1
|
Pereira Orenha R, Muñoz-Castro A, Piotrowski M, Caramori GF, Rocha RG, Parreira RLT. Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective. ACS PHYSICAL CHEMISTRY AU 2025; 5:183-194. [PMID: 40160946 PMCID: PMC11950869 DOI: 10.1021/acsphyschemau.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025]
Abstract
Cations have significant applications in fields such as medicinal inorganic chemistry and catalysis. Rotaxanes are composed of a macrocyclic structure that is mechanically interlocked with a linear molecule. These mechanically interlocked molecules (MIMs) provide a potential chemical environment that allows for the interaction with cations. In this study, the bonding situations between rotaxanes or their acyclic/cyclic molecular derivatives and: (i) transition metal (Zn2+ and Cd2+); or (ii) alkali metal (Li+, Na+, and K+), cations have been studied. It is notable that among the MIMs structures, the rotaxanes demonstrate enhanced interactions with cations in comparison to the cyclic and, notably, the acyclic derivative molecules. The modification of rotaxane structures through structural changes and chemical reduction represents an intriguing approach to enhance cationic recognition, which is supported by the formation of more favorable electrostatic and/or orbital interaction energies in comparison with Pauli repulsive energies. The findings of this investigation can be employed in the synthesis of compounds with enhanced cation recognition capabilities.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo
de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando de Sáles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Alvaro Muñoz-Castro
- Facultad
de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | | | - Giovanni F. Caramori
- Departamento
de Química, Universidade Federal
de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Renato Gonçalves Rocha
- Núcleo
de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando de Sáles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Renato Luis Tame Parreira
- Núcleo
de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando de Sáles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| |
Collapse
|
2
|
Elramadi E, Kundu S, Mondal D, Paululat T, Schmittel M. Stepwise Dissipative Control of Multimodal Motion in a Silver(I) Catenate. Angew Chem Int Ed Engl 2024; 63:e202404444. [PMID: 38530118 DOI: 10.1002/anie.202404444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.
Collapse
Affiliation(s)
- Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie II, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
3
|
Valiyev I, Paul I, Li YF, Elramadi E, Schmittel M. Interconversion between multicomponent slider-on-deck and palladium capsule: regulation of catalysis and encapsulation. Dalton Trans 2024; 53:3454-3458. [PMID: 38305461 DOI: 10.1039/d3dt04300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
When the slider-on-deck [Cu3(1)(2)]3+ and guest G were treated with palladium(II) ions, the biped 2 was released from [Cu3(1)(2)]3+ generating the nanocage [Pd2(2)4(G)]4+ with guest G being encapsulated (NetState-II). This transformation that was reversed by the addition of DMAP enabled modulation of both the overall fluorescence and the activity of copper(I) catalyzing an aza Hopf cyclization.
Collapse
Affiliation(s)
- Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Yi-Fan Li
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| |
Collapse
|
4
|
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
5
|
Rajasekaran VV, Ghosh A, Kundu S, Mondal D, Paululat T, Schmittel M. Synchronizing Two Distinct Nano-Circular Sliding Motions in Six-Component Machinery for Double Catalysis. Angew Chem Int Ed Engl 2022; 61:e202212473. [PMID: 36197751 PMCID: PMC9828345 DOI: 10.1002/anie.202212473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/05/2022]
Abstract
The heteroleptic multi-component double slider-on-deck system DS3 exhibits tight coupling of motional speed of two distinct nano-circular sliders (k298 =77 and 41 kHz) despite a 2.2 nm separation. In comparison, the single sliders in DS1 and DS2 move at vastly different speed (k298 =1.1 vs. 350 kHz). Synchronization of the motions in DS3 remains even when one slows the movement of the faster slider using small molecular brake pads. In contrast to the individual DS1 and DS2 systems, DS3 is a powerful catalyst for a two-step reaction by using the motion of both sliders to drive two catalytic processes.
Collapse
Affiliation(s)
- Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IIUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
6
|
Kundu S, Ghosh A, Paul I, Schmittel M. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. J Am Chem Soc 2022; 144:13039-13043. [PMID: 35834720 DOI: 10.1021/jacs.2c05065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent pseudorotaxane quadrilateral was reversibly toggled between three distinct switching states. Switching in the forward conversion was achieved by addition of H+ and K+ ions, and switching in the reverse direction was performed by addition of 18-crown-6 and 1-aza-18-crown-6. In both the forward and backward ways, the inputs operated an AND gate with distinct catalytic outputs. While in the forward direction the logic AND operation starting from a heteroleptic five-component assembly turned "ON" an imine hydrolysis as output (AND-1), in the inverse direction a Michael addition was ignited as the output starting from a seven-component aggregate following the AND gate logic (AND-2).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
7
|
Howlader P, Schmittel M. Heteroleptic metallosupramolecular aggregates /complexation for supramolecular catalysis. Beilstein J Org Chem 2022; 18:597-630. [PMID: 35673407 PMCID: PMC9152274 DOI: 10.3762/bjoc.18.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Supramolecular catalysis is reviewed with an eye on heteroleptic aggregates/complexation. Since most of the current metallosupramolecular catalytic systems are homoleptic in nature, the idea of breaking/reducing symmetry has ignited a vivid search for heteroleptic aggregates that are made up by different components. Their higher degree of functional diversity and structural heterogeneity allows, as demonstrated by Nature by the multicomponent ATP synthase motor, a more detailed and refined configuration of purposeful machinery. Furthermore, (metallo)supramolecular catalysis is shown to extend beyond the single "supramolecular unit" and to reach far into the field and concepts of systems chemistry and information science.
Collapse
Affiliation(s)
- Prodip Howlader
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
8
|
Elramadi E, Ghosh A, Valiyev I, Biswas P, Paululat T, Schmittel M. Catalytic machinery in motion: Controlling catalysis via speed. Chem Commun (Camb) 2022; 58:8073-8076. [DOI: 10.1039/d2cc02555h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 3-component copper(I)-based slider-on-deck systems served as catalysts for a click reaction showing a higher catalytic activity with increasing sliding speed. Upon addition of brake stones, the motion of the...
Collapse
|
9
|
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chem Rev 2021; 121:13213-13237. [PMID: 34533944 PMCID: PMC8587610 DOI: 10.1021/acs.chemrev.1c00340] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/26/2022]
Abstract
Molecular photoactuators can control shape and chemical or physical properties of the responsive system they are embedded in. These effects are usually mediated by supramolecular interactions and can be amplified to perform work at the micro- and macroscopic scale, for instance, in materials and biomimetic systems. While many studies focus on the observable outcome of these events, photoresponsive structures can also translate their conformational change to molecular components and perform work against random Brownian motion. Stereochemical cascades can amplify light-generated motion to a distant moiety of the same molecule or molecular assembly, via conformationally restricted stereogenic elements. Being able to control the conformation or motion of molecular systems remotely provides prospects for the design of the smallest machines imaginable. This Focus Review emphasizes the emergence of directed, coupled motion of remote functionalities triggered by light-powered switches and motors as a tool to control molecular topology and function.
Collapse
Affiliation(s)
| | | | - Stefano Crespi
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Goswami A, Saha S, Elramadi E, Ghosh A, Schmittel M. Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I). J Am Chem Soc 2021; 143:14926-14935. [PMID: 34478277 DOI: 10.1021/jacs.1c08005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Driving conformational motion in defined off-equilibrium oscillations can be achieved using chemical fuels. When the ultrafast turnstile 1 (k298> 1012 Hz) was fueled with 2-cyano-2-phenylpropanoic acid (Fuel 1), the diprotonated rotor [H2(1)]2+ (k298 = 84.0 kHz) formed as a transient regaining the dynamics of the initial turnstile after consumption of the fuel (135 min). Upon addition of silver(I) (Fuel 2) to turnstile 1, the metastable rotor [Ag2(1)]2+ (k298 = 1.57 Hz) was initially furnished, but due to a consequentially triggered SN2 reaction, the Ag+ ions were consumed as insoluble AgBr along with regeneration of 1 (within 3 h). The off-equilibrium fast ⇆ slow rotor conversions fueled by acid and silver(I) were directly monitored by fluorescence and 1H NMR. In addition, metal ion exchange was fueled enabling off-equilibrium oscillations between rotors [Li2(1)]2+ ⇆ [Ag2(1)]2+. In the end, both sustainability and efficiency of the process were increased in unison by using the interfering proton waste in the formation of a [2]pseudorotaxane.
Collapse
Affiliation(s)
- Abir Goswami
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
11
|
Goswami A, Özer MS, Paul I, Schmittel M. Evolution of catalytic machinery: three-component nanorotor catalyzes formation of four-component catalytic machinery. Chem Commun (Camb) 2021; 57:7180-7183. [PMID: 34190276 DOI: 10.1039/d1cc02805g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The three-component nanorotor [Cu2(S)(R)]2+ (k298 = 46.0 kHz) that is a catalyst for a CuAAC reaction binds the click product at each of its copper centers thereby creating a new platform and a dynamic slider-on-deck system. Due to this sliding motion (k298 = 65.0 kHz) the zinc-porphyrin bound N-methylpyrrolidine is efficiently released into solution and catalyzes a follow-up Michael addition.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Merve S Özer
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| |
Collapse
|
12
|
Ghosh A, Paul I, Schmittel M. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. J Am Chem Soc 2021; 143:5319-5323. [PMID: 33787253 DOI: 10.1021/jacs.1c01948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 3-fold completive self-sorted library of dynamic motifs was integrated into the design of the pseudorotaxane-based rotor [Zn(2·H+)(3)(4)]2+ operating at k298 = 15.4 kHz. The rotational motion in the five-component device is based on association/dissociation of the pyridyl head of the pseudorotaxane rotator arm between two zinc(II) porphyrin stations. Addition of TFA or 2-cyano-2-phenylpropanoic acid as a chemical fuel to a zinc release system and the loose rotor components 2-4 enabled the liberated zinc(II) ions and protons to act in unison, setting up the rotor through the formation of a heteroleptic zinc complex and a pseudorotaxane linkage. With chemical fuel, the dissipative system was reproducibly pulsed three times without a problem. Due to the double role of the fuel acid, two kinetically distinct processes played a role in both the out-of-equilibrium assembly and disassembly of the rotor, highlighting the complex issues in multitasking of chemical fuels.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
13
|
|
14
|
Abstract
Three distinct four-component supramolecular nanorotors were prepared, using, for the first time, bipyridine instead of phenanthroline stations in the stator. Following our established self-sorting protocol to multicomponent nanodevices, the nanorotors were self-assembled by mixing the stator, rotators with various pyridine head groups, copper(I) ions and 1,4-diazabicyclo[2.2.2]octane (DABCO). Whereas the exchange of a phenanthroline vs. a bipyridine station did not entail significant changes in the rotational exchange frequency, the para-substituents at the pyridine head group of the rotator had drastic consequences on the speed: 4-OMe (k298 = 35 kHz), 4-H (k298 = 77 kHz) and 4-NO2 (k298 = 843 kHz). The exchange frequency (log k) showed an excellent linear correlation with both the Hammett substituent constants and log K of the copper(I)–ligand interaction, proving that rotator–copper(I) bond cleavage is the key determining factor in the rate-determining step.
Collapse
|
15
|
Szell PMJ, Lewandowski JR, Blade H, Hughes LP, Nilsson Lill SO, Brown SP. Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm 2021. [DOI: 10.1039/d1ce01084k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV pharmaceutical efavirenz is highly dynamic in its crystalline state, and we show that these dynamics can be tamed through the introduction of a coformer.
Collapse
Affiliation(s)
| | | | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Sten O. Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
16
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
17
|
Ghosh A, Schmittel M. Using multiple self-sorting for switching functions in discrete multicomponent systems. Beilstein J Org Chem 2020; 16:2831-2853. [PMID: 33281986 PMCID: PMC7684700 DOI: 10.3762/bjoc.16.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Over years self-sorting has developed into a powerful tool in supramolecular chemistry, for instance, to promote the error-free formation of intricate multicomponent assemblies. However, in order to use the enormous potential of self-sorting for sophisticated information processing more recent developments have focused on the reversible reconfiguration of multicomponent systems driven by multiple self-sorting protocols. The present mini review will provide an overview over the latest advancements in this field with a focus on reversibly switchable functions in discrete supramolecular systems.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
18
|
Wang H, Zhou L, Zheng Y, Wang K, Song B, Yan X, Wojtas L, Wang X, Jiang X, Wang M, Sun Q, Xu B, Yang H, Sue AC, Chan Y, Sessler JL, Jiao Y, Stang PJ, Li X. Double‐Layered Supramolecular Prisms Self‐Assembled by Geometrically Non‐equivalent Tetratopic Subunits. Angew Chem Int Ed Engl 2020; 60:1298-1305. [DOI: 10.1002/anie.202010805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yu Zheng
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Kun Wang
- Department of Physics and Astronomy Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Andrew C.‐H. Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology Tianjin University Tianjin 300072 China
| | - Yi‐Tsu Chan
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | | | - Yang Jiao
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Peter J. Stang
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| |
Collapse
|
19
|
Wang H, Zhou L, Zheng Y, Wang K, Song B, Yan X, Wojtas L, Wang X, Jiang X, Wang M, Sun Q, Xu B, Yang H, Sue AC, Chan Y, Sessler JL, Jiao Y, Stang PJ, Li X. Double‐Layered Supramolecular Prisms Self‐Assembled by Geometrically Non‐equivalent Tetratopic Subunits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yu Zheng
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Kun Wang
- Department of Physics and Astronomy Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Andrew C.‐H. Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology Tianjin University Tianjin 300072 China
| | - Yi‐Tsu Chan
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | | | - Yang Jiao
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Peter J. Stang
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| |
Collapse
|
20
|
Grill K, Dube H. Supramolecular Relay-Control of Organocatalysis with a Hemithioindigo-Based Molecular Motor. J Am Chem Soc 2020; 142:19300-19307. [DOI: 10.1021/jacs.0c09519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kerstin Grill
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
21
|
Douarre M, Martí‐Centelles V, Rossy C, Pianet I, McClenaghan ND. Regulation of Macrocycle Shuttling Rates in [2]Rotaxanes by Amino‐Acid Speed Bumps in Organic–Aqueous Solvent Mixtures. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Maxime Douarre
- Institut des Sciences Moléculaires, CNRS UMR 5255 University of Bordeaux 33405 Talence France
| | - Vicente Martí‐Centelles
- Institut des Sciences Moléculaires, CNRS UMR 5255 University of Bordeaux 33405 Talence France
| | - Cybille Rossy
- Institut des Sciences Moléculaires, CNRS UMR 5255 University of Bordeaux 33405 Talence France
| | - Isabelle Pianet
- IRAMAT, CNRS UMR 5060, Maison de l'Archéologie Université Bordeaux Montaigne 33607 Pessac France
| | - Nathan D. McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255 University of Bordeaux 33405 Talence France
| |
Collapse
|
22
|
Krause S, Feringa BL. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Goswami A, Schmittel M. Double Rotors with Fluxional Axles: Domino Rotation and Azide-Alkyne Huisgen Cycloaddition Catalysis. Angew Chem Int Ed Engl 2020; 59:12362-12366. [PMID: 32315496 PMCID: PMC7383839 DOI: 10.1002/anie.202002739] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/14/2022]
Abstract
The simple preparation of the multicomponent devices [Cu4 (A)2 ]4+ and [Cu2 (A)(B)]2+ , both rotors with fluxional axles undergoing domino rotation, highlights the potential of self-sorting. The concept of domino rotation requires the interconversion of axle and rotator, allowing the spatiotemporal decoupling of two degenerate exchange processes in [Cu4 (A)2 ]4+ occurring at 142 kHz. Addition of two equiv of B to rotor [Cu4 (A)2 ]4+ afforded the heteromeric two-axle rotor [Cu2 (A)(B)]2+ with two distinct exchange processes (64.0 kHz and 0.55 Hz). The motion requiring a pyridine→zinc porphyrin bond cleavage is 1.2×105 times faster than that operating via a terpyridine→[Cu(phenAr2 )]+ rupture. Finally, both rotors are catalysts due to their copper(I) content. The fast domino rotor (142 kHz) was shown to suppress product inhibition in the catalysis of the azide-alkyne Huisgen cycloaddition.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
24
|
Goswami A, Schmittel M. Doppelrotoren mit fluktuierenden Achsen: Domino‐Rotation und Katalyse der Azid‐Alkin‐Huisgen‐Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I Universität Siegen Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I Universität Siegen Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| |
Collapse
|
25
|
Abstract
Since the discovery and structural characterization of metal organic polygons and polyhedra (MOPs), scientists have explored their potential in various applications like catalysis, separation, storage, and sensing. In recent years, scientists have explored the potential of supramolecular MOPs in biomedical application. Pioneering works by Ehrlich, Rosenberg, Lippard, Stang and others have demonstrated that MOPs have great potential as a novel class of metallo-therapeutics that can deliver cargoes (drugs and dyes) selectively. In this article, we document the progress made over the past two decades on the biomedical applications of MOPs and discuss the future prospects of this emerging field.
Collapse
Affiliation(s)
- Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
- School of Chemistry, University of Bristol, Cantock's Close, United Kingdom, BS8 1TS
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| |
Collapse
|
26
|
Biswas PK, Saha S, Gaikwad S, Schmittel M. Reversible Multicomponent AND Gate Triggered by Stoichiometric Chemical Pulses Commands the Self-Assembly and Actuation of Catalytic Machinery. J Am Chem Soc 2020; 142:7889-7897. [DOI: 10.1021/jacs.0c01315] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
27
|
He L, Wang SC, Lin LT, Cai JY, Li L, Tu TH, Chan YT. Multicomponent Metallo-Supramolecular Nanocapsules Assembled from Calix[4]resorcinarene-Based Terpyridine Ligands. J Am Chem Soc 2020; 142:7134-7144. [PMID: 32150683 DOI: 10.1021/jacs.0c01482] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrafunctionalized calix[4]resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpiński triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpiński triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]resorcinarene-containing metallo-supramolecules.
Collapse
Affiliation(s)
- Lipeng He
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lin-Ting Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jhen-Yu Cai
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lijie Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
28
|
Prigorchenko E, Ustrnul L, Borovkov V, Aav R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461930026x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- College of Chemistry and Materials Science, South-Central University for Nationalities, 182 Minzu Road, Hongshan, Wuhan 430074, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
29
|
Abstract
The hydrophobic interaction plays a key role in the host–guest systems.
Collapse
Affiliation(s)
- Wei-Bin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Zhi-Feng Xin
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Po Sun
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| |
Collapse
|
30
|
Saha S, Biswas PK, Paul I, Schmittel M. Selective and reversible interconversion of nanosliders commanded by remote control via metal-ion signaling. Chem Commun (Camb) 2019; 55:14733-14736. [PMID: 31750846 DOI: 10.1039/c9cc07415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multi-device network mainly consisting of two two-component nanosliders was formed by self-sorting of six components. Addition/removal of zinc(ii) ions reversibly reorganized the network by chemical signaling involving the translocation of copper(i) from a relay station followed by the selective disassembly/assembly of one of both multi-component devices. The thus liberated machine parts served to erect a three-component nanoslider alongside the other unchanged two-component nanoslider.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | | | | | | |
Collapse
|
31
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
32
|
Goswami A, Paululat T, Schmittel M. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery. J Am Chem Soc 2019; 141:15656-15663. [DOI: 10.1021/jacs.9b07737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Zhang D, Ronson TK, Güryel S, Thoburn JD, Wales DJ, Nitschke JR. Temperature Controls Guest Uptake and Release from Zn 4L 4 Tetrahedra. J Am Chem Soc 2019; 141:14534-14538. [PMID: 31478658 PMCID: PMC6753657 DOI: 10.1021/jacs.9b07307] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the preparation of triazatruxene-faced
tetrahedral cage 1, which exhibits two diastereomeric
configurations (T1 and T2) that differ in
the handedness of the
ligand faces relative to that of the octahedrally coordinated metal
centers. At lower temperatures, T1 is favored, whereas T2 predominates at higher temperatures. Host–guest
studies show that T1 binds small aliphatic guests, whereas T2 binds larger aromatic molecules, with these changes in
binding preference resulting from differences in cavity size and degree
of enclosure. Thus, by a change in temperature the cage system can
be triggered to eject one bound guest and take up another.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Songül Güryel
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - John D Thoburn
- Department of Chemistry , Randolph-Macon College , Ashland , Virginia 23005 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
34
|
Paul I, Samanta D, Gaikwad S, Schmittel M. Selective detection of DABCO using a supramolecular interconversion as fluorescence reporter. Beilstein J Org Chem 2019; 15:1371-1378. [PMID: 31293687 PMCID: PMC6604717 DOI: 10.3762/bjoc.15.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022] Open
Abstract
The quantitative double self-sorting between the three-component rectangle [Cu4(1)2(2)2]4+ and the four-component sandwich complex [Cu2(1)(2)(4)]2+ is triggered by inclusion and release of DABCO (4). The fully reversible and clean switching between two multicomponent supramolecular architectures can be monitored by fluorescence changes at the zinc porphyrin sites. The structural changes are accompanied by a huge spatial contraction/expansion of the zinc porphyrin–zinc porphyrin distances that change from 31.2/38.8 Å to 6.6 Å and back. The supramolecular interconversion was used for the highly selective detection of DABCO in a mixture of other similar compounds.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
35
|
Saha R, Devaraj A, Bhattacharyya S, Das S, Zangrando E, Mukherjee PS. Unusual Behavior of Donor–Acceptor Stenhouse Adducts in Confined Space of a Water-Soluble PdII8 Molecular Vessel. J Am Chem Soc 2019; 141:8638-8645. [DOI: 10.1021/jacs.9b03924] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anthonisamy Devaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumik Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Jongkind LJ, Elemans JAAW, Reek JNH. Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angew Chem Int Ed Engl 2019; 58:2696-2699. [PMID: 30624847 PMCID: PMC6563692 DOI: 10.1002/anie.201812610] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Supramolecular approaches in transition-metal catalysis, including catalyst encapsulation, have attracted considerable attention. Compared to enzymes, supramolecular catalysts in general are less complex. Enzyme activity is often controlled by the use of smaller cofactor molecules, which is important in order to control reactivity in complex mixtures of molecules. Interested in increasing complexity and allowing control over supramolecular catalyst formation in response to external stimuli, we designed a catalytic system that only forms an efficient supramolecular complex when a small cofactor molecule is added to the solution. This in turn affects both the activity and selectivity when applied in a hydroformylation reaction. This contribution shows that catalyst encapsulation can be controlled by the addition of a cofactor, which affects crucial catalyst properties.
Collapse
Affiliation(s)
- Lukas J. Jongkind
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Johannes A. A. W. Elemans
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
37
|
Szell PMJ, Zablotny S, Bryce DL. Halogen bonding as a supramolecular dynamics catalyst. Nat Commun 2019; 10:916. [PMID: 30796220 PMCID: PMC6385366 DOI: 10.1038/s41467-019-08878-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Dynamic processes have many implications in functional molecules, including catalysts, enzymes, host-guest complexes, and molecular machines. Here, we demonstrate via deuterium NMR relaxation experiments how halogen bonding directly impacts the dynamics in solid 2,3,5,6-tetramethylpyrazine cocrystals, catalyzing the methyl group rotation. On average, we observe a reduction of 56% in the rotational activation energy of the methyl groups in the halogen bonded cocrystals, contrasting the reduction of 36% in the hydrogen bonded cocrystals, with respect to pure 2,3,5,6-tetramethylpyrazine. Density functional theory calculations attribute this superior catalytic ability of the halogen bond to the simultaneous destabilization of the staggered conformation and stabilization of the gauche conformation, overall reducing the rotational energy barrier. Furthermore, the calculations suggest that the catalytic ability of the halogen bond may be tuneable, with stronger halogen bond donors acting as superior dynamics catalysts. Thus, halogen bonding may play a role in both assembly and promoting dynamical processes. The halogen bond is well known for its ability to assemble supramolecules. Here, using NMR experiments, the authors reveal the role of these bonds in dynamic processes, finding that the halogen bond directly catalyzes dynamical rotation in solid cocrystals by reducing the associated energy barrier.
Collapse
Affiliation(s)
- Patrick M J Szell
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Scott Zablotny
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
38
|
Saha S, Biswas PK, Schmittel M. Reversible Interconversion of a Static Metallosupramolecular Cage Assembly into a High-Speed Rotor: Stepless Adjustment of Rotational Exchange by Nucleophile Addition. Inorg Chem 2019; 58:3466-3472. [PMID: 30789716 DOI: 10.1021/acs.inorgchem.8b03567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The self-assembled cage ROT-1 was prepared from the pyridine-terminated rotator 1, the phenanthroline-appended stator 2, DABCO, and copper(I) ions in a ratio of 1:1:1:4. This four-component assembly is held together by two pyridine→[Cu(phenAr2)]+ as well as two DABCO→zinc porphyrin interactions (phenAr2 = 2,9-diarylphenanthroline) and does not show any motion on the NMR time scale ( k < 0.1 s-1, 298 K). However, it is converted to the fast nanorotor ROT-1 xCD3CN by addition of CD3CN [ x = (v/v)% of acetonitrile in dichloromethane] due to acceleration of both pyridine→copper(I) dissociation steps. Now the rotator is able to visit all four copper(I)-loaded phenanthroline stations of the stator. Depending on the amount of CD3CN, the exchange frequency of the nanorotor varies from 0.7 s-1 (CD3CN:CD2Cl2 = 1:29) to 8000 s-1 (CD3CN:CD2Cl2 = 1:5) at 25 °C. When iodide (I-) is added to the static assembly ROT-1, the rotational speed increases even more drastically ( k = 20 000 s-1), again due to accelerating the rate-determining pyridine→copper(I) dissociation step. In both cases, a sigmoidal relationship is established between exchange frequency and the concentration of added nucleophile (CD3CN or iodide) that suggests the presence of a cooperative effect. Reversible switching between the static assembly and fast rotor was performed several times without any decomposition of the system. In contrast, addition of the common nucleophile PPh3 to ROT-1 does not increase the rotational speed, a finding that is explained on thermodynamic grounds.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
39
|
Jongkind LJ, Elemans JAAW, Reek JNH. Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lukas J. Jongkind
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Johannes A. A. W. Elemans
- Radboud UniversityInstitute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
40
|
Özer MS, Paul I, Goswami A, Schmittel M. Cation exchange reversibly switches rotor speed and is monitored by a networked fluorescent reporter. Dalton Trans 2019; 48:9043-9047. [DOI: 10.1039/c9dt01633c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The three-step transformation of a turnstile into a zinc rotor (8 kHz) and then into a copper rotor (30 kHz) was achieved with the last transformation being monitored by a fluorescence reporter.
Collapse
Affiliation(s)
- Merve S. Özer
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
41
|
Cirulli M, Kaur A, Lewis JEM, Zhang Z, Kitchen JA, Goldup SM, Roessler MM. Rotaxane-Based Transition Metal Complexes: Effect of the Mechanical Bond on Structure and Electronic Properties. J Am Chem Soc 2018; 141:879-889. [DOI: 10.1021/jacs.8b09715] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Amanpreet Kaur
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - James E. M. Lewis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, U.K
| | - Zhihui Zhang
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Jonathan A. Kitchen
- Chemistry, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Maxie M. Roessler
- School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
42
|
Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery. Coord Chem Rev 2018; 376:478-505. [PMID: 32287354 PMCID: PMC7126816 DOI: 10.1016/j.ccr.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Two and a half decades of copper phenanthroline-based switches, devices and machines have illustrated the rich dynamic nature of these metal complexes. With an emphasis on the metal-ligand dissociation as the rate-determining step the present review summarizes not only spectacular examples of machinery, but also highlights rate data collected during a variety of investigations. Copper-ligand exchange reactions are mostly triggered by redox processes, addition of metal ions or addition of ligands. While the rate data spread over >8 orders of magnitude, individual effects of solvent, steric bulk, flexibility, σ-basicity and the trajectory (intra- vs. intermolecular dissociation) have large impact. Unfortunately, in many cases the exact mechanism in the rate-determining step (nucleophile-induced vs. monomolecular metal-ligand dissociation) has not been determined, suggesting to invest further efforts in the physical (in)organic chemistry of such coordination-driven systems.
Collapse
|
43
|
Multi-Component Spirane Assemblies. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|