1
|
Zhang J, Wang X, Wang X, Li C. Heterophase Junction Effect on Photogenerated Charge Separation in Photocatalysis and Photoelectrocatalysis. Acc Chem Res 2025; 58:787-798. [PMID: 40035747 DOI: 10.1021/acs.accounts.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
ConspectusThe conversion of solar energy into chemical energy is promising to address energy and environmental crises. For solar conversion processes, such as photocatalysis and photoelectrocatalysis, a deep understanding of the separation of photogenerated charges is pivotal for advancing material design and efficiency enhancement in solar energy conversion. Formation of a heterophase junction is an efficient strategy to improve photogenerated charge separation of photo(electro)catalysts for solar energy conversion processes. A heterophase junction is formed at the interface between the semiconductors possessing the same chemical composition with similar crystalline phase structures but slightly different energy bands. Despite the small offset of Fermi levels between the different phases, a built-in electric field is established at the interface of the heterophase junction, which can be the driving force for the photogenerated charge separation at the nanometer scale. Notably, slight variations in the energy band of the two crystalline phases result in small energy barriers for the photogenerated carrier transfer. Moreover, the structural similarity of the two different crystalline phases of a semiconductor could minimize the lattice mismatch at the heterophase junction, distinguishing it from a p/n junction or heterojunction formed between two very different semiconductors.This Account provides an overview of the understanding, design, and application of heterophase junctions in photocatalysis and photoelectrocatalysis. It begins with a conceptualization of the heterophase junction and reviews recent advances in the synthesis of semiconductors with a heterophase junction. The phase transformation method with the advantage of forming a heterophase junction with an atomically matched interface and the secondary seed growth method for unique structures with excellent electronic and optoelectronic properties are described. Furthermore, the mechanism of the heterophase junction for improving the photogenerated charge separation is discussed, followed by a comprehensive discussion of the structure-activity relationship for the heterophase junction. The home-built spatially resolved and time-resolved spectroscopies offer direct imaging of the built-in electric field across the heterophase junction and then the direct detection of the photogenerated charge transfer between the two crystalline phases driven by the built-in electric field. Such an efficient interfacial charge transfer results in the improvement of the photogenerated charge separation, a higher yield of long-lived charges, and thus the inhibition of the charge recombination. Benefiting from these insights, structural design strategies for the heterophase junction, such as precise tuning of band alignment, exposed heterophase amounts, phase alignment, and interface structure, have been developed. Finally, the challenges, opportunities, and perspectives of heterophase junctions in the design of advanced photo(electro)catalyst systems for solar energy to chemical energy conversion will be discussed.
Collapse
Affiliation(s)
- Jing Zhang
- School of New Energy, Nanjing University of Science & Technology, No.8 Fuxing Road, Shengang Street, Jiangyin, Jiangsu 214400, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| | - Xiang Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| |
Collapse
|
2
|
Guo Y, Zhang Q, Ren Z, Li L, Ma W, Shen X, Dong J, Li R, Geng D, Hu W. Surface-Assisted Passivation Growth of 2D Ultrathin β-Bi 2O 3 Crystals for High-Performance Polarization-Sensitive Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410163. [PMID: 39620320 DOI: 10.1002/adma.202410163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/15/2024] [Indexed: 01/24/2025]
Abstract
2D nonlayered materials (NLMs) have garnered considerable attention due to unique surface structure and bright application prospect. However, owing to the strong interatomic forces caused by intrinsic isotropic chemical bonds in all directions, the direct synthesis of ultrathin and large area 2D NLMs remains a tremendous challenge. Here, the surface-assisted passivation growth strategy is designed to synthesize ultrathin and large size β-Bi2O3 crystals with the thickness down to 0.77 nm and the lateral size up to 163 µm. These results are primarily ascribed to the bonding between Se atoms and the unsaturated Bi atoms on the surface of β-Bi2O3, resulting in the surface passivation and promoting the obtaining of ultrathin β-Bi2O3. Strikingly, the photodetectors based on β-Bi2O3 flakes exhibit a high photoresponsivity of 71.91 A W-1, an excellent detectivity of 6.09 × 1013 Jones, a remarkable external quantum efficiency of 2.4 × 104%, an outstanding anisotropic photodetection and excellent UV imaging capability at 365 nm. This work sheds light on the synthesis of 2D ultrathin NLMs and promotes their applications in multifunctional optoelectronics.
