1
|
Gong Y, Zhang Z, Liu H, Wang T, Jiang M, Feng N, Peng P, Wang H, Zhou F, Wang X, Zhou J. Trifluoroethanol-assisted asymmetric propargylic hydrazination to α-tertiary ethynylhydrazines enabled by sterically confined pyridinebisoxazolines. Nat Commun 2025; 16:4571. [PMID: 40379671 PMCID: PMC12084353 DOI: 10.1038/s41467-025-59845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
We report the highly enantioselective Cu-catalyzed asymmetric propargylic substitution (APS) of α-tertiary propargylic electrophiles using hydrazines and hydroxylamines as a fruitful strategy to access multifunctional α-tertiary hydrazines or hydroxylamines. Using trifluoroethanol (TFE) as the solvent play a key role to decrease the nucleophilicity of hydrazines to suppress side reactions such as elimination, thus improve the yield and the enantioselectivity. NMR analysis and theoretical calculations suggest the formation of an H-bond adduct of TFE with hydrazide, stabilized by multiple H-bonding interactions, including C-F···H-N interaction. The sterically confined pyridinebisoxzolines (PYBOX), featuring a bulky benzylthio shielding group also contribute to the excellent enantioselectivity. Aryl- and aliphatic-ketone-derived α-ethynylalcohol carbonates, α-tertiary α-ethynyl epoxides, cyclic carbonates and and α-hydroxycarboxylates all are competent substrates to afford α-tertiary α-ethynylhydrazines with high structural diversity. The obtained products can be readily converted into various α-tertiary hydrazines and azacycles featuring an aza-quaternary stereocenter.
Collapse
Affiliation(s)
- Yi Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zheng Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Huijuan Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tao Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Mengmeng Jiang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Nan Feng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Peiying Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Huimin Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Xin Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China.
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Krishnan J, Sahib K, Nair KG, T AJ, Paul RR. Advances in the Synthetic Utility of Difluorocarbene Generated from TMSCF 3 (Ruppert-Prakash Reagent) and Its Derivatives. CHEM REC 2025; 25:e202400243. [PMID: 40072316 DOI: 10.1002/tcr.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/17/2025] [Indexed: 05/13/2025]
Abstract
Organofluorine compounds are of pivotal significance particularly, in drug and agrochemical industries and different strategies have been designed for their synthesis. The last two decades witnessed the emergence of difluorocarbene as an efficient synthetic tool, providing easy access to organofluorine compounds. This review summarises the reactions of difluorocarbene generated from Ruppert-Prakash reagent (TMSCF3) and its derivatives TMSCF2Cl and TMSCF2Br. Among the various fluorination techniques available, the difluorocarbene chemistry offers a cost effective and easy procedure, opening avenue to a large number of organofluorine compounds. This review details the developments in the utility of difluorocarbene generated from TMSCF3 and its derivatives, till date.
Collapse
Affiliation(s)
- Jagadeesh Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Kaja Sahib
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Keerthana G Nair
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Arshad Jouhar T
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| |
Collapse
|
3
|
Veth L, Windhorst AD, Vugts DJ. [ 18F]Trifluoroiodomethane - Enabling Photoredox-mediated Radical [ 18F]Trifluoromethylation for Positron Emission Tomography. Angew Chem Int Ed Engl 2025; 64:e202416901. [PMID: 39349368 PMCID: PMC11753608 DOI: 10.1002/anie.202416901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The development of new tracers for positron emission tomography (PET) is highly dependent on the available synthetic tools for their radiosynthesis. Herein, we present the radiosynthesis and application of [18F]trifluoroiodomethane - the first reagent for broad scope radical [18F]trifluoromethylation chemistry in high molar activity. CF2 18FI can be prepared from [18F]fluoroform with 67±5 % AY and >99 % RCP. Its synthetic utility is demonstrated by the radiosynthesis of previously unprecedented 18F-labeled α-trifluoromethyl ketones and 18F-labeled trifluoromethyl sulfides, important motifs that are present in a range of bioactive compounds. Both protocols are Ru- and photo-mediated and proceed under mild reaction conditions. They show good functional group tolerance evidenced by the respective reaction scopes and make use of easily obtainable starting materials. The products can be isolated in 8.3-11.1 GBq/μmol (starting from ca. 5 GBq [18F]fluoride). The applicability to PET tracer synthesis is shown by the radiolabeling of bioactive compounds, such as derivatives of probenecid and febuxostat. In a broader context, this work opens the door to the utilization of radical [18F]trifluoromethylation chemistry for the radiolabeling of PET tracers in high molar activity.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| | - Albert D. Windhorst
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| | - Danielle J. Vugts
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| |
Collapse
|
4
|
Wang Y, Li SJ, Jiang F, Lan Y, Wang X. Making Full Use of TMSCF 3: Deoxygenative Trifluoromethylation/Silylation of Amides. J Am Chem Soc 2024; 146:19286-19294. [PMID: 38956888 DOI: 10.1021/jacs.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.
Collapse
Affiliation(s)
- Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Lancaster H, Goodall JC, Douglas SP, Ashfield LJ, Duckett SB, Perutz RN, Weller AS. Platinum(II) Phenylpyridyl Schiff Base Complexes as Latent, Photoactivated, Alkene Hydrosilylation Catalysts. ACS Catal 2024; 14:7492-7505. [PMID: 38779183 PMCID: PMC11106775 DOI: 10.1021/acscatal.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Photoactivated catalysts for the hydrosilylation of alkenes with silanes offer temporal control in manufacturing processes that require silicone curing. We report the development of a range of air-stable Pt(II) (salicylaldimine)(phenylpyridyl), [Pt(sal)(ppy)], complexes as photoinitiated hydrosilylation catalysts. Some of these catalysts show appreciable latency in thermal catalysis and can also be rapidly (10 s) activated by a LED UV-light source (365 nm), to give systems that selectively couple trimethylvinylsilane and hexamethylsiloxymethylsilane to give the linear hydrosilylation product. Although an undetectable (by NMR spectroscopy) amount of precatalyst is converted to the active form under UV-irradiation in the timescale required to initiate hydrosilylation, clean and reliable kinetics can be measured for these systems that allow for a detailed mechanism to be developed for Pt(sal)(ppy)-based photoactivated hydrosilylation. The suggested mechanism is shown to have close parallels with, but also subtle differences from, those previously proposed for thermally-activated Karstedt-type Pt(0) systems.
Collapse
Affiliation(s)
- Helena
G. Lancaster
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Joe C. Goodall
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Samuel P. Douglas
- Johnson
Matthey Technology Center, Blounts Court Road, Sonning Common, Reading RG4 9NH, U.K.
| | - Laura J. Ashfield
- Johnson
Matthey Technology Center, Blounts Court Road, Sonning Common, Reading RG4 9NH, U.K.
| | - Simon B. Duckett
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Andrew S. Weller
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
6
|
Jannsen N, Reiß F, Drexler HJ, Konieczny K, Beweries T, Heller D. The Mechanism of Rh(I)-Catalyzed Coupling of Benzotriazoles and Allenes Revisited: Substrate Inhibition, Proton Shuttling, and the Role of Cationic vs Neutral Species. J Am Chem Soc 2024; 146:12185-12196. [PMID: 38647149 PMCID: PMC11066875 DOI: 10.1021/jacs.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Direct coupling of benzotriazole to unsaturated substrates such as allenes represents an atom-efficient method for the construction of biologically and pharmaceutically interesting functional structures. In this work, the mechanism of the N2-selective Rh complex-catalyzed coupling of benzotriazoles to allenes was investigated in depth using a combination of experimental and theoretical techniques. Substrate coordination, inhibition, and catalyst deactivation was probed in reactions of the neutral and cationic catalyst precursors [Rh(μ-Cl)(DPEPhos)]2 and [Rh(DPEPhos)(MeOH)2]+ with benzotriazole and allene, giving coordination, or coupling of the substrates. Formation of a rhodacycle, formed by unprecedented 1,2-coupling of allenes, is responsible for catalyst deactivation. Experimental and computational data suggest that cationic species, formed either by abstraction of the chloride ligand or used directly, are relevant for catalysis. Isomerization of benzotriazole and cleavage of its N-H bond are suggested to occur by counteranion-assisted proton shuttling. This contrasts with a previously proposed scenario in which oxidative N-H addition at Rh is one of the key steps. Based on the mechanistic analysis, the catalytic coupling reaction could be optimized, leading to lower reaction temperature and shorter reaction times compared to the literature.
Collapse
Affiliation(s)
- Nora Jannsen
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Fabian Reiß
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Hans-Joachim Drexler
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Katharina Konieczny
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Torsten Beweries
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Detlef Heller
- Leibniz-Institut
für
Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| |
Collapse
|
7
|
Maschmeyer T, Russell DJ, Napolitano JG, Hein JE. Reaction monitoring via benchtop nuclear magnetic resonance spectroscopy: A practical comparison of on-line stopped-flow and continuous-flow sampling methods. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:310-322. [PMID: 37737536 DOI: 10.1002/mrc.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
The ability for nuclear magnetic resonance (NMR) spectroscopy to provide quantitative, structurally rich information makes this spectroscopic technique an attractive reaction monitoring tool. The practicality of NMR for this type of analysis has only increased in the recent years with the influx of commercially available benchtop NMR instruments and compatible flow systems. In this study, we aim to compare 19F NMR reaction profiles acquired under both on-line continuous-flow and stopped-flow sampling methods, with modern benchtop NMR instrumentation, and two reaction systems: a homogeneous imination reaction and a biphasic activation of a carboxylic acid to acyl fluoride. Reaction trends with higher data density can be acquired with on-line continuous-flow analyses, and this work highlights that representative reaction trends can be acquired without any correction when monitoring resonances with a shorter spin-lattice relaxation time (T1), and with the used flow conditions. On-line stopped-flow analyses resulted in representative reaction trends in all cases, including the monitoring of resonances with a long T1, without the need of any correction factors. The benefit of easier data analysis, however, comes with the cost of time, as the fresh reaction solution must be flowed into the NMR system, halted, and time must be provided for spins to become polarized in the instrument's external magnetic field prior to spectral measurement. Results for one of the reactions were additionally compared with the use of a high-field NMR.
Collapse
Affiliation(s)
- Tristan Maschmeyer
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California, USA
| | - David J Russell
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California, USA
| | - José G Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California, USA
| | - Jason E Hein
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
- Acceleration Consortium, University of Toronto, Toronto, Canada
- Department of Chemistry, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Kucharski MM, Watson AJB, Lloyd-Jones GC. Speciation and kinetics of fluoride transfer from tetra- n-butylammonium difluorotriphenylsilicate ('TBAT'). Chem Sci 2024; 15:4331-4340. [PMID: 38516098 PMCID: PMC10952091 DOI: 10.1039/d3sc05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/06/2023] [Indexed: 03/23/2024] Open
Abstract
Tetra-n-butylammonium difluorotriphenylsilicate (TBAT) is a conveniently handled anhydrous fluoride source, commonly used as a surrogate for tetra-n-butylammonium fluoride (TBAF). While prior studies indicate that TBAT reacts rapidly with fluoride acceptors, little is known about the mechanism(s) of fluoride transfer. We report on the interrogation of the kinetics of three processes in which fluoride is transferred from TBAT, in THF and in MeCN, using a variety of NMR methods, including chemical exchange saturation transfer, magnetisation transfer, diffusion analysis, and 1D NOESY. These studies reveal ion-pairing between the tetra-n-butylammonium and difluorotriphenylsilicate moieties, and a very low but detectable degree of fluoride dissociation, which then undergoes further equilibria and/or induces decomposition, depending on the conditions. Degenerate exchange between TBAT and fluorotriphenylsilane (FTPS) is very rapid in THF, inherently increases in rate over time, and is profoundly sensitive to the presence of water. Addition of 2,6-di-tert-butylpyridine and 3 Å molecular sieves stabilises the exchange rate, and both dissociative and direct fluoride transfer are shown to proceed in parallel under these conditions. Degenerate exchange between TBAT and 2-naphthalenyl fluorosulfate (ARSF) is not detected at the NMR timescale in THF, and is slow in MeCN. For the latter, the exchange is near-fully inhibited by exogenous FTPS, indicating a predominantly dissociative character to this exchange process. Fluorination of benzyl bromide (BzBr) with TBAT in MeCN-d3 exhibits moderate progressive autoinhibition, and the initial rate of the reaction is supressed by the presence of exogenous FTPS. Overall, TBAT can act as a genuine surrogate for TBAF, as well as a reservoir for rapidly-reversible release of traces of it, with the relative contribution of the pathways depending, inter alia, on the identity of the fluoride acceptor, the solvent, and the concentration of endogenous or exogenous FTPS.
Collapse
Affiliation(s)
- Maciej M Kucharski
- School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Allan J B Watson
- School of Chemistry, University of St Andrews North Haugh, St Andrews KY16 9ST UK
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
9
|
Leonov AI, Hammer AJS, Lach S, Mehr SHM, Caramelli D, Angelone D, Khan A, O'Sullivan S, Craven M, Wilbraham L, Cronin L. An integrated self-optimizing programmable chemical synthesis and reaction engine. Nat Commun 2024; 15:1240. [PMID: 38336880 PMCID: PMC10858227 DOI: 10.1038/s41467-024-45444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Robotic platforms for chemistry are developing rapidly but most systems are not currently able to adapt to changing circumstances in real-time. We present a dynamically programmable system capable of making, optimizing, and discovering new molecules which utilizes seven sensors that continuously monitor the reaction. By developing a dynamic programming language, we demonstrate the 10-fold scale-up of a highly exothermic oxidation reaction, end point detection, as well as detecting critical hardware failures. We also show how the use of in-line spectroscopy such as HPLC, Raman, and NMR can be used for closed-loop optimization of reactions, exemplified using Van Leusen oxazole synthesis, a four-component Ugi condensation and manganese-catalysed epoxidation reactions, as well as two previously unreported reactions, discovered from a selected chemical space, providing up to 50% yield improvement over 25-50 iterations. Finally, we demonstrate an experimental pipeline to explore a trifluoromethylations reaction space, that discovers new molecules.
Collapse
Affiliation(s)
- Artem I Leonov
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Alexander J S Hammer
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Slawomir Lach
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - S Hessam M Mehr
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Dario Caramelli
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Davide Angelone
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Aamir Khan
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Steven O'Sullivan
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Matthew Craven
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Liam Wilbraham
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Minshull H, Lloyd-Jones GC. TMSCF 3-Mediated Conversion of Salicylates into α,α-Difluoro-3-coumaranones: Chain Kinetics, Anion-Speciation, and Mechanism. J Org Chem 2023; 88:17450-17460. [PMID: 38041656 PMCID: PMC10729029 DOI: 10.1021/acs.joc.3c02219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
As reported by Zhao, the TBAT ([Ph3SiF2]-[Bu4N]+)-initiated reaction of ethyl salicylate with TMSCF3 in THF generates α,α-difluoro-3-coumaranones via the corresponding O-silylated ethoxy ketals. The mechanism has been investigated by in situ 19F and 29Si NMR spectroscopy, CF2-trapping, competition, titration, and comparison of the kinetics with the 3-, 4-, 5-, and 6-fluoro ethyl salicylate analogues and their O-silylated derivatives. The process evolves in five distinct stages, each arising from a discrete array of anion speciations that modulate a sequence of silyl-transfer chain reactions. The deconvolution of coupled equilibria between salicylate, [CF3]-, and siliconate [Me3Si(CF3)2]- anions allowed the development of a kinetic model that accounts for the first three stages. The model provides valuable practical insights. For example, it explains how the initial concentrations of the TMSCF3 and salicylate and the location of electron-withdrawing salicylate ring substituents profoundly impact the overall viability of the process, how stoichiometric CF3H generation can be bypassed by using the O-silylated salicylate, and how the very slow liberation of the α,α-difluoro-3-coumaranone can be rapidly accelerated by evaporative or aqueous workup.
Collapse
Affiliation(s)
- Hannah
B. Minshull
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, U.K.
| | - Guy C. Lloyd-Jones
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
11
|
Simonet B, Herrscher V, Witjaksono C, Chaignon P, Massicot F, Vasse JL, Seemann M, Behr JB. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. J Org Chem 2023; 88:15832-15843. [PMID: 37917513 DOI: 10.1021/acs.joc.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.
Collapse
Affiliation(s)
- Basile Simonet
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Vivien Herrscher
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Fabien Massicot
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Bernard Behr
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| |
Collapse
|
12
|
Dale HA, Hodges GR, Lloyd-Jones GC. Kinetics and Mechanism of Azole n-π*-Catalyzed Amine Acylation. J Am Chem Soc 2023; 145:18126-18140. [PMID: 37526380 PMCID: PMC10436283 DOI: 10.1021/jacs.3c06258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 08/02/2023]
Abstract
Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n-π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.
Collapse
Affiliation(s)
- Harvey
J. A. Dale
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - George R. Hodges
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K.
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
13
|
Kvasha DA, Deviatkin A, Poturai AS, Nosik PS, Kyrylchuk AA, Suikov S, Rozhenko AB, Volochnyuk DM, Grygorenko OO. Metal-Free C-H Difluoromethylation of Imidazoles with the Ruppert-Prakash Reagent. J Org Chem 2023; 88:163-171. [PMID: 36520999 DOI: 10.1021/acs.joc.2c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The reaction of trimethyl(trifluoromethyl)silane-tetrabutylammonium difluorotriphenylsilicate (CF3SiMe3-TBAT) with a series of imidazoles gives products of the formal difluorocarbene insertion into the C-H bond at the C-2 position (i.e., C-difluoromethylation). According to NMR spectra, the corresponding 2-(trimethylsilyl)difluoromethyl-substituted derivatives are likely formed as the intermediates in the reaction, and then, they slowly convert to 2-difluoromethyl-substituted imidazoles. Quantum chemical calculations of two plausible reaction mechanisms indicate that it proceeds through the intermediate imidazolide anion stabilized through the interaction with solvent molecules and counterions. In the first proposed mechanism, the anion reacts with difluorocarbene without an activation barrier, and then, the CF2 moiety of the adduct attacks the CF3SiMe3 molecule. After the elimination of the CF3 anion, 2-(trimethylsilyl)difluromethyl-substituted imidazole is formed. Another possible reaction pathway includes silylation of imidazolide anion at the N-3 atom, followed by the barrierless addition of difluorocarbene at the C-2 atom and then by 1,3-shift of the SiMe3 group from N-3 to the carbon atom of the CF2 moiety. Both proposed mechanisms do not include steps with high activation barriers.
Collapse
Affiliation(s)
- Denys A Kvasha
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Andrii Deviatkin
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | | | - Pavel S Nosik
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Andrii A Kyrylchuk
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Str. 5, Kyïv 02094, Ukraine
| | - Sergiy Suikov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Str. 5, Kyïv 02094, Ukraine
| | - Alexander B Rozhenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Str. 5, Kyïv 02094, Ukraine.,University of Bielefeld, Universitätstrasse 25, 33615 Bielefeld, Germany
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Str. 5, Kyïv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Str. 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
14
|
Khoroshilova OV, Boyarskaya IA, Vasilyev AV. Synthesis of α-(Trifluoromethyl)styrenes and 1,3-Di(trifluoromethyl)indanes via Electrophilic Activation of TMS Ethers of (Trifluoromethyl)benzyl Alcohols in Brønsted Acids. J Org Chem 2022; 87:15845-15862. [DOI: 10.1021/acs.joc.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Olesya V. Khoroshilova
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Irina A. Boyarskaya
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Aleksander V. Vasilyev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg 194021, Russia
| |
Collapse
|
15
|
Liu B, Chen X, Pei C, Li J, Zou D, Wu Y, Wu Y. Ruthenium-Catalyzed ortho-C–H Hydroxyfluoroalkylation of Arenes with Fluorinated Alcohols. J Org Chem 2022; 87:14364-14373. [DOI: 10.1021/acs.joc.2c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Liu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Congcong Pei
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, Zhengzhou 450052, People’s Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
16
|
Mu B, Gao Y, Yang F, Wu W, Zhang Y, Wang X, Yu J, Zhou J. The Bifunctional Silyl Reagent Me
2
(CH
2
Cl)SiCF
3
Enables Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022; 61:e202208861. [DOI: 10.1002/anie.202208861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Bo‐Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Fu‐Ming Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Wen‐Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry CAS Shanghai 200032 China
| |
Collapse
|
17
|
Mu BS, Gao Y, Yang FM, Wu WB, Zhang Y, Wang X, Yu JS, Zhou J. The Bifunctional Silyl Reagent Me2(CH2Cl)SiCF3 Enabled Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo-Shuai Mu
- East China Normal University Department of chemistry CHINA
| | - Yang Gao
- East China Normal University Department of chemistry CHINA
| | - Fu-Ming Yang
- East China Normal University Department of chemistry CHINA
| | - Wen-Biao Wu
- East China Normal University Department of chemistry CHINA
| | - Ying Zhang
- East China Normal University Department of chemistry CHINA
| | - Xin Wang
- Sichuan University College of Chemistry CHINA
| | - Jin-Sheng Yu
- East China Normal University Department of chemistry CHINA
| | - Jian Zhou
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road, , 200062 Shanghai CHINA
| |
Collapse
|
18
|
Rohrbach S, Šiaučiulis M, Chisholm G, Pirvan PA, Saleeb M, Mehr SHM, Trushina E, Leonov AI, Keenan G, Khan A, Hammer A, Cronin L. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 2022; 377:172-180. [DOI: 10.1126/science.abo0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite huge potential, automation of synthetic chemistry has only made incremental progress over the past few decades. We present an automatically executable chemical reaction database of 100 molecules representative of the range of reactions found in contemporary organic synthesis. These reactions include transition metal–catalyzed coupling reactions, heterocycle formations, functional group interconversions, and multicomponent reactions. The chemical reaction codes or χDLs for the reactions have been stored in a database for version control, validation, collaboration, and data mining. Of these syntheses, more than 50 entries from the database have been downloaded and robotically run in seven modular ChemPU’s with yields and purities comparable to those achieved by an expert chemist. We also demonstrate the automatic purification of a range of compounds using a chromatography module seamlessly coupled to the platform and programmed with the same language.
Collapse
Affiliation(s)
- Simon Rohrbach
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Mindaugas Šiaučiulis
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Greig Chisholm
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Petrisor-Alin Pirvan
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Michael Saleeb
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - S. Hessam M. Mehr
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ekaterina Trushina
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Artem I. Leonov
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Graham Keenan
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Aamir Khan
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Alexander Hammer
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202203947. [PMID: 35438836 PMCID: PMC9325378 DOI: 10.1002/anie.202203947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Anionic hypercoordinated silicates with weak donors were proposed as key intermediates in numerous silicon-based reactions. However, their short-lived nature rendered even spectroscopic observations highly challenging. Here, we characterize hypercoordinated silicon anions, including the first bromido-, iodido-, formato-, acetato-, triflato- and sulfato-silicates. This is enabled by a new, donor-free polymeric form of Lewis superacidic bis(perchlorocatecholato)silane 1. Spectroscopic, structural, and computational insights allow a reassessment of Gutmann's empirical rules for the role of silicon hypercoordination in synthesis and catalysis. The electronic perturbations of 1 exerted on the bound anions indicate pronounced substrate activation.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sonja Sailer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rezisha Maskey
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marcel Schorpp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
20
|
Sheldon DJ, Crimmin MR. Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem Soc Rev 2022; 51:4977-4995. [PMID: 35616085 PMCID: PMC9207706 DOI: 10.1039/d1cs01072g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| |
Collapse
|
21
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sonja Sailer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rezisha Maskey
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcel Schorpp
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
22
|
García-Domínguez A, Leach AG, Lloyd-Jones GC. In Situ Studies of Arylboronic Acids/Esters and R 3SiCF 3 Reagents: Kinetics, Speciation, and Dysfunction at the Carbanion-Ate Interface. Acc Chem Res 2022; 55:1324-1336. [PMID: 35435655 PMCID: PMC9069690 DOI: 10.1021/acs.accounts.2c00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reagent instability reduces the efficiency of chemical processes, and while much effort is devoted to reaction optimization, less attention is paid to the mechanistic causes of reagent decomposition. Indeed, the response is often to simply use an excess of the reagent. Two reaction classes with ubiquitous examples of this are the Suzuki-Miyaura cross-coupling of boronic acids/esters and the transfer of CF3 or CF2 from the Ruppert-Prakash reagent, TMSCF3. This Account describes some of the overarching features of our mechanistic investigations into their decomposition. In the first section we summarize how specific examples of (hetero)arylboronic acids can decompose via aqueous protodeboronation processes: Ar-B(OH)2 + H2O → ArH + B(OH)3. Key to the analysis was the development of a kinetic model in which pH controls boron speciation and heterocycle protonation states. This method revealed six different protodeboronation pathways, including self-catalysis when the pH is close to the pKa of the boronic acid, and protodeboronation via a transient aryl anionoid pathway for highly electron-deficient arenes. The degree of "protection" of boronic acids by diol-esterification is shown to be very dependent on the diol identity, with six-membered ring esters resulting in faster protodeboronation than the parent boronic acid. In the second section of the Account we describe 19F NMR spectroscopic analysis of the kinetics of the reaction of TMSCF3 with ketones, fluoroarenes, and alkenes. Processes initiated by substoichiometric "TBAT" ([Ph3SiF2][Bu4N]) involve anionic chain reactions in which low concentrations of [CF3]- are rapidly and reversibly liberated from a siliconate reservoir, [TMS(CF3)2][Bu4N]. Increased TMSCF3 concentrations reduce the [CF3]- concentration and thus inhibit the rates of CF3 transfer. Computation and kinetics reveal that the TMSCF3 intermolecularly abstracts fluoride from [CF3]- to generate the CF2, in what would otherwise be an endergonic α-fluoride elimination. Starting from [CF3]- and CF2, a cascade involving perfluoroalkene homologation results in the generation of a hindered perfluorocarbanion, [C11F23]-, and inhibition. The generation of CF2 from TMSCF3 is much more efficiently mediated by NaI, and in contrast to TBAT, the process undergoes autoacceleration. The process involves NaI-mediated α-fluoride elimination from [CF3][Na] to generate CF2 and a [NaI·NaF] chain carrier. Chain-branching, by [(CF2)3I][Na] generated in situ (CF2 + TFE + NaI), causes autoacceleration. Alkenes that efficiently capture CF2 attenuate the chain-branching, suppress autoacceleration, and lead to less rapid difluorocyclopropanation. The Account also highlights how a collaborative approach to experiment and computation enables mechanistic insight for control of processes.
Collapse
Affiliation(s)
- Andrés García-Domínguez
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
23
|
Allylic substitution reactions with fluorinated nucleophiles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
25
|
Fedinchyk A, Herasymchuk M, Smirnov VO, Melnykov KP, Yarmoliuk DV, Kyrylchuk AA, Grygorenko OO. Fluorine‐containing sp³‐Enriched Building Blocks for the Multigram Synthesis of Fluorinated Pyrazoles and Pyrimidines with (Hetero)aliphatic Substituents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Kostiantyn P. Melnykov
- Taras Shevchenko National University of Kyiv: Kiivs'kij nacional'nij universitet imeni Tarasa Sevcenka Chemical Faculty UKRAINE
| | | | - Andrii A. Kyrylchuk
- Institute of Organic Chemistry National Academy of Sciences of Ukraine: Institut organicnoi himii Nacional'na akademia nauk Ukraini Department of Physico-Chemical Methods of Investigation UKRAINE
| | - Oleksandr O Grygorenko
- Taras Shevchenko National University of Kyiv: Kiivs'kij nacional'nij universitet imeni Tarasa Sevcenka Chemical Faculty UKRAINE
| |
Collapse
|
26
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Ehm C, Hyvl J. Stabilizing Effect of Pre-equilibria: A Trifluoromethyl Complex as a CF 2 Reservoir in Catalytic Olefin Difluorocarbenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Eileen Chen
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Arnold L. Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
27
|
Koyama M, Akiyama M, Kashiwagi K, Nozaki K, Okazoe T. Synthesis of Crystalline CF 3 -Rich Perfluoropolyethers from Hexafluoropropylene Oxide and (Trifluoromethyl)trimethylsilane. Macromol Rapid Commun 2022; 43:e2200038. [PMID: 35257433 DOI: 10.1002/marc.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Indexed: 11/11/2022]
Abstract
The synthesis of a CF3 -rich perfluoropolyether (PFPE) was achieved via the fluoride-catalyzed reaction of hexafluoropropylene oxide (HFPO) with (trifluoromethyl)trimethylsilane (TMSCF3 , so-called Ruppert-Prakash reagent). Nucleophilic addition of a CF3 anion to HFPO affords an acyl fluoride via the ring-opening of HFPO, followed by fluoride elimination. Further addition of CF3 anions to the acyl fluoride gives tertiary perfluoroalkoxide, which attacks HFPO to regenerate an acyl fluoride. Repetition of the sequence via substitution-polymerization afforded a new PFPE as a solid, whose structure was confirmed using 19 F NMR spectroscopy, GC-MS, and MALDI-TOF MS analysis. Thermal and X-ray diffraction analyses revealed a crystalline character. To the best of our knowledge, this is the first example of crystalline PFPE. Based on contact-angle measurements, the critical surface tension of this solid PFPE (13.4 mN m-1 ) suggests a water- and oil-repellency of this CF3 -rich PFPE that is higher than that of polytetrafluoroethylene (PTFE; 18.5 mN m-1 ). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Minoru Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Midori Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kimiaki Kashiwagi
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan.,Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
28
|
Wang Q, Jiang HM, Zhuo S, Xu LP. Mechanism, reactivity, and selectivity in a palladium-catalyzed organosilicon-based cross coupling reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01890f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thermodynamic control mechanism unravels the unusual chemical selectivity in Pd-catalyzed cross-coupling reaction of silacycles.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Hui-Mei Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
29
|
Dale HJA, Leach AG, Lloyd-Jones GC. Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point? J Am Chem Soc 2021; 143:21079-21099. [PMID: 34870970 DOI: 10.1021/jacs.1c07351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.
Collapse
Affiliation(s)
- Harvey J A Dale
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G Leach
- School of Health Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
30
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
31
|
Li H, Peng X, Nie L, Zhou L, Yang M, Li F, Hu J, Yao Z, Liu L. Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent. RSC Adv 2021; 11:38667-38673. [PMID: 35493205 PMCID: PMC9044184 DOI: 10.1039/d1ra07014b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The direct C–H trifluoromethylation of alkynes and quinoxalinones has been achieved using a graphene oxide/Langlois' reagent system. This multi-component tandem reaction using graphene oxide as the catalyst and Langlois' reagent as the robust CF3 radical source results in the formation of olefinic C–CF3 to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones. The direct C–H trifluoromethylation of alkynes and quinoxalinones using a graphene oxide/Langlois' reagent system.![]()
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Lin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Ming Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Fan Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Jian Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Zhiyang Yao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| |
Collapse
|
32
|
Lalloo N, Malapit CA, Taimoory SM, Brigham CE, Sanford MS. Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis. J Am Chem Soc 2021; 143:18617-18625. [PMID: 34709804 DOI: 10.1021/jacs.1c08551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S Maryamdokht Taimoory
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Kalidindi S, Gangu AS, Kuppusamy S, Sathasivam S, Shekarappa V, Murugan S, Bondigela S, Kandasamy M, Ghanta K, Vinodini A, Shrikant A, Ramachandran R, Gallagher WP, Kopp N, González-Bobes F, Eastgate MD, Vaidyanathan R. Development of a Scalable Synthetic Route to BMS-986251, Part 2: Synthesis of the Tricyclic Core and the API. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Srinivas Kalidindi
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Aravind S. Gangu
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sankar Kuppusamy
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Shunmugaraj Sathasivam
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Vijaykumar Shekarappa
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Saravanan Murugan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sivasankar Bondigela
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Moorthy Kandasamy
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Kishore Ghanta
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Vinodini
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Abhishek Shrikant
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ravikumar Ramachandran
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - William P. Gallagher
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Nathaniel Kopp
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Francisco González-Bobes
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rajappa Vaidyanathan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
34
|
Pees A, Vosjan MJWD, Vasdev N, Windhorst AD, Vugts DJ. Fluorine-18 labelled Ruppert-Prakash reagent ([ 18F]Me 3SiCF 3) for the synthesis of 18F-trifluoromethylated compounds. Chem Commun (Camb) 2021; 57:5286-5289. [PMID: 33942818 DOI: 10.1039/d1cc01789f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This article describes the first synthesis and application of fluorine-18 labelled Ruppert-Prakash reagent [18F]Me3SiCF3. [18F]Me3SiCF3 was synthesized from [18F]fluoroform with radiochemical yields of 85-95% and radiochemical purities of >95% within 20 minutes. 18F-trifluoromethylated compounds were successfully prepared by reaction of [18F]Me3SiCF3 with benzaldehydes, acetophenones and benzophenones.
Collapse
Affiliation(s)
- Anna Pees
- Amsterdam UMC, VU University, Radiology and Nuclear medicine, Radionuclide Center, De Boelelaan 1085c, Amsterdam, The Netherlands.
| | | | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, 250 College St., Toronto M5T-1R8, ON, Canada
| | - Albert D Windhorst
- Amsterdam UMC, VU University, Radiology and Nuclear medicine, Radionuclide Center, De Boelelaan 1085c, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Amsterdam UMC, VU University, Radiology and Nuclear medicine, Radionuclide Center, De Boelelaan 1085c, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Jia H, Häring AP, Berger F, Zhang L, Ritter T. Trifluoromethyl Thianthrenium Triflate: A Readily Available Trifluoromethylating Reagent with Formal CF 3+, CF 3•, and CF 3- Reactivity. J Am Chem Soc 2021; 143:7623-7628. [PMID: 33985330 PMCID: PMC8297735 DOI: 10.1021/jacs.1c02606] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Here we report the
synthesis and application of trifluoromethyl
thianthrenium triflate (TT-CF3+OTf–) as a novel trifluoromethylating reagent, which is conveniently
accessible in a single step from thianthrene and triflic anhydride.
We demonstrate the use of TT-CF3+OTf– in electrophilic, radical, and nucleophilic trifluoromethylation
reactions.
Collapse
Affiliation(s)
- Hao Jia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Andreas P Häring
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Li Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Wei R, Hall AMR, Behrens R, Pritchard MS, King EJ, Lloyd‐Jones GC. Stopped‐Flow
19
F NMR Spectroscopic Analysis of a Protodeboronation Proceeding at the Sub‐Second Time‐Scale. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ran Wei
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew M. R. Hall
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Richard Behrens
- Laboratory of Engineering Thermodynamics (LTD) Technische Universität Kaiserslautern Erwin-Schrödinger-Straße 44 Kaiserslautern 67663 Germany
| | | | - Edward J. King
- TgK Scientific Ltd. Bradford on Avon Wiltshire BA15 1DH UK
| | - Guy C. Lloyd‐Jones
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
37
|
Mechanism of Anion-Catalyzed C–H Silylation Using TMSCF3: Kinetically-Controlled CF3-Anionoid Partitioning As a Key Parameter. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Dutta NB, Bori J, Gogoi P, Baishya G. Metal‐, Photocatalyst‐, Light‐ and Electrochemical‐Free C‐3 Trifluoromethylation of Quinoxalin‐2(1
H
)‐ones, Imidazo[1,2‐a]pyridines and 2
H
‐Indazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nibedita Baruah Dutta
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| | - Jugal Bori
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Pinku Gogoi
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
39
|
Chun J, Zhang H, Meng F, Guo K, Cao S, Fang Q, Li J, Zhu Y. Visible‐Light Photoredox‐Catalyzed Tandem Trifluoro‐methylation/Cyclization/Remote Oxidation of 1,6‐Dienes: Access to CF
3
‐Containing Five‐Membered Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
40
|
Rozatian N, Hodgson DRW. Reactivities of electrophilic N-F fluorinating reagents. Chem Commun (Camb) 2021; 57:683-712. [PMID: 33367354 DOI: 10.1039/d0cc06339h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic fluorination represents one of the most direct and useful methods available for the selective introduction of fluorine into organic compounds. Electrophilic fluorinating reagents of the N-F class have revolutionised the incorporation of fluorine atoms into both pharmaceutically- and agrochemically-important substrates. Since the earliest N-F reagents were commercialised in the 1990s, their reactivities have been investigated using qualitative and, more recently, quantitative methods. This review discusses the different experimental approaches employed to determine reactivities of N-F reagents, focussing on the kinetics studies reported in recent years. We make critical evaluations of the experimental approaches against each other, theoretical approaches, and their applicability towards practical problems. The opportunities for achieving more efficient synthetic electrophilic fluorination processes through kinetic understanding are highlighted.
Collapse
Affiliation(s)
- Neshat Rozatian
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| | - David R W Hodgson
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| |
Collapse
|
41
|
Takahashi K, Ano Y, Chatani N. Fluoride anion-initiated bis-trifluoromethylation of phenyl aromatic carboxylates with (trifluoromethyl)trimethylsilane. Chem Commun (Camb) 2020; 56:11661-11664. [PMID: 33000827 DOI: 10.1039/d0cc04826g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fluoride anion-initiated reaction of phenyl aromatic carboxylates with (trifluoromethyl)trimethylsilane (Me3SiCF3) that results in the formation of O-silyl-protected 2-aryl-1,1,1,3,3,3-hexafluoroisopropanols is reported. A phenoxide anion, generated during the trifluoromethylation of the phenyl carboxylate, also activates the Me3SiCF3, which permits a catalytic amount of the fluoride anion source to be used. Various functional groups, which can be used for further elaboration, are tolerated in the reaction.
Collapse
Affiliation(s)
- Kenjiro Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. and Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
42
|
Sheldon DJ, Coates G, Crimmin MR. Defluorosilylation of trifluoromethane: upgrading an environmentally damaging fluorocarbon. Chem Commun (Camb) 2020; 56:12929-12932. [PMID: 32975261 DOI: 10.1039/d0cc04592f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid, room-temperature defluorosilylation of trifluoromethane, a highly potent greenhouse gas, has been achieved using a simple silyl lithium reagent. An extensive computational mechanistic analysis provides a viable reaction pathway and demonstrates the unexpected electrophilic nature of LiCF3. The reaction generates a bench stable fluorinated building block that shows promise as an easy-to-use difluoromethylating agent. The difluoromethyl group is an increasingly important bioisostere in active pharmaceutical ingredients, and therefore our methodology creates value from waste. The potential scalability of the process has been demonstrated by achieving the reaction on a gram-scale.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, UK.
| | | | | |
Collapse
|
43
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
44
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
45
|
Sharp-Bucknall L, Barwise L, Bennetts JD, Albayer M, Dutton JL. Reactivity Studies of Cationic Au(III) Difluorides Supported by N Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lachlan Sharp-Bucknall
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Lachlan Barwise
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Jason D. Bennetts
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Mohammad Albayer
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Jason L. Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| |
Collapse
|
46
|
García-Domínguez A, West TH, Primozic JJ, Grant KM, Johnston CP, Cumming GG, Leach AG, Lloyd-Jones GC. Difluorocarbene Generation from TMSCF3: Kinetics and Mechanism of NaI-Mediated and Si-Induced Anionic Chain Reactions. J Am Chem Soc 2020; 142:14649-14663. [DOI: 10.1021/jacs.0c06751] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrés García-Domínguez
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Thomas H. West
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Johann J. Primozic
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Katie M. Grant
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Craig P. Johnston
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Grant G. Cumming
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
47
|
Nozawa‐Kumada K, Osawa S, Ojima T, Noguchi K, Shigeno M, Kondo Y. Transition‐Metal‐Free Trifluoromethylation of Benzyl Bromides Using Trifluoromethyltrimethylsilane and CsF in 1,2‐Dimethoxyethane. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kanako Nozawa‐Kumada
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Sayuri Osawa
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Takuto Ojima
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Koto Noguchi
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
48
|
Friebel A, Specht T, von Harbou E, Münnemann K, Hasse H. Prediction of flow effects in quantitative NMR measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106683. [PMID: 32014660 DOI: 10.1016/j.jmr.2020.106683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
A method for the prediction of the magnetization in flow NMR experiments is presented, which can be applied to mixtures. It enables a quantitative evaluation of NMR spectra of flowing liquid samples even in cases in which the magnetization is limited by the flow. A transport model of the nuclei's magnetization, which is based on the Bloch-equations, is introduced into a computational fluid dynamics (CFD) code. This code predicts the velocity field and relative magnetization of different nuclei for any chosen flow cell geometry, fluid and flow rate. The prediction of relative magnetization is used to correct the observed reduction of signal intensity caused by incomplete premagnetization in fast flowing liquids. By means of the model, quantitative NMR measurements at high flow rates are possible. The method is predictive and enables calculating correction factors for any flow cell design and operating condition based on simple static T1 time measurements. This makes time-consuming calibration measurements for assessing the influence of flow effects obsolete, which otherwise would have to be carried out for each studied condition. The new method is especially interesting for flow measurements with compact medium field NMR spectrometers, which have small premagnetization volumes. In the present work, experiments with three different flow cells in a medium field NMR spectrometer were carried out. Acetonitrile, water, and mixtures of these components were used as model fluids. The experimental results for the magnetization were compared to the predictions from the CFD model and good agreement was observed.
Collapse
Affiliation(s)
- Anne Friebel
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Thomas Specht
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Erik von Harbou
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany.
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| |
Collapse
|
49
|
Yang H, Shen Y, Xiao Z, Liu C, Yuan K, Ding Y. The direct trifluoromethylsilylation and cyanosilylation of aldehydes via an electrochemically induced intramolecular pathway. Chem Commun (Camb) 2020; 56:2435-2438. [DOI: 10.1039/c9cc08975f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trifluoromethylsilylation and cyanosilylation of aldehydes via the intramolecular cleavage of Si–CN and Si–CF3 bonds are developed based on electrochemically induced Si–O affinity.
Collapse
Affiliation(s)
- Hui Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Yongli Shen
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Zihui Xiao
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Caiyan Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| |
Collapse
|
50
|
Faßbender SI, Molloy JJ, Mück‐Lichtenfeld C, Gilmour R. Geometric E→Z Isomerisation of Alkenyl Silanes by Selective Energy Transfer Catalysis: Stereodivergent Synthesis of Triarylethylenes via a Formal anti-Metallometallation. Angew Chem Int Ed Engl 2019; 58:18619-18626. [PMID: 31541612 PMCID: PMC6916377 DOI: 10.1002/anie.201910169] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/30/2022]
Abstract
An efficient geometrical E→Z isomerisation of alkenyl silanes is disclosed via selective energy transfer using an inexpensive organic sensitiser. Characterised by operational simplicity, short reaction times (2 h), and broad substrate tolerance, the reaction displays high selectivity for trisubstituted systems (Z/E up to 95:5). In contrast to thermal activation, directionality results from deconjugation of the π-system in the Z-isomer due to A1,3 -strain thereby inhibiting re-activation. The structural importance of the β-substituent logically prompted an investigation of mixed bis-nucleophiles (Si, Sn, B). These versatile linchpins also undergo facile isomerisation, thereby enabling a formal anti-metallometallation. Mechanistic interrogation, supported by a theoretical investigation, is disclosed together with application of the products to the stereospecific synthesis of biologically relevant target structures.
Collapse
Affiliation(s)
- Svenja I. Faßbender
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - John J. Molloy
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|