1
|
Li C, Li Y, Luo Y, Michaliszyn K, Bolaño Losada I, Hossain MK, Elantabli F, Guo M, Hizbullah L, Tocher DA, Haukka M, Persson P, Lloret‐Fillol J, Dietzek‐Ivanšić B, Nordlander E. Photoinduced Hydrogen Evolution Catalyzed by Co(II) Complexes of N5-Donor Ligands. Chemistry 2025; 31:e202404499. [PMID: 39982409 PMCID: PMC12089912 DOI: 10.1002/chem.202404499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Three new cobalt complexes of the general formula [Co(II)(L)(CH3CN) ]2+, where L is one of three pentadentate nitrogen-donor ligands based on the N4Py framework, have been synthesized and characterized. The capacity of the three complexes to effect photocatalytic proton reduction has been examined. Their photocatalytic activities in the presence of [Ru(bpy)3]2+, acting as a photosensitizer, and ascorbic acid, acting as a sacrificial electron donor, were screened in a water/acetonitrile mixture. The photochemical mechanism, as revealed by nanosecond time-resolved transient absorption spectroscopy, involves reaction of the excited sensitizer with ascorbic acid to yield [Ru(bpy)3]+ as a primary photogenerated reductant, capable of electron transfer to the cobalt catalyst(s). Under the experimental conditions used, partial decomposition of both the sensitizer and the catalyst is the main deactivation channel for photocatalysis. Optimization of reaction conditions indicated that the use of more reducing iridium or copper-based photosensitizers had a beneficial effect on the catalytic performance. The effect of the different ligands on the catalytic activities of the corresponding cobalt complexes have been investigated by DFT calculations.
Collapse
Affiliation(s)
- Chuanshuai Li
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Yong Li
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Yusen Luo
- Department of Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert Einstein-Straße 907745JenaGermany
- MESA+ Institute for NanotechnologyUniversity of Twente7500 AEEnschedeThe Netherlands
| | - Klaudia Michaliszyn
- The Barcelona Institute of Science and TechnologyInstitute of Chemical Research of Catalonia (ICIQ)Avinguda Països Catalans 1643007TarragonaSpain
| | - Iria Bolaño Losada
- Computational ChemistryDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Md. Kamal Hossain
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Fatma Elantabli
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Meiyuan Guo
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Lintang Hizbullah
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Derek A. Tocher
- Department of ChemistryUniversity College London20 Gordon St.LondonWC1H 0AJU.K.
| | - Matti Haukka
- Department of ChemistryUniversity of JyväskyläP.O. Box 35FI-40014JyväskyläFinland
| | - Petter Persson
- Computational ChemistryDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Julio Lloret‐Fillol
- The Barcelona Institute of Science and TechnologyInstitute of Chemical Research of Catalonia (ICIQ)Avinguda Països Catalans 1643007TarragonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)Passeig Lluïs Companys23 08010BarcelonaSpain
| | - Benjamin Dietzek‐Ivanšić
- Department of Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert Einstein-Straße 907745JenaGermany
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Philosophenweg 7a07743JenaGermany
| | - Ebbe Nordlander
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityBox 124SE-221 00LundSweden
| |
Collapse
|
2
|
Liang G, Zhang M. Harnessing the Cobalt-Catalyzed Hydrogen Evolution Reaction through a Data-Driven Approach. Inorg Chem 2025; 64:2737-2747. [PMID: 39902950 DOI: 10.1021/acs.inorgchem.4c04645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The design of cobalt complexes for the hydrogen evolution reaction (HER) has garnered significant attention over the past few decades. To address the limitations of the traditional trial-and-error method, we introduced the strategy of a simplified mechanism-based approach with data-driven practice (SMADP) in this study. Our results indicate that the polypyridyl cobalt complexes of the DPA-Bpy family (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,2'-bipyridine-6-methanamine) generally follow the electron transfer (E)-chemical proton transfer (C)-electron transfer (E)-chemical proton transfer (C) pathway in HER. However, the involvement of proton-coupled electron transfer (PCET) in the formation of the [CoII(L)-H]+ intermediate has been observed in the PY5Me2 family (PY5Me2 = 2,6-bis(1,1-di(pyridin-2-yl)ethyl)pyridine). Furthermore, the hydricity of the [CoII(L)-H]+ intermediate (ΔGH-) and the CoIII-H/CoII-H reduction potential (ERed°) are found to be the active descriptors in the cobalt-catalyzed HER. Excellent two-parameter regression models (ΔGH- and ERed°) for the formation of the H2 molecule have been obtained (R2 = 0.9429 for the DPA-Bpy family and R2 = 0.9854 for the PY5Me2 family). Our results demonstrate that the SMADP strategy is a groundbreaking method for delineating active descriptors in the cobalt-catalyzed HER. This data-driven approach could also accelerate the design of novel polypyridyl cobalt complexes for enhanced HER.
Collapse
Affiliation(s)
- Guangchao Liang
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Min Zhang
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, Shaanxi 710077, P. R. China
| |
Collapse
|
3
|
Li W, Peng X, Qin H, Xu Y, Han J, Lei H, Cao R. Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF 3 substituents. Dalton Trans 2024; 53:19121-19125. [PMID: 39588664 DOI: 10.1039/d4dt03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cu tetrakis(trifluoromethyl)porphyrin (1) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). We showed that 1 is highly efficient for the electrocatalytic HER in acetonitrile with trifluoroacetic acid (TFA) and outperforms Cu tetrakis(pentafluorophenyl)porphyrin (2) by decreasing the onset overpotential by 220 mV. The icat/ip value (icat is the catalytic peak current and ip is the non-catalytic peak current) with 1 is 97, while it is 53 with 2. These results suggest that for Cu porphyrins, meso-CF3 substituents are much more effective than meso-C6F5 substituents to enhance the HER.