Collapse
Affiliation(s)
- Yang Guo
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Zebin Ren
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Department of Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Weijie Ma
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xianfeng Shen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongjin Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Xu W, Jiang J, Chen Y, Tang N, Jiang C, Yang S. Single-crystalline High-κ GdOCl dielectric for two-dimensional field-effect transistors. Nat Commun 2024; 15:9469. [PMID: 39488517 PMCID: PMC11531513 DOI: 10.1038/s41467-024-53907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Two-dimensional (2D) dielectrics, integrated with high-mobility semiconductors, show great promise to overcome the scaling limits in miniaturized integrated circuits. However, the 2D dielectrics explored to date still face the challenges of low crystallinity, diminished dielectric constant, and the lack of effective synthesis methods. Here, we report the controllable synthesis of ultra-thin gadolinium oxychloride (GdOCl) nanosheets via a chloride hydrate-assisted chemical vapor deposition (CVD) method. The resultant GdOCl nanosheets display good dielectric properties, including a high dielectric constant (high-κ) of 15.3, robust breakdown field strengths (Ebd) exceeding 9.9 MV/cm, and minimal gate leakage currents of approximately 10-6 A/cm2. The top-gated GdOCl/MoS2 field-effect transistors (FETs) exhibit commendable switch characteristics, a negligible hysteresis of ~5 mV and a subthreshold swing down to 67.9 mV dec-1. The GdOCl/MoS2 FETs can also be employed to construct functional logic gates. Our study underscores the significant potential of the 2D GdOCl dielectric for innovative high-speed operated nanoelectronic devices.
Collapse
Affiliation(s)
- Weiting Xu
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Jiayang Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yujia Chen
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Ning Tang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Chengbao Jiang
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China.
| |
Collapse
|
4
|
Gao H, Wang Z, Cao J, Lin YC, Ling X. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS NANO 2024; 18:16343-16358. [PMID: 38899467 DOI: 10.1021/acsnano.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jun Cao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University 575 Ross Street, College Station, Texas 77843, United States
| | - Xi Ling
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Feng Y, Khalid M, Xiao H, Hu P. Two-dimensional material assisted-growth strategy: new insights and opportunities. NANOTECHNOLOGY 2024; 35:322001. [PMID: 38688246 DOI: 10.1088/1361-6528/ad4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The exploration and synthesis of novel materials are integral to scientific and technological progress. Since the prediction and synthesis of two-dimensional (2D) materials, it is expected to play an important role in the application of industrialization and the information age, resulting from its excellent physical and chemical properties. Currently, researchers have effectively utilized a range of material synthesis techniques, including mechanical exfoliation, redox reactions, chemical vapor deposition, and chemical vapor transport, to fabricate two-dimensional materials. However, despite their rapid development, the widespread industrial application of 2D materials faces challenges due to demanding synthesis requirements and high costs. To address these challenges, assisted growth techniques such as salt-assisted, gas-assisted, organic-assisted, and template-assisted growth have emerged as promising approaches. Herein, this study gives a summary of important developments in recent years in the assisted growth synthesis of 2D materials. Additionally, it highlights the current difficulties and possible benefits of the assisted-growth approach for 2D materials. It also highlights novel avenues of development and presents opportunities for new lines of investigation.
