M{η4 -C4 (SiMe3 )4 }{η4 -C4 (SiMe3 )3 -κ-(CH2 SiMe2 }]2- , (2M ), as their dipotassium salts. The tuck-in alkyl ligand in 2M is thought to form through deprotonation of the "squarocene" complexes [M{η4 -C4 (SiMe3 )4 }2 ]- by 1. Complex 2Dy is a single-molecule magnet, but with prominent quantum tunneling. An anisotropy barrier of 323(22) cm-1 was determined for 2Dy in an applied field of 1 kOe, and magnetic hysteresis loops were observed up to 7 K.
Collapse
Affiliation(s)
- Benjamin M Day
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, U.K.,School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fu-Sheng Guo
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, U.K
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Akira Sekiguchi
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Akseli Mansikkamäki
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
26
|
Tholen P, Dong Z, Schmidtmann M, Albers L, Müller T. A Neutral η 5 -Aminoborole Complex of Germanium(II). Angew Chem Int Ed Engl 2018; 57:13319-13324. [PMID: 30070743 DOI: 10.1002/anie.201808271] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Indexed: 11/09/2022]
Abstract
The synthesis of two η5 -aminoborole complexes of germanium(II) from the reaction of a germole dianion with aminoboron dichlorides is reported. This reaction constitutes a remarkable example of a germole-to-borole transformation. The two aminoborole complexes of germanium(II) were fully characterized by multinuclear NMR spectroscopy, IR spectroscopy, HRMS, and, in one case, by X-ray crystallography. The results of quantum-mechanical calculations favor the electronic structure of a half-sandwich complex of GeII over an ionic representation with a germanium dication stabilized by an aromatic aminoborole dianion.
Collapse
Affiliation(s)
- Patrik Tholen
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Zhaowen Dong
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Lena Albers
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Thomas Müller
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
27
|
Tholen P, Dong Z, Schmidtmann M, Albers L, Müller T. Ein neutraler η
5
‐Aminoborol‐Germanium(II)‐Komplex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrik Tholen
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Zhaowen Dong
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Marc Schmidtmann
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Lena Albers
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Thomas Müller
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| |
Collapse
|