Collapse
Affiliation(s)
- Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Lee J, Lee J, Seo J. Exchange coupling states of cobalt complexes to control proton-coupled electron transfer. Nat Commun 2024; 15:8688. [PMID: 39375346 PMCID: PMC11458597 DOI: 10.1038/s41467-024-53099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
The electrochemical proton reactivity of transition metal complexes receives significant attentions. A thorough understanding of proton-coupled electron transfer (PCET) pathways is essential for elucidating the mechanism behind a proton reduction reaction, and controlling the pathway is a key focus in the field of the catalyst development. Spin interactions within complexes, which arise during electron transfer, can affect significantly the PCET pathway. Herein, we explore the phenomenon of spin rearrangement during the electrochemical reorganization of high-spin cobalt complexes. Our findings reveal that opposing spin interactions, induced by different coordination environments, can alter the PCET pathway. Finally, detailed analysis of the PCET pathway allows us to propose mechanisms for proton reduction in high-spin cobalt complexes.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals(Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals(Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
5
|
Lu CJ, Shi WJ, Gong YN, Zhang JH, Wang YC, Mei JH, Ge ZM, Lu TB, Zhong DC. Modulating the Microenvironments of Robust Metal Hydrogen-Bonded Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405451. [PMID: 39031893 DOI: 10.1002/anie.202405451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12 M HCl) and strong base (5 M NaOH) for at least 10 days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8 mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.
Collapse
Affiliation(s)
- Chong-Jiu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ji-Hong Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu-Chen Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jian-Hua Mei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Ming Ge
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
6
|
Zardi P, Piękoś J, Bravin C, Wurst K, Droghetti F, Natali M, Licini G, Zambon A, Zonta C. Novel ligands from direct benzylic functionalisation of tris(2-pyridylmethyl)amine. Dalton Trans 2024; 53:13831-13836. [PMID: 39113567 DOI: 10.1039/d4dt02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Tris-(2-pyridylmethyl)amines (TPA or TPMA) are polipyrydine-based ligands extensively used in catalysis and supramolecular chemistry due their capability to form stable tetradentate complexes with a large variety of metals. The unsubstituted ligand, which is also commercially available, can be synthesised by consecutive alkylation of a picoline or by reductive amination of a pyridine aldehyde. In this article, we report a novel synthetic method which opens to the post-functionalisation of these ligands in the benzylic position. This novel derivatization strategy, beside providing synthetic access to novel structures and functions, has been used to prepare a series of metal complexes which have been tested in photochemical hydrogen evolution.
Collapse
Affiliation(s)
- Paolo Zardi
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy.
| | - Justyna Piękoś
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Carlo Bravin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Klaus Wurst
- Department of General, Inorganic and Theoretical Chemistry University of Innsbruck, A-6020 Innsbruck, Austria
| | - Federico Droghetti
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Mirco Natali
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
- CIRCC Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Alfonso Zambon
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy.
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
- CIRCC Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
7
|
Wu YT, Kumbhar SV, Tsai RF, Yang YC, Zeng WQ, Wang YH, Hsu WC, Chiang YW, Yang T, Lu IC, Wang YH. Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands. ACS ORGANIC & INORGANIC AU 2024; 4:306-318. [PMID: 38855334 PMCID: PMC11157513 DOI: 10.1021/acsorginorgau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (1-3) bearing bis(benzimidazole)pyrazolide ligands (H 2 L1-H 2 L3). H 2 L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co2 III(μ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 1-3 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sharad V. Kumbhar
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Feng Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Ching Yang
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Qin Zeng
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Han Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wan-Chi Hsu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzuhsiung Yang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Chung Lu
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Heng Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Ali A, Verma RK, Das A, Paria S. Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction. Dalton Trans 2024; 53:8289-8297. [PMID: 38660950 DOI: 10.1039/d4dt00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid-base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of -1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s-1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s-1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions.
Collapse
Affiliation(s)
- Afsar Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
9
|
Brands M, Reek JNH. Mechanistic Insights into Electrocatalytic Hydrogen Evolution by an Exceptionally Stable Cobalt Complex. Inorg Chem 2024; 63:8484-8492. [PMID: 38640469 PMCID: PMC11080059 DOI: 10.1021/acs.inorgchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Co(aPPy) is one of the most stable and active molecular first-row transition-metal catalysts for proton reduction reported to date. Understanding the origin of its high performance via mechanistic studies could aid in developing even better catalysts. In this work, the catalytic mechanism of Co(aPPy) was electrochemically probed, in both organic solvents and water. We found that different mechanisms can occur depending on the solvent and the acidity of the medium. In organic solvent with a strong acid as the proton source, catalysis initiates directly after a single-electron reduction of CoII to CoI, whereas in the presence of a weaker acid, the cobalt center needs to be reduced twice before catalysis occurs. In the aqueous phase, we found drastically different electrochemical behavior, where the Co(aPPy) complex was found to be a precatalyst to a different electrocatalytic species. We propose that in this active catalyst, the pyridine ring has dissociated and acts as a proton relay at pH ≤ 5, which opens up a fast protonation pathway of the CoI intermediate and results in a high catalytic activity. Furthermore, we determined with constant potential bulk electrolysis that the catalyst is most stable at pH 3. The catalyst thus functions optimally at low pH in an aqueous environment, where the pyridine acts as a proton shuttle and where the high acidity also prevents catalyst deactivation.
Collapse
Affiliation(s)
- Maria
B. Brands
- Homogeneous, Supramolecular and Bio-inspired
Catalysis, Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-inspired
Catalysis, Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang P, Le N, McCool JD, Donnadieu B, Erickson AN, Webster CE, Zhao X. Photocatalytic Hydrogen Production with A Molecular Cobalt Complex in Alkaline Aqueous Solutions. J Am Chem Soc 2024; 146:9493-9498. [PMID: 38530089 DOI: 10.1021/jacs.3c12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The thermodynamic favorability of an alkaline solution for the oxidation of water suggests the need for developing hydrogen evolution reaction (HER) catalysts that can function in basic aqueous solutions so that both of the half reactions in overall water splitting can occur in mutually compatible solutions. Although photocatalytic HERs have been reported mostly in acidic solutions and a few at basic pHs in mixed organic aqueous solutions, visible-light driven HER catalyzed by molecular metal complexes in purely alkaline aqueous solutions remains largely unexplored. Here, we report a new cobalt complex with a tetrapyridylamine ligand that catalyzes photolytic HER with turnover number up to 218 000 in purely aqueous solutions at pH 9.0. Density functional theory (DFT) calculations suggested a modified electron transfer (E)-proton transfer (C)-electron transfer (E)-proton transfer (C) (mod-ECEC) pathway for hydrogen production from the protonation of CoII-H species. The remarkable catalytic activity resulting from subtle structural changes of the ligand scaffold highlights the importance of studying structure-function relationships in molecular catalyst design. Our present work significantly advances the development of a molecular metal catalyst for visible-light driven HER in more challenging alkaline aqueous solutions that holds substantial promise in solar-driven water-splitting systems.
Collapse
Affiliation(s)
- Ping Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - John Daniel McCool
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Alexander N Erickson
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
11
|
Thammanatpong K, Surawatanawong P. Mechanisms of hydrogen evolution by six-coordinate cobalt complexes: a density functional study on the role of a redox-active pyridinyl-substituted diaminotriazine benzamidine ligand as a proton relay. Dalton Trans 2024; 53:6006-6019. [PMID: 38469898 DOI: 10.1039/d3dt03960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The hydrogen evolution reaction is an important process for energy storage. The six-coordinate cobalt complex [CoIII(L1-)(LH)]2+ (LH = N-(4-amino-6-(pyridin-2-yl)-1,3,5-triazin-2-yl)benzamidine) was found to catalyze photocatalytic hydrogen evolution. In this work, we performed density functional calculations to obtain the reduction potentials and the proton-transfer free energy of possible intermediates to determine the preferred pathways for proton reduction. The mechanism involves the metal-based reduction of Co(III) to Co(II) before the protonation at the amidinate N on the pyridinyl-substituted diaminotriazine benzamidinate ligand L1- to form [CoII(LH)(LH)]2+. Essentially, the subsequent electron transfer is not metal-based reduction, but rather ligand-based reduction to form [CoII(LH)(LH˙1-)]1+. Through a proton-coupled electron transfer process, the cobalt hydride [CoIIH(LH)(LH2˙)]1+ is formed as the key intermediate for hydrogen evolution. As the cobalt hydride complex is coordinatively saturated, a structural change is required when the hydride on Co is coupled with the proton on pyridine. Notably, the redox-active nature of the ligand results in the low acidity of the protonated pyridine moiety of LH2˙, which impedes its function as a proton relay. Our findings suggest that separating the proton relay fragment from the electron reservoir fragment of the redox-active ligand is preferred for fully utilizing both features in catalytic H2 evolution.
Collapse
Affiliation(s)
- Kittimeth Thammanatpong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Center of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
12
|
Peng X, Zhang M, Qin H, Han J, Xu Y, Li W, Zhang XP, Zhang W, Apfel UP, Cao R. Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew Chem Int Ed Engl 2024; 63:e202401074. [PMID: 38311965 DOI: 10.1002/anie.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
The electronic structure of metal complexes plays key roles in determining their catalytic features. However, controlling electronic structures to regulate reaction mechanisms is of fundamental interest but has been rarely presented. Herein, we report electronic tuning of Cu porphyrins to switch pathways of the hydrogen evolution reaction (HER). Through controllable and regioselective β-oxidation of Cu porphyrin 1, we synthesized analogues 2-4 with one or two β-lactone groups in either a cis or trans configuration. Complexes 1-4 have the same Cu-N4 core site but different electronic structures. Although β-oxidation led to large anodic shifts of reductions, 1-4 displayed similar HER activities in terms of close overpotentials. With electrochemical, chemical and theoretical results, we show that the catalytically active species switches from a CuI species for 1 to a Cu0 species for 4. This work is thus significant to present mechanism-controllable HER via electronic tuning of catalysts.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengchun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Li X, Feng A, Zu Y, Liu P. Unraveling Meso-Substituent Steric Effects on the Mechanism of Hydrogen Evolution Reaction in Ni II Porphyrin Hydrides Using DFT Method. Molecules 2024; 29:986. [PMID: 38474498 DOI: 10.3390/molecules29050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Substituents at the meso-site of metalloporphyrins profoundly influence the hydrogen evolution reaction (HER) mechanism. This study employs density functional theory (DFT) to computationally analyze NiII-porphyrin and its hydrides derived from tetrakis(pentafluorophenyl)porphyrin molecules, presenting stereoisomers in ortho- or para-positions. The results reveal that the spatial resistance effect of meso-substituted groups at the ortho- and para-positions induces significant changes in Ni-N bond lengths, angles, and reaction dynamics. For ortho-position substituents forming complex I, a favorable 88.88 ų spherical space was created, facilitating proton coordination and the formation of H2 molecules; conversely, para-position substituents forming complex II impeded H2 formation until bimolecular complexes arose. Molecular dynamics (MD) analysis and comparison were conducted on the intermediation products of I-H2 and (II-H)2, focusing on the configuration and energy changes. In the I-H2 products, H2 molecules underwent separation after 150 fs and overcame the 2.2 eV energy barrier. Subsequently, significant alterations in the spatial structure were observed as complex I deformed. In the case of (II-H)2, it was influenced by the distinctive "sandwich" configuration; the spatial structure necessitated overcoming a 6.7 eV energy barrier for H2 detachment and a process observed after 2400 fs.
Collapse
Affiliation(s)
- Xiaodong Li
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Ailing Feng
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Yanqing Zu
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Peitao Liu
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| |
Collapse
|
14
|
Droghetti F, Amati A, Ruggi A, Natali M. Bioinspired motifs in proton and CO 2 reduction with 3d-metal polypyridine complexes. Chem Commun (Camb) 2024; 60:658-673. [PMID: 38117176 DOI: 10.1039/d3cc05156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The synthesis of active and efficient catalysts for solar fuel generation is nowadays of high relevance for the scientific community, but at the same time poses great challenges. Critical requirements are mainly associated with the kinetic barriers due to the multi-proton and multi-electron nature of the hydrogen evolution reaction (HER) and the CO2 reduction reaction (CO2RR) as well as to selectivity issues. In this regard, natural enzymes can be a source of inspiration for the design of effective and selective catalysts to target such fundamental reactions. In this Feature Article we review some recent works on molecular catalysts for both the HER and the CO2RR performed in our labs and other research teams which mainly address (i) the role of redox non-innocent ligands, to lower the overpotential for catalysis and control the selectivity, and (ii) the role of internal relays, to assist formation of catalytic intermediates via intramolecular routes. The selected exemplars have been chosen to emphasize that, although the molecular structures and the synthetic motifs are different from those of the active sites of natural enzymes, many affinities in terms of catalytic mechanism and functionality are instead present, which account for the observed remarkable performances under operative conditions. The data discussed herein thus demonstrate the great potential and the privileged role of molecular catalysts towards the design and construction of hybrid photochemical systems for solar energy conversion into fuels.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin de Musée 9, CH-1700 Fribourg, Switzerland.
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
15
|
Dey A, Mendalz A, Wach A, Vadell RB, Silveira VR, Leidinger PM, Huthwelker T, Shtender V, Novotny Z, Artiglia L, Sá J. Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system. Nat Commun 2024; 15:445. [PMID: 38200016 PMCID: PMC10781775 DOI: 10.1038/s41467-024-44752-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Plasmonic systems convert light into electrical charges and heat, mediating catalytic transformations. However, there is ongoing controversy regarding the involvement of hot carriers in the catalytic process. In this study, we demonstrate the direct utilisation of plasmon hot electrons in the hydrogen evolution reaction with visible light. We intentionally assemble a plasmonic nanohybrid system comprising NiO/Au/[Co(1,10-Phenanthrolin-5-amine)2(H2O)2], which is unstable at water thermolysis temperatures. This assembly limits the plasmon thermal contribution while ensuring that hot carriers are the primary contributors to the catalytic process. By combining photoelectrocatalysis with advanced in situ spectroscopies, we can substantiate a reaction mechanism in which plasmon-induced hot electrons play a crucial role. These plasmonic hot electrons are directed into phenanthroline ligands, facilitating the rapid, concerted proton-electron transfer steps essential for hydrogen generation. The catalytic response to light modulation aligns with the distinctive profile of a hot carrier-mediated process, featuring a positive, though non-essential, heat contribution.
Collapse
Affiliation(s)
- Ananta Dey
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Box 532, 751 20, Uppsala, Sweden
| | - Amal Mendalz
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Box 532, 751 20, Uppsala, Sweden
| | - Anna Wach
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Robert Bericat Vadell
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Box 532, 751 20, Uppsala, Sweden
| | - Vitor R Silveira
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Box 532, 751 20, Uppsala, Sweden
| | | | | | - Vitalii Shtender
- Department of Materials Science and Engineering, division of Applied Materials Science, Uppsala University, 75103, Uppsala, Sweden
| | - Zbynek Novotny
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - Luca Artiglia
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - Jacinto Sá
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Box 532, 751 20, Uppsala, Sweden.
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
16
|
Kumar P, Tyagi VP, Ghosh M. Exploring the Multifarious Role of the Ligand in Electrocatalytic Hydrogen Evolution Reaction Pathways. Chemistry 2023; 29:e202302195. [PMID: 37728113 DOI: 10.1002/chem.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
In recent years, researchers have shifted their focus towards investigating the redox properties of ancillary ligand backbones for small-molecule activation. Several metal complexes have been reported for the electrocatalytic H2 evolution reaction (HER), providing valuable mechanistic insights. This process involves efficient coupling of electrons and protons. Redox-active ligands stipulate internal electron transfer and promote effective orbital overlap between metal and ligand, thereby, enabling efficient proton-coupled electron transfer reactions. Understanding such catalytic mechanisms requires thorough spectroscopic and computational analyses. Herein, we summarize recent examples of molecular electrocatalysts based on 3d transition metals that have significantly influenced mechanistic pathways, thus, emphasizing the multifaceted role of metal-ligand cooperativity.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Vyom Prakash Tyagi
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| |
Collapse
|
17
|
Yan C, Cowie M, Howcutt C, Wheelhouse KMP, Hodnett NS, Kollie M, Gildea M, Goodfellow MH, Reid M. Computer vision for non-contact monitoring of catalyst degradation and product formation kinetics. Chem Sci 2023; 14:5323-5331. [PMID: 37234891 PMCID: PMC10208035 DOI: 10.1039/d2sc05702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/27/2023] [Indexed: 08/24/2023] Open
Abstract
We report a computer vision strategy for the extraction and colorimetric analysis of catalyst degradation and product-formation kinetics from video footage. The degradation of palladium(ii) pre-catalyst systems to form 'Pd black' is investigated as a widely relevant case study for catalysis and materials chemistries. Beyond the study of catalysts in isolation, investigation of Pd-catalyzed Miyaura borylation reactions revealed informative correlations between colour parameters (most notably ΔE, a colour-agnostic measure of contrast change) and the concentration of product measured by off-line analysis (NMR and LC-MS). The breakdown of such correlations helped inform conditions under which reaction vessels were compromised by air ingress. These findings present opportunities to expand the toolbox of non-invasive analytical techniques, operationally cheaper and simpler to implement than common spectroscopic methods. The approach introduces the capability of analyzing the macroscopic 'bulk' for the study of reaction kinetics in complex mixtures, in complement to the more common study of microscopic and molecular specifics.
Collapse
Affiliation(s)
- Chunhui Yan
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Megan Cowie
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Calum Howcutt
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | | | | | - Martin Kollie
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Martin Gildea
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Martin H Goodfellow
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| | - Marc Reid
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow UK
| |
Collapse
|
18
|
Finkelstein P, Reisenbauer JC, Botlik BB, Green O, Florin A, Morandi B. Nitrogen atom insertion into indenes to access isoquinolines. Chem Sci 2023; 14:2954-2959. [PMID: 36937579 PMCID: PMC10016357 DOI: 10.1039/d2sc06952k] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
We report a convenient protocol for a nitrogen atom insertion into indenes to afford isoquinolines. The reaction uses a combination of commercially available phenyliodine(iii) diacetate (PIDA) and ammonium carbamate as the nitrogen source to furnish a wide range of isoquinolines. Various substitution patterns and commonly used functional groups are well tolerated. The operational simplicity renders this protocol broadly applicable and has been successfully extended towards the direct interconversion of cyclopentadienes into the corresponding pyridines. Furthermore, this strategy enables the facile synthesis of 15N labelled isoquinolines, using 15NH4Cl as a commercial 15N source.
Collapse
Affiliation(s)
- Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Julia C Reisenbauer
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Andri Florin
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
19
|
Wang N, Zhang XP, Han J, Lei H, Zhang Q, Zhang H, Zhang W, Apfel UP, Cao R. Promoting hydrogen evolution reaction with a sulfonic proton relay. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Udry GAO, Tiessler-Sala L, Pugliese E, Urvoas A, Halime Z, Maréchal JD, Mahy JP, Ricoux R. Photocatalytic Hydrogen Production and Carbon Dioxide Reduction Catalyzed by an Artificial Cobalt Hemoprotein. Int J Mol Sci 2022; 23:ijms232314640. [PMID: 36498969 PMCID: PMC9736947 DOI: 10.3390/ijms232314640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The covalent insertion of a cobalt heme into the cavity of an artificial protein named alpha Rep (αRep) leads to an artificial cobalt hemoprotein that is active as a catalyst not only for the photo-induced production of H2, but also for the reduction of CO2 in a neutral aqueous solution. This new artificial metalloenzyme has been purified and characterized by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), circular dichroism, and UltraViolet-Visible spectroscopy. Using theoretical experiments, the structure of this biohybrid and the positioning of the residues near the metal complex were examined, which made it possible to complete the coordination of the cobalt ion by an axial glutamine Gln283 ligand. While the Co(III)-porphyrin catalyst alone showed weak catalytic activity for both reactions, 10 times more H2 and four times more CO2 were produced when the Co(III)-porphyrin complex was buried in the hydrophobic cavity of the protein. This study thus provides a solid basis for further improvement of these biohybrids using well-designed modifications of the second and outer coordination sphere by site-directed mutagenesis of the host protein.
Collapse
Affiliation(s)
- Guillermo A. Oliveira Udry
- UMR 8182, CNRS, Institut de Chimie Moleculaire & des Matériaux d’Orsay, University Paris-Saclay, F-91405 Orsay, France
| | - Laura Tiessler-Sala
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eva Pugliese
- UMR 8182, CNRS, Institut de Chimie Moleculaire & des Matériaux d’Orsay, University Paris-Saclay, F-91405 Orsay, France
| | - Agathe Urvoas
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Zakaria Halime
- UMR 8182, CNRS, Institut de Chimie Moleculaire & des Matériaux d’Orsay, University Paris-Saclay, F-91405 Orsay, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jean-Pierre Mahy
- UMR 8182, CNRS, Institut de Chimie Moleculaire & des Matériaux d’Orsay, University Paris-Saclay, F-91405 Orsay, France
- Correspondence:
| | - Rémy Ricoux
- UMR 8182, CNRS, Institut de Chimie Moleculaire & des Matériaux d’Orsay, University Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
22
|
Kwok CL, Cheng SC, Ho PY, Yiu SM, Au VKM, Ho WK, Tsang PK, Xiang J, Leung CF, Ko CC. Ligand Substituent Effects on the Light‐driven Hydrogen Evolution by Cobalt(II) Tripodal Iminopyridine Catalysts under Precious‐metal Free Conditions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chun-Leung Kwok
- The Education University of Hong Kong Department of Science and Environmental Studies HONG KONG
| | | | - Pui-Yu Ho
- The Education University of Hong Kong Department of Science and Environmental Studies HONG KONG
| | - Shek-Man Yiu
- City University of Hong Kong Department of Chemistry HONG KONG
| | - Vonika Ka-Man Au
- The Education University of Hong Kong Department of Science and Environmental Studies HONG KONG
| | - Wing-Kei Ho
- The Education University of Hong Kong Department of Science and Environmental Studies HONG KONG
| | - Po-Keung Tsang
- The Education University of Hong Kong Department of Science and Environmental Studies HONG KONG
| | - Jing Xiang
- Yangtze University College of Chemical and Environmental Engineering CHINA
| | - Chi-Fai Leung
- The Education University of Hong Kong Science and Environmental Studies 10 Lo Ping RoadTai PoN. T. 999077 Hong Kong HONG KONG
| | - Chi-Chiu Ko
- City University of Hong Kong Department of Chemistry HONG KONG
| |
Collapse
|
23
|
Droghetti F, Lucarini F, Molinari A, Ruggi A, Natali M. Recent findings and future directions in photosynthetic hydrogen evolution using polypyridine cobalt complexes. Dalton Trans 2022; 51:10658-10673. [PMID: 35475511 PMCID: PMC9936794 DOI: 10.1039/d2dt00476c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022]
Abstract
The production of hydrogen gas using water as the molecular substrate currently represents one of the most challenging and appealing reaction schemes in the field of artificial photosynthesis (AP), i.e., the conversion of solar energy into fuels. In order to be efficient, this process requires a suitable combination of a light-harvesting sensitizer, an electron donor, and a hydrogen-evolving catalyst (HEC). In the last few years, cobalt polypyridine complexes have been discovered to be competent molecular catalysts for the hydrogen evolution reaction (HER), showing enhanced efficiency and stability with respect to previously reported molecular species. This perspective collects information about all relevant cobalt polypyridine complexes employed for the HER in aqueous solution under light-driven conditions in the presence of Ru(bpy)32+ (where bpy = 2,2'-bipyridine) as the photosensitizer and ascorbate as the electron donor, trying to highlight promising chemical motifs and aiming towards efficient catalytic activity in order to stimulate further efforts to design molecular catalysts for hydrogen generation and allow their profitable implementation in devices. As a final step, a few suggestions for the benchmarking of HECs employed under light-driven conditions are introduced.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Fiorella Lucarini
- Département de Chimie, Université de Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Mirco Natali
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
- Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), sez. di Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
25
|
Zhang Q, Lei H, Guo H, Wang Y, Gao Y, Zhang W, Cao R. Through-Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. CHEMSUSCHEM 2022; 15:e202200086. [PMID: 35156337 DOI: 10.1002/cssc.202200086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Elucidating the effects of various structural components on energy-related small molecule activation is of fundamental and practical significance. Herein the inhibition effect of positively charged substituents on the hydrogen evolution reaction (HER) was reported. With the use of Cu porphyrins 1-5 containing different numbers and locations of positively charged substituents, it was demonstrated that their electrocatalytic HER activities significantly decreased when more cationic units were located close to the Cu ion: the icat /ip (icat is the catalytic peak current, ip is the one-electron reduction peak current) value decreased from 38 with zero cationic unit to 15 with four closely located cationic units. Inspired by this result, Cu porphyrin 6, with four meso-phenyl groups each bearing a negatively charged para-sulfonic substituent, was designed. With these anionic units, 6 outperformed the other Cu porphyrins for electrocatalytic HER under the same conditions.
Collapse
Affiliation(s)
- Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
26
|
Wu H, Miao T, Deng Q, Xu Y, Shi H, Huang Y, Fu X. Accelerating Nickel-Based Molecular Construction via DFT Guidance for Advanced Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17486-17499. [PMID: 35389211 DOI: 10.1021/acsami.2c02107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the nickel-based molecular catalyst structure and functional relationship is crucial for catalytic hydrogen production in aqueous solutions. Density functional theory (DFT) provides mature theoretical knowledge for efficient catalyst design, significantly reducing catalyst synthesis time and energy consumption. In the present work, three molecular catalysts, Ni(qbz)(pys)2 (qbz = 2-quinoline benzimidazole) (NQP 1), Ni(qbo)(pys)2 (qbo = 2-quinoline benzothiazole) (NQP 2), and Ni(pbz)(pys)2 (pbz = 4-chloro-2,2-pyridylbenzimidazole) (NQP 3) (pys = 2-mercaptopyridine), were designed and synthesized and exhibit a high performance for H2 generation in aqueous solution with a lamp (λ ≥ 400 nm) under visible light irradiation. Under the optimal conditions, a H2 evolution rate as high as 1190 μmol h-1 can be obtained over 25 mg of NQP 1 with the best catalytic performance. DFT has been adopted in this study to unveil the relationship between the ligand qbz and catalyst NQP 1─an efficient step in the design of catalysts with an excellent catalytic performance. We show that, in addition to the presence of the triphenyl ring increasing the overall electron density, rapid electron transfer (ET) from excited fluorescein (Fl) to NQP 1 significantly improves the chance of photogenerated electrons transferring to the active site, ultimately increasing the catalytic activity for H2 production. This work on understanding the correlation between structures and properties of complexes provides a new idea for manufacturing high-performance photocatalysts.
Collapse
Affiliation(s)
- Haisu Wu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Tifang Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yun Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Haixia Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ying Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xianliang Fu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| |
Collapse
|
27
|
Electrochemical-driven water reduction and oxidation catalyzed by an iron(III) complex supported by a N2O2 ligand. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Depenbrock F, Limpke T, Stammler A, Oldengott J, Bögge H, Glaser T. Molecular and Electronic Structures of a Series of Dinuclear CoII Complexes varied by Exogeneous Ligands: Influence of π‐Bonding on Redox Potentials. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Felix Depenbrock
- Bielefeld University: Universitat Bielefeld Chemistry Department GERMANY
| | - Thomas Limpke
- Bielefeld University: Universitat Bielefeld Chemistry Department GERMANY
| | - Anja Stammler
- Bielefeld University: Universitat Bielefeld Chemistry Department GERMANY
| | - Jan Oldengott
- Bielefeld University: Universitat Bielefeld Chemistry Department GERMANY
| | - Hartmut Bögge
- Bielefeld University: Universitat Bielefeld Chemistry department GERMANY
| | - Thorsten Glaser
- Bielefeld University: Universitat Bielefeld Department of Chemistry Universitätsstr. 24 33615 Bielefeld GERMANY
| |
Collapse
|
29
|
Du J, Yang H, Wang C, Zhan S. A bis(thiosemicarbazonato)‐zinc complex, an electrocatalyst for hydrogen evolution and oxidation via ligand‐assisted metal‐centered reactivity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Juan Du
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Hao Yang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Chun‐Li Wang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Shu‐Zhong Zhan
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
30
|
Li X, Lv B, Zhang X, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U, Cao R. Introducing Water‐Network‐Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
31
|
Li X, Lv B, Zhang XP, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel UP, Cao R. Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2021; 61:e202114310. [PMID: 34913230 DOI: 10.1002/anie.202114310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/10/2022]
Abstract
Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1H NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding (1) external 18-crown-6-ether to extract water molecules and (2) potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.
Collapse
Affiliation(s)
- Xialiang Li
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Bin Lv
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaotong Jin
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Kai Guo
- shaanxi normal university, School of Chemistry and Chemical Engineering, CHINA
| | - Dexia Zhou
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hongtao Bian
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Wei Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Fakultät fur Chemie und Biochemie, GERMANY
| | - Rui Cao
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus, Number 620 West Chang'an Avenue, Chang'an District, 710119, Xi'an, CHINA
| |
Collapse
|
32
|
Wang XZ, Meng SL, Chen JY, Wang HX, Wang Y, Zhou S, Li XB, Liao RZ, Tung CH, Wu LZ. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine-Bipyridine Skeleton for Selective CO 2 Photoreduction. Angew Chem Int Ed Engl 2021; 60:26072-26079. [PMID: 34545677 DOI: 10.1002/anie.202107386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Indexed: 12/29/2022]
Abstract
A bis(pyridyl)amine-bipyridine-iron(II) framework (Fe(BPAbipy)) of complexes 1-3 is reported to shed light on the multistep nature of CO2 reduction. Herein, photocatalytic conversion of CO2 to CO even at low CO2 concentration (1 %), together with detailed mechanistic study and DFT calculations, reveal that 1 first undergoes two sequential one-electron transfer affording an intermediate with electron density on both Fe and ligand for CO2 binding over proton. The following 2 H+ -assisted Fe-CO formation is rate-determining for selective CO2 -to-CO reduction. A pendant, proton-shuttling α-OH group (2) initiates PCET for predominant H2 evolution, while an α-OMe group (3) cancels the selectivity control for either CO or H2 . The near-unity selectivity of 1 and 2 enables self-sorting syngas production at flexible CO/H2 ratios. The unprecedented results from one kind of molecular catalyst skeleton encourage insight into the beauty of advanced multi-electron and multi-proton transfer processes for robust CO2 RR by photocatalysis.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong, University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Xu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong, University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Wang X, Meng S, Chen J, Wang H, Wang Y, Zhou S, Li X, Liao R, Tung C, Wu L. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO
2
Photoreduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yi Chen
- School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology Wuhan 430074 P. R. China
| | - Hai‐Xu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuai Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong‐Zhen Liao
- School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology Wuhan 430074 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Du J, Yang H, Wang CL, Zhan SZ. Synthesis, structure, characterization, EPR investigation and catalytic behavior for hydrogen evolution of a bis(thiosemicarbazonato)-palladium complex. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Du J, Yang H, Wang CL, Zhan SZ. A nickel(II) complex of 2,6-pyridinedicarboxylic acid ion, an efficient electro-catalyst for both hydrogen evolution and oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Yang H, Du J, Wang CL, Xie ZH, Zhan SZ. Synthesis, structure, magnetic and electrocatalytic properties of a dinuclear triazendio-copper(II) complex. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1992433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hao Yang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ze-Hao Xie
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Yang H, Du J, Wang CL, Zhan SZ. Synthesis, structure, characterization and catalytic behavior of a bis(thiosemicarbazonato)-nickel complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1943742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hao Yang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
38
|
DiMarco BN, Polyansky DE, Grills DC, Wang P, Kuwahara Y, Zhao X, Fujita E. Structural and Electronic Influences on Rates of Tertpyridine-Amine Co III -H Formation During Catalytic H 2 Evolution in an Aqueous Environment. Chemphyschem 2021; 22:1478-1487. [PMID: 33990996 DOI: 10.1002/cphc.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Indexed: 01/04/2023]
Abstract
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII -Cl]+ species results in the formation of [CoII (κ4 -L)(OH2 )]2+ . Further reduction produces [CoI (κ4 -L)(OH2 )]+ , which undergoes a rate-limiting structural rearrangement to [CoI (κ5 -L)]+ before being protonated to form [CoIII -H]2+ . The rate of [CoIII -H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII -H]2+ estimated from PR experiments, we found that while the protonation of [CoIII -H]2+ is unfavorable, [CoII -H]+ reacts with protons to produce H2 . The catalytic activity for H2 evolution tracks the hydricity of the [CoII -H]+ intermediate.
Collapse
Affiliation(s)
- Brian N DiMarco
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Ping Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| |
Collapse
|
39
|
Wang C, Yang H, Du J, Zhan S. Effects of halogen ligands of complexes supported by bis(methylthioether)pyridine on catalytic activities for electrochemical and photochemical driven hydrogen evolution. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chun‐Li Wang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Hao Yang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Juan Du
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Shu‐Zhong Zhan
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
40
|
Queyriaux N, Esmieu C, Gupta AK, Vendier L, Ott S, Orio M, Hammarström L. Electrochemical, Spectroscopic, and Computational Investigation of a Series of Polypyridyl Ruthenium(II) Complexes: Characterization of Reduced States. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicolas Queyriaux
- Department of Chemistry Ångström Laboratories Uppsala University, Box 523, 751 20 Uppsala Sweden
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse France
| | - Charlène Esmieu
- Department of Chemistry Ångström Laboratories Uppsala University, Box 523, 751 20 Uppsala Sweden
| | - Arvind K. Gupta
- Department of Chemistry Ångström Laboratories Uppsala University, Box 523, 751 20 Uppsala Sweden
| | - Laure Vendier
- CNRS, LCC (Laboratoire de Chimie de Coordination) 31077 Toulouse France
| | - Sascha Ott
- Department of Chemistry Ångström Laboratories Uppsala University, Box 523, 751 20 Uppsala Sweden
| | - Maylis Orio
- CNRS Centrale Marseille, iSm2 Aix Marseille University 13397 Marseille France
| | - Leif Hammarström
- Department of Chemistry Ångström Laboratories Uppsala University, Box 523, 751 20 Uppsala Sweden
| |
Collapse
|
41
|
Wang NS, Zhan JZ, Liu ZQ, Cao QQ, Wang CL, Zhan SZ. Impact of oxidation state of metal on electro-catalyzed hydrogen production by cobalt complexes of N-phenylpyridin-2-ylmethanimine. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1884234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nan-Shu Wang
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jun-Zheng Zhan
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ze-Quan Liu
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Qian-Qian Cao
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
42
|
Queyriaux N. Redox-Active Ligands in Electroassisted Catalytic H + and CO 2 Reductions: Benefits and Risks. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Queyriaux
- CNRS, LCC (Laboratoire de Chimie de Coordination), 31077 Toulouse, France
| |
Collapse
|
43
|
Celestine MJ, Lawrence MA, Schott O, Picard V, Hanan GS, Marquez EM, Harold CG, Kuester CT, Frenzel BA, Hamaker CG, Hightower SE, McMillen CD, Holder AA. Synthesis, structure, and hydrogen evolution studies of a heteroleptic Co(III) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Guo X, Li C, Wang W, Hou Y, Zhang B, Wang X, Zhou Q. Polypyridyl Co complex-based water reduction catalysts: why replace a pyridine group with isoquinoline rather than quinoline? Dalton Trans 2021; 50:2042-2049. [PMID: 33475631 DOI: 10.1039/c9dt04767k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic effect of the substituent has been fully leveraged to improve the activity of molecular water reduction catalysts (WRCs). However, the steric effect of the substituents has received less attention. In this work, a steric hindrance effect was observed in a quinoline-involved polypyridyl Co complex-based water reduction catalyst (WRC), which impedes the formation of Co(iii)-H from Co(i), two pivotal intermediates for H2 evolution, leading to significantly impaired electrocatalytic and photocatalytic activity with respect to its parent complex, [Co(TPA)Cl]Cl (TPA = tris(2-pyridinylmethyl)-amine). In sharp contrast, two isoquinoline-involved polypyridyl Co complexes exhibited significantly improved H2 evolution efficiencies compared to [Co(TPA)Cl]Cl, benefitting mainly from the more basic and conjugated features of isoquinoline over pyridine. The dramatically different influences caused by the replacement of a pyridine group in the TPA ligand by quinoline and isoquinoline fully demonstrates the important roles of both the electronic and steric effects of a substituent. Our results may provide novel insights for designing more efficient WRCs.
Collapse
Affiliation(s)
- Xusheng Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Replacing Pyridine with Pyrazine in Molecular Cobalt Catalysts: Effects on Electrochemical Properties and Aqueous H2 Generation. Catalysts 2021. [DOI: 10.3390/catal11010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Four new molecular Co(II)tetrapyridyl complexes were synthesized and evaluated for their activity as catalysts for proton reduction in aqueous environments. The pyridine groups around the macrocycle were substituted for either one or two pyrazine groups. Single crystal X-ray analysis shows that the pyrazine groups have minimal impact on the Co(II)–N bond lengths and molecular geometry in general. X-band EPR spectroscopy confirms the Co(II) oxidation state and the electronic environment of the Co(II) center are only very slightly perturbed by the substitution of pyrazine groups around the macrocycle. The substitution of pyrazine groups has a substantial impact on the observed metal- and ligand-centered reduction potentials as well as the overall H2 catalytic activity in a multimolecular system using the [Ru(2,2′-bipyridine)3]Cl2 photosensitizer and ascorbic acid as a sacrificial electron donor. The results reveal interesting trends between the H2 catalytic activity for each catalyst and the driving force for electron transfer between either the reduced photosensitizer to catalyst step or the catalyst to proton reduction step. The work presented here showcases how even the difference of a single atom in a molecular catalyst can have an important impact on activity and suggests a pathway to optimize the photocatalytic activity and stability of molecular systems.
Collapse
|
47
|
Wang CL, Liu WX, Zhan SZ. A cobalt complex of bis(methylthioether)pyridine, a new catalyst for hydrogen evolution. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Lorraine SC, Lawrence MA, Celestine M, Holder AA. Electrochemical response of a Ru(II) benzothiazolyl-2-pyridinecarbothioamide pincer towards carbon dioxide and transfer hydrogenation of aryl ketones in air. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Rennie BE, Eleftheriades RG, Morris RH. Systematic Trends in the Electrochemical Properties of Transition Metal Hydride Complexes Discovered by Using the Ligand Acidity Constant Equation. J Am Chem Soc 2020; 142:17607-17629. [PMID: 32941024 DOI: 10.1021/jacs.0c08000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the thermodynamics of paramagnetic transition metal hydride complexes, especially of the abundant 3d metals, is important in the design of electrocatalysts and organometallic catalysts. The pKaMeCN([MHLn]+/[MLn) of paramagnetic hydrides in MeCN are estimated for the first time using the ligand acidity constant (LAC) equation where contributions to the pKaMeCN from each ligand are simply added together, with the sum corrected for effects of charge and 5d metals. The pKaLAC-MeCN([MHLn]+/MLn) of over 200 hydride complexes MHLn are used, along with their electrochemical potentials from the literature, in an uncommonly applied thermochemical cycle in order to reveal systematic trends in the redox couples MIII/II and MV/IV (M = Cr, Mo, W), MnII/I, ReVI/V and ReIV/III, MIII/II and MIV/III (M = Fe, Ru, Os), and MIII/II and MII/I (M = Co, Rh, and Ir) and allow the estimation of the bond dissociation free energies BDFE(MH) of the unoxidized hydrides MHLn and the prediction of the electrochemical potential for their oxidation. Density functional theory (DFT) calculations are used to validate the pKaLAC-MeCN values of hydrides of WIII, MnII, FeIII, RuIII, CoII, and NiIII. When a pKaLAC-MeCN is less than zero for a given complex [MHLn]+, the oxidation of MHLn is irreversible due to proton loss from the oxidized complex to the solvent. When pKaLAC-MeCN ≫ 0, the oxidation is reversible when there is no gross change in the coordination geometry upon a change in the redox state. Twenty paramagnetic hydrides prepared in bulk all have pKaLAC-MeCN > 8.
Collapse
Affiliation(s)
- Benjamin E Rennie
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S3H6, Canada
| | - Renée G Eleftheriades
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S3H6, Canada
| | - Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
50
|
Wang XZ, Meng SL, Xiao H, Feng K, Wang Y, Jian JX, Li XB, Tung CH, Wu LZ. Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angew Chem Int Ed Engl 2020; 59:18400-18404. [PMID: 32667116 DOI: 10.1002/anie.202006593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|