Collapse
Affiliation(s)
- Yuming Feng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Mansoor Khalid
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
6
|
Kumar S, Kumar A, Kumar A, Chakkar AG, Betal A, Kumar P, Sahu S, Kumar M. Catalytic synergy of WS 2-anchored PdSe 2 for highly sensitive hydrogen gas sensor. NANOSCALE 2024. [PMID: 38682669 DOI: 10.1039/d4nr00342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Hydrogen (H2) is widely used in industrial processes and is one of the well-known choices for storage of renewable energy. H2 detection has become crucial for safety in manufacturing, storage, and transportation due to its strong explosivity. To overcome the issue of explosion, there is a need for highly selective and sensitive H2 sensors that can function at low temperatures. In this research, we have adequately fabricated an unreported van der Waals (vdWs) PdSe2/WS2 heterostructure, which exhibits exceptional properties as a H2 sensor. The formation of these heterostructure devices involves the direct selenization process using chemical vapor deposition (CVD) of Pd films that have been deposited on the substrate of SiO2/Si by DC sputtering, followed by drop casting of WS2 nanoparticles prepared by a hydrothermal method onto device substrates including pre-patterned electrodes. The confirmation of the heterostructure has been done through the utilization of powder X-ray diffraction (XRD), depth-dependent X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FE-SEM) techniques. Also, the average roughness of thin films is decided by Atomic Force Microscopy (AFM). The comprehensive research shows that the PdSe2/WS2 heterostructure-based sensor produces a response that is equivalent to 67.4% towards 50 ppm H2 at 100 °C. The response could be a result of the heterostructure effect and the superior selectivity for H2 gas in contrast to other gases, including NO2, CH4, CO and CO2, suggesting tremendous potential for H2 detection. Significantly, the sensor exhibits fast response and a recovery time of 31.5 s and 136.6 s, respectively. Moreover, the explanation of the improvement in gas sensitivity was suggested by exploiting the energy band positioning of the PdSe2/WS2 heterostructure, along with a detailed study of variations in the surface potential. This study has the potential to provide a road map for the advancement of gas sensors utilizing two-dimensional (2D) vdWs heterostructures, which exhibit superior performance at low temperatures.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Ashok Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Amit Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Atul G Chakkar
- School of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
| | - Atanu Betal
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Pradeep Kumar
- School of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
| | - Satyajit Sahu
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
7
|
Chen P, Peng B, Liu Z, Liu J, Li D, Li Z, Xu X, Wang H, Zhou X, Zhai T. Room-Temperature Magnetic-Induced Circularly Polarized Photoluminescence in Two-Dimensional Er 2O 2S. J Am Chem Soc 2024; 146:6053-6060. [PMID: 38404063 DOI: 10.1021/jacs.3c13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhen Liu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Ran Y, Zhao R, Meng C, Shang N, Sun S, Liu K, Zhu H. Non-Steady-State Symmetry Breaking Growth of Multilayered SnSe 2 Nanoplates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304511. [PMID: 37715079 DOI: 10.1002/smll.202304511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/17/2023]
Abstract
The use of non-equilibrium growth modes with non-steady dynamics is extensively explored in bulk materials such as amorphous and polycrystalline materials. Yet, research into the non-steady-state (NSS) growth of two-dimensional (2D) materials is still in its infancy. In this study, multilayered tin selenide (SnSe2 ) nanoplates are grown by chemical vapor deposition under NSS conditions (modulating carrier gas flow and temperature). Given the facile diffusion and inherent instability of SnSe2 , it proves to be an apt candidate for nucleation and growth in NSS scenarios. This leads to the emergence of SnSe2 nanoplates with distinct features (self-growth twisting, symmetry transformation, interlayer decoupling, homojunction, and large-area 2D domain), exhibiting pronounced second harmonic generation. The authors' findings shed light on the growth dynamics of 2D materials, broadening their potential applications in various fields.
Collapse
Affiliation(s)
- Yutong Ran
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Runni Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Meng
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Nianze Shang
- State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Shuo Sun
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaihui Liu
- State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Wang Y, Lei Z, Guo M, Sun Q, Jin C, Tan R, Dai Y. Intrinsic ferromagnetism in two-dimensional 1T-MX 2 monolayers with tunable magnetocrystalline anisotropy. Phys Chem Chem Phys 2023; 25:30636-30643. [PMID: 37933412 DOI: 10.1039/d3cp03600f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Two-dimensional (2D) ferromagnetic materials with tunable magnetocrystalline anisotropy (MCA) provide unique opportunities for developing the next-generation data-storage and information devices. Herein we systematically investigate the electronic and magnetic properties of the 1T-MX2 (M = Cr, Mn, Fe, Co; X = As, Sb) monolayers, and identify the stable 2D ferromagnets as well as their MCA energies. Notably, the results demonstrate that the biaxial strain and carrier doping effects have a significant influence on their magnetic behaviors. In addition to the robust FM states, three FM monolayers yield tunable MCA depending on the applied strain type and carrier doping values. The dominant contributions to these complicated modifications in MCA are mainly attributed to the strain or carrier doping induced alterations of specific M-derived 3d states, which in turn lead to the changes of their spin-orbit coupling (SOC) energies. These findings show effective approaches to control 2D magnetism and suggest that these 2D FM materials may be promising candidates to design highly efficient memory devices.
Collapse
Affiliation(s)
- Yonghao Wang
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Zesen Lei
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Meng Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan, Shandong 250103, China
| | - Qilong Sun
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Cui Jin
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Ruishan Tan
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
11
|
Yan C, Yang K, Zhang H, Chen Y, Liu H. High performance self-powered photodetector based on van der Waals heterojunction. NANOTECHNOLOGY 2023; 35:035203. [PMID: 37852217 DOI: 10.1088/1361-6528/ad047f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Self-powered photodetectors that do not require external power support are expected to play a key role in future photodetectors due to their low power characteristics, but achieving high responsivity remains a challenge. 2D van der Waals heterojunctions are a promising technology for high-performance self-powered photodetectors due to their excellent optical and electrical properties. Here, we fabricate a self-powered photodetector based on In2Se3/WSe2/ReS2van der Waals heterojunction self-powered photodetector. Due to the presence of ReS2layer, photocurrent is enhanced as a result of the increase in light absorption efficiency and the effective region for generating photogenerated carriers. The built-in electric field is enhanced by a negative 'back-gate voltage' along the p-n junction vertical direction generated by the electrons in the photo-generated electrons accumulation layer. Accordingly, the optical responsivity and the photoresponse speed of this heterojunction self-powered photodetector are greatly boosted. The proposed self-powered photodetector based on the In2Se3/WSe2/ReS2heterojunction exhibits a high responsivity of 438 mA W-1, which is 17 times higher compared to the In2Se3/WSe2photodetector, a self-powered current (1.1 nA) that is an order of magnitude higher than that of the In2Se3/WSe2photodetector, and a fast response time that is 250% faster. Thus the self-powered photodetector with a stronger built-in electric field and a wider depletion zone can provide a new technological support for the fabrication of high responsivity, low power consumption and high speed self-powered photodetectors based on van der Waals heterojunctions.
Collapse
Affiliation(s)
- Cong Yan
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Kun Yang
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Hao Zhang
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Yaolin Chen
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Hongxia Liu
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| |
Collapse
|
12
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
13
|
Khan U, Nairan A, Khan K, Li S, Liu B, Gao J. Salt-Assisted Low-Temperature Growth of 2D Bi 2 O 2 Se with Controlled Thickness for Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206648. [PMID: 36538737 DOI: 10.1002/smll.202206648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Bi2 O2 Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2 O2 Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2 O2 Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2 O2 Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm-1 . Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2 O2 Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2 O2 Se flake represents decent carrier mobility (≈287 cm2 V-1 s-1 ) and an ON/OFF ratio of up to 107 . This report indicates a technique to grow large-domain thickness controlled Bi2 O2 Se single crystals for electronics.
Collapse
Affiliation(s)
- Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
14
|
Zhao Z, Fang Z, Han X, Yang S, Zhou C, Zeng Y, Zhang B, Li W, Wang Z, Zhang Y, Zhou J, Zhou J, Ye Y, Hou X, Zhao X, Gao S, Hou Y. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat Commun 2023; 14:958. [PMID: 36810290 PMCID: PMC9944324 DOI: 10.1038/s41467-023-36619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices.
Collapse
Affiliation(s)
- Zijing Zhao
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Zhi Fang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Xiaocang Han
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Shiqi Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Cong Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yi Zeng
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Biao Zhang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Wei Li
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Zhan Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Zhang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jian Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jiadong Zhou
- grid.43555.320000 0000 8841 6246Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Ye
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Xinmei Hou
- grid.69775.3a0000 0004 0369 0705Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| | - Song Gao
- grid.79703.3a0000 0004 1764 3838Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Qin B, Saeed MZ, Li Q, Zhu M, Feng Y, Zhou Z, Fang J, Hossain M, Zhang Z, Zhou Y, Huangfu Y, Song R, Tang J, Li B, Liu J, Wang D, He K, Zhang H, Wu R, Zhao B, Li J, Liao L, Wei Z, Li B, Duan X, Duan X. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat Commun 2023; 14:304. [PMID: 36658123 PMCID: PMC9852450 DOI: 10.1038/s41467-023-35983-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Most of the current methods for the synthesis of two-dimensional materials (2DMs) require temperatures not compatible with traditional back-end-of-line (BEOL) processes in semiconductor industry (450 °C). Here, we report a general BiOCl-assisted chemical vapor deposition (CVD) approach for the low-temperature synthesis of 27 ultrathin 2DMs. In particular, by mixing BiOCl with selected metal powders to produce volatile intermediates, we show that ultrathin 2DMs can be produced at 280-500 °C, which are ~200-300 °C lower than the temperatures required for salt-assisted CVD processes. In-depth characterizations and theoretical calculations reveal the low-temperature processes promoting 2D growth and the oxygen-inhibited synthetic mechanism ensuring the formation of ultrathin nonlayered 2DMs. We demonstrate that the resulting 2DMs exhibit electrical, magnetic and optoelectronic properties comparable to those of 2DMs grown at much higher temperatures. The general low-temperature preparation of ultrathin 2DMs defines a rich material platform for exploring exotic physics and facile BEOL integration in semiconductor industry.
Collapse
Affiliation(s)
- Biao Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Muhammad Zeeshan Saeed
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiuqiu Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Manli Zhu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ya Feng
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jingzhi Fang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Mongur Hossain
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zucheng Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yucheng Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Rong Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingmei Tang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bailing Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jialing Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Di Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kun He
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hongmei Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bei Zhao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Liao
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bo Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha, 410082, China.
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
16
|
Liu CL, Tseng YT, Huang CW, Lo HY, Hou AY, Wang CH, Yasuhara A, Wu WW. Atomic Imaging and Thermally Induced Dynamic Structural Evolution of Two-Dimensional Cr 2S 3. NANO LETTERS 2022; 22:7944-7951. [PMID: 36129470 DOI: 10.1021/acs.nanolett.2c02974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, facile salt-assisted chemical vapor deposition (CVD) was used to synthesize ultrathin non-van der Waals chromium sulfide (Cr2S3) with a thickness of ∼1.9 nm. The structural transformation of as-grown Cr2S3 was studied using advanced in situ heating techniques combined with transmission electron microscopy (TEM). Two-dimensional (2D) and quasi-one-dimensional (1D) samples were fabricated to investigate the connection between specific planes and the dynamic behavior of the structural variation. The rearrangement of atoms during the phase transition was driven by the loss of sulfur atoms at elevated temperatures, resulting in increased free energy. A decrease in the ratio of the (001) plane led to an overall increase in surface energy, thus lowering the critical phase transition temperature. Our study provides detailed insight into the mechanism of structural transformation and the critical factors governing transition temperature, thus paving the way for future studies on intriguing Cr-S compounds.
Collapse
Affiliation(s)
- Chia-Ling Liu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| | - Yi-Tang Tseng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung City 407802, Taiwan
| | - Hung-Yang Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| | - An-Yuan Hou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| | - Che-Hung Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| | - Akira Yasuhara
- EM Application Department of EM Business Unit, JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
- Center for the Intelligent Semiconductor Nanosystem Technology Research, National Yang Ming Chiao Tung University, No. 1001, University Road, East District, Hsinchu City 30010, Taiwan
| |
Collapse
|
17
|
Li L, Xia Y, Zeng M, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev 2022; 51:7327-7343. [PMID: 35924550 DOI: 10.1039/d2cs00067a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrathin two-dimensional (2D) materials exhibit broad application prospects in many fields due to the enhanced specific surface area to volume ratio and quantum confinement effect. Because of the atomic thickness and various orientations, ultrathin 2D materials exposing specific facets have drawn great attention for various applications in catalysis, batteries, optoelectronics, magnetism, epitaxial template for material growth, etc. Though maintaining the atomic thickness of 2D materials while controlling crystal facets is an enormous challenge, breakthroughs are being made. This review provides a comprehensive overview of the recent advances in the facet engineering of 2D materials, ranging from a basic understanding of facets and the corresponding approaches and the significance of facet engineering. We also propose current challenges and forecast future development directions including the establishment of a facet database, the fabrication of new 2D materials, the design of specific substrates, and the introduction of theoretical calculations and in situ characterization techniques. This review can guide researchers to design ultrathin 2D materials with unique and distinct facets and provide an insight into the applications of energy, magnetism, optics, biomedicine, and other fields.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yabei Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. .,The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Jiang J, Cheng R, Yin L, Wen Y, Wang H, Zhai B, Liu C, Shan C, He J. Van der waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices. Sci Bull (Beijing) 2022; 67:1659-1668. [DOI: 10.1016/j.scib.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
19
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
20
|
Xu X, Zhong T, Zuo N, Li Z, Li D, Pi L, Chen P, Wu M, Zhai T, Zhou X. High- TC Two-Dimensional Ferroelectric CuCrS 2 Grown via Chemical Vapor Deposition. ACS NANO 2022; 16:8141-8149. [PMID: 35441509 DOI: 10.1021/acsnano.2c01470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) ferroelectrics have attracted intensive attention. However, the 2D ferroelectrics remain rare, and especially few of them represent high ferroelectric transition temperature (TC), which is important for the usability of ferroelectrics. Herein, CuCrS2 nanoflakes are synthesized by salt-assisted chemical vapor deposition and exhibit switchable ferroelectric polarization even when the thickness is downscaled to 6 nm. On the contrary, a CuCrS2 nanoflake shows a TC as high as ∼700 K, which can be attributed to the robust tetrahedral bonding configurations of Cu cations. Such robustness can be further clarified by a theoretically predicted high order-disorder transition barrier and structure evolution from 600 to 800 K. Additionally, the interlocked out-of-plane (OOP) and in-plane (IP) ferroelectric domains are observed and two kinds of devices based on OOP and IP polarizations are demonstrated.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tingting Zhong
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Nian Zuo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Huang W, Zhang Y, Song M, Wang B, Hou H, Hu X, Chen X, Zhai T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Hua L, Chen H, Han S, Xu H, Lu L, Tang L, Wang B, Luo J, Sun Z. 2D Hybrid perovskite incorporating cage-confined secondary ammonium cations toward effective photodetection. Chem Commun (Camb) 2021; 58:561-564. [PMID: 34909810 DOI: 10.1039/d1cc05705g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By confining the secondary dimethylammonium (DMA) cation in a distorted perovskite cavity, we assembled a new 2D Ruddlesden-Popper metal halide perovskite of (i-BA)2(DMA)Pb2Br7 (i-BA = n-isobutylammonium), in which the DMA cation templates its inorganic perovskite framework and the quantum-well motif renders a fascinating photoresponse. Crystal-based planar arrays exhibit effective photodetection behaviors, including a notable detectivity (∼5.6 × 1012 Jones), a high responsivity (∼1.25 A W-1) and a large switching ratio (∼1.5 × 103). These properties result from its low dark current restricted to the hopping barrier of the insulated organic bilayer and a strong in-plane photoresponse correlated with the perovskite network. This work throws light on the targeted exploration of photosensitive candidates in the family of organic-inorganic hybrid perovskites, as well as high-performance devices.
Collapse
Affiliation(s)
- Lina Hua
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Huaixi Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Lei Lu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Beibei Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
23
|
Wang P, Qu J, Wei Y, Shi H, Wang J, Sun X, Li W, Liu W, Gao B. Spontaneous n-Doping in Growing Monolayer MoS 2 by Alkali Metal Compound-Promoted CVD. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58144-58151. [PMID: 34809427 DOI: 10.1021/acsami.1c17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monolayer MoS2 has emerged as one of the most promising candidate materials for future semiconductor devices because of its fascinating physical properties and optoelectronic performance. Recently, the utilization of alkali metal compounds as promoters in CVD growth has been demonstrated to be a facile strategy for growing monolayer MoS2 and other 2D TMDs with large domain sizes. In this work, we systematically investigated the residues derived from alkali metal compounds and the spontaneous n-doping effect on monolayer MoS2 in alkali metal compound-promoted CVD growth. When using NaOH and other alkali metal compounds as promoters, it is found that the Raman peak of the A1g mode red shifted with a broadening width and the PL intensity of the A peak decreased with a red shift, which was attributed to the spontaneous n-doping effect during growth. Moreover, the growth using varying amounts of NaOH promoter suggests that the n-doping level could be controlled by the amount of promoter. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectroscopy (TOