1
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Zhang X, Zhang Y, Chen J, Feng R, Wu X, Zhang T, Yu S, Gan N, Tang K, Wu YX. Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells. Anal Chem 2025; 97:1264-1272. [PMID: 39785614 DOI: 10.1021/acs.analchem.4c05044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO2 nanosheets was developed for multimodal imaging of tumor cells. First, oxidizable MnO2 nanosheets provided a smart tool for use as nanocarriers and contrast agents for intracellular glutathione (GSH)-activated magnetic resonance imaging (MRI). Then, MnO2 nanosheets delivered Tf-AuNC-based biosensing nanoplatforms into cells through endocytosis. Endogenous GSH degraded MnO2 nanosheets into Mn2+, and the released functional nucleic acid probes can perform specific biosensing responses to miR-21 exhibiting multimodal imaging including two-photon near-infrared fluorescence imaging (TP-NIRFI), fluorescence lifetime imaging (FLIM), and MRI. Finally, the biosensing nanoplatform achieved satisfactory results in tumor cells and tissues by TP-NIRFI (300.0 μm penetration depth), FLIM (τ ≈ 50.0 ns), and MRI. Therefore, biosensing nanoplatforms based on Tf-AuNCs and MnO2 nanosheets show great potential for multimodal detection and imaging in tumor cells.
Collapse
Affiliation(s)
- Xianmiao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhang Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangwu Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Budiarta M, Streit M, Beliu G. Site-specific protein labeling strategies for super-resolution microscopy. Curr Opin Chem Biol 2024; 80:102445. [PMID: 38490137 DOI: 10.1016/j.cbpa.2024.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Super-resolution microscopy (SRM) has transformed our understanding of proteins' subcellular organization and revealed cellular details down to nanometers, far beyond conventional microscopy. While localization precision is independent of the number of fluorophores attached to a biomolecule, labeling density is a decisive factor for resolving complex biological structures. The average distance between adjacent fluorophores should be less than half the desired spatial resolution for optimal clarity. While this was not a major limitation in recent decades, the success of modern microscopy approaching molecular resolution down to the single-digit nanometer range will depend heavily on advancements in fluorescence labeling. This review highlights recent advances and challenges in labeling strategies for SRM, focusing on site-specific labeling technologies. These advancements are crucial for improving SRM precision and expanding our understanding of molecular interactions.
Collapse
Affiliation(s)
- Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany; Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, UMR 5297, 33076 Bordeaux, France.
| |
Collapse
|
4
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
5
|
Gidi Y, Ramos-Sanchez J, Lovell TC, Glembockyte V, Cheah IK, Schnermann MJ, Halliwell B, Cosa G. Superior Photoprotection of Cyanine Dyes with Thio-imidazole Amino Acids. J Am Chem Soc 2023; 145:19571-19577. [PMID: 37658476 DOI: 10.1021/jacs.3c03058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Preventing fluorophore photobleaching and unwanted blinking is crucial for single-molecule fluorescence (SMF) studies. Reductants achieve photoprotection via quenching excited triplet states, yet either require counteragents or, for popular alkyl-thiols, are limited to cyanine dye Cy3 protection. Here, we provide mechanistic and imaging results showing that the naturally occurring amino acid ergothioneine and its analogue dramatically enhance photostability for Cy3, Cy5, and their conformationally restrained congeners, providing a biocompatible universal solution for demanding fluorescence imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
6
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
7
|
Martin MI, Pati AK, Abeywickrama CS, Bar S, Kilic Z, Altman RB, Blanchard SC. Leveraging Baird aromaticity for advancement of bioimaging applications. J PHYS ORG CHEM 2023; 36:e4449. [PMID: 36590885 PMCID: PMC9799245 DOI: 10.1002/poc.4449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023]
Abstract
In this perspective, we highlight the recent progress in utilizing Baird aromatic species to improve fluorophore performance in microscopy and imaging applications. We specifically focus on the origins of the use of Baird aromaticity in fluorescence applications, the development of “self‐healing” fluorophores leveraging cyclooctatetraene’ Baird aromaticity, and where developments need to occur to optimize this technology.
Collapse
Affiliation(s)
- Maxwell I. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Avik K. Pati
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Chathura S. Abeywickrama
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Sukanta Bar
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Zeliha Kilic
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Roger B. Altman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Scott C. Blanchard
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
8
|
Milstein JN, Nino DF, Zhou X, Gradinaru CC. Single-molecule counting applied to the study of GPCR oligomerization. Biophys J 2022; 121:3175-3187. [PMID: 35927960 PMCID: PMC9463696 DOI: 10.1016/j.bpj.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors-an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy-with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Joshua N Milstein
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Daniel F Nino
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Xiaohan Zhou
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
9
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao-Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angew Chem Int Ed Engl 2022; 61:e202112959. [PMID: 35146855 PMCID: PMC9305292 DOI: 10.1002/anie.202112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Many life‐science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super‐resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of ‘linker’ compounds, that bridge biotarget, fluorophore and a functional moiety via well‐established labeling protocols. Linker molecules were synthesized via the Ugi four‐component reaction (Ugi‐4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation‐ and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon‐rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol‐maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self‐healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self‐healing linker–fluorophore conjugates and demonstrated their applications in super‐resolution imaging and single‐molecule spectroscopy.
Collapse
Affiliation(s)
- Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jens Köhler
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nikolaos Eleftheriadis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadia M Huisjes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Miguel Guirao-Ortiz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Janko Stoffels
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hartmann Harz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Herrmann
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Kwon J, Elgawish MS, Shim S. Bleaching-Resistant Super-Resolution Fluorescence Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101817. [PMID: 35088584 PMCID: PMC8948665 DOI: 10.1002/advs.202101817] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/07/2022] [Indexed: 05/08/2023]
Abstract
Photobleaching is the permanent loss of fluorescence after extended exposure to light and is a major limiting factor in super-resolution microscopy (SRM) that restricts spatiotemporal resolution and observation time. Strategies for preventing or overcoming photobleaching in SRM are reviewed developing new probes and chemical environments. Photostabilization strategies are introduced first, which are borrowed from conventional fluorescence microscopy, that are employed in SRM. SRM-specific strategies are then highlighted that exploit the on-off transitions of fluorescence, which is the key mechanism for achieving super-resolution, which are becoming new routes to address photobleaching in SRM. Off states can serve as a shelter from excitation by light or an exit to release a damaged probe and replace it with a fresh one. Such efforts in overcoming the photobleaching limits are anticipated to enhance resolution to molecular scales and to extend the observation time to physiological lifespans.
Collapse
Affiliation(s)
- Jiwoong Kwon
- Department of Biophysics and Biophysical ChemistryJohns Hopkins UniversityBaltimoreMD21205USA
| | - Mohamed Saleh Elgawish
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
- Medicinal Chemistry DepartmentFaculty of PharmacySuez Canal UniversityIsmailia41522Egypt
| | - Sang‐Hee Shim
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
11
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes N, Guirao M, Narducci A, Smit J, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Bio‐labeling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jens Köhler
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemie GERMANY
| | | | - Nadia Huisjes
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Miguel Guirao
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jochem Smit
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Janko Stoffels
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Hartmann Harz
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Andreas Herrmann
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Thorben Cordes
- Ludwig-Maximilians-Universitat Munchen Faculty of Biology Großhadernerstr. 2-4 82152 Planegg-Martiensried GERMANY
| |
Collapse
|
12
|
Abstract
A series of free base meso-tetraarylporphyrins functionalized with substituents containing one, two, and four cyclooctatetraene (COT) moieties have been obtained and characterized by spectral and photophysical studies. Three COT-free porphyrins served as reference compounds. COT is a triplet quencher, well-known to enhance the photostability of several, but not all, fluorophores. In the case of porphyrins, substitution with COT improves photostability in zinc derivatives, but for free bases, the effect is the opposite. We show that placing the COT moiety further from the free base porphyrin core enhances the photostability when the COT group lies in the direct vicinity of the macrocycle. The quantum yields of photobleaching inversely correlate with porphyrin oxidation potentials. An improvement in photostability in both COT-containing and COT-free porphyrins can be achieved by screening the porphyrin core from oxygen by switching from tolyl to mesityl substituents. This leads to a decrease in the photobleaching quantum yield, even though triplet lifetimes are longer. The results confirm the involvement of oxygen in the photodegradation of porphyrins.
Collapse
|
13
|
Ma Y, Ye Z, Zhang C, Wang X, Li HW, Wong MS, Luo HB, Xiao L. Deep Red Blinking Fluorophore for Nanoscopic Imaging and Inhibition of β-Amyloid Peptide Fibrillation. ACS NANO 2020; 14:11341-11351. [PMID: 32857496 DOI: 10.1021/acsnano.0c03400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deposition and aggregation of β-amyloid (Aβ) peptides are demonstrated to be closely related to the pathogenesis of Alzheimer's disease (AD). Development of functional molecules capable of visualizing Aβ1-40 aggregates with nanoscale resolution and even modulating Aβ assembly has attracted great attention recently. In this work, we use monocyanine fluorophore as the lead structure to develop a set of deep red carbazole-based cyanine molecules, which can specifically bind with Aβ1-40 fibril via electrostatic and van der Waals interactions. Spectroscopic and microscopic characterizations demonstrate that one of these fluorophores, (E)-1-(2-(2-methoxyethoxy)ethyl)-4-(2-(9-methyl-9H-carbazol-3-yl)vinyl) quinolinium iodide (me-slg) can bind to Aβ1-40 aggregates with strong fluorescence enhancement. The photophysical properties of me-slg at the single-molecule level, including low "on/off" duty cycle, high photon output, and sufficient switching cycles, enable real-time nanoscopic imaging of Aβ1-40 aggregates. Morphology-dependent toxic effect of Aβ1-40 aggregates toward PC12 cells is unveiled from in situ nanoscopic fluorescence imaging. In addition, me-slg displays a strong inhibitory effect on Aβ1-40 fibrillation in a low inhibitor-protein ratio (e.g., I:P = 0.2). A noticeably reduced cytotoxic effect of Aβ1-40 after the addition of me-slg is also confirmed. These results afford promising applications in the design of a nanoscopic imaging probe for amyloid fibril as well as the development of inhibitors to modulate the fibrillation process.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xueli Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Detection of Lipase Activity in Cells by a Fluorescent Probe Based on Formation of Self-Assembled Micelles. iScience 2020; 23:101294. [PMID: 32623339 PMCID: PMC7334599 DOI: 10.1016/j.isci.2020.101294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Reliable and sensitive detection of lipase activity is essential for the early diagnosis and monitoring of acute pancreatitis or progression of digestive diseases. However, the available fluorescent probes for detection of lipase activity are only implemented in a hexane-water two-phase system due to the nature of heterogeneous catalysis of lipase, thus limiting their applications in direct imaging of lipase activity in living cells and tissues. Here we designed and synthesized a "turn on" fluorescent probe CPP based on self-assembled micelles for hydrolysis of lipase. The CPP probe exhibits high selectivity and excellent sensitivity for the detection of lipase in such a homogeneous system and is successfully applied for monitoring lipase activity in pancreatic AR42J cells, tissues, and serums. Taken together, the fluorescent CPP probe not only provides a tool for diagnostic potential in pancreatic disease but also demonstrates an application potential for micelle self-assembly-based development of biological probes.
Collapse
|
15
|
Isselstein M, Zhang L, Glembockyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. Self-Healing Dyes-Keeping the Promise? J Phys Chem Lett 2020; 11:4462-4480. [PMID: 32401520 DOI: 10.1021/acs.jpclett.9b03833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-healing dyes have emerged as a new promising class of fluorescent labels. They consist of two units, a fluorescent dye and a photostabilizer. The latter heals whenever the fluorescent dye is in danger of taking a reaction pathway toward photobleaching. We describe the underlying concepts and summarize the developmental history and state-of-the-art, including latest applications in high-resolution microscopy, live-cell, and single-molecule imaging. We further discuss remaining limitations, which are (i) lower photostabilization of most self-healing dyes when compared to solution additives, (ii) limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen on self-healing, and (iii) the lack of cheap and facile bioconjugation strategies. Finally, we provide ideas on how to further advance self-healing dyes, show new data on redox blinking caused by double-stranded DNA, and highlight forthcoming work on intramolecular photostabilization of fluorescent proteins.
Collapse
Affiliation(s)
- Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Oliver Brix
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Grabenhorst L, Trofymchuk K, Steiner F, Glembockyte V, Tinnefeld P. Fluorophore photostability and saturation in the hotspot of DNA origami nanoantennas. Methods Appl Fluoresc 2020; 8:024003. [DOI: 10.1088/2050-6120/ab6ac8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Ma X, Zhang C, Feng L, Liu SH, Tan Y, Yin J. Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. J Mater Chem B 2020; 8:9906-9912. [DOI: 10.1039/d0tb01890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IR780 as a commercially available dye with near-infrared emission has been extensively applied in fluorescent probes and bioimaging.
Collapse
Affiliation(s)
- Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| |
Collapse
|
18
|
Karlsson JKG, Laude A, Hall MJ, Harriman A. Photo-isomerization of the Cyanine Dye Alexa-Fluor 647 (AF-647) in the Context of dSTORM Super-Resolution Microscopy. Chemistry 2019; 25:14983-14998. [PMID: 31515919 DOI: 10.1002/chem.201904117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.
Collapse
Affiliation(s)
- Joshua K G Karlsson
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alex Laude
- Bio-Imaging Unit, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Hall
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
19
|
Yan C, Shi L, Guo Z, Zhu W. Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019; 58:8278-8290. [PMID: 30919542 DOI: 10.1002/anie.201811293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/09/2023]
Abstract
With the advent of single-molecule methods, chemoselective and site-specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme-based tags or autofluorescent proteins are short peptide-based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine-tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single-molecule approaches.
Collapse
Affiliation(s)
- Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
21
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Wieneke
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| | - Robert Tampé
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| |
Collapse
|
22
|
Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 2019; 55:8695-8704. [PMID: 31073568 DOI: 10.1039/c9cc02616a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies. Photostable fluorogenic probes with high extinction coefficients and quantum yields, exhibiting minimum autofluorescence and photobleaching properties, are preferred in single-molecule microscopy as they can tolerate long-term laser exposure. Therefore, the development of triplet state quenchers and/or any other suitable new strategy to ensure the photo-stability of the fluorophores during long-term live cell imaging exercises is highly anticipated. In this feature article, various strategies for stabilizing fluorophores, including the mechanisms of TSQ-induced stabilization, have been thoroughly reviewed considering contemporary literature reports and applications.
Collapse
Affiliation(s)
- Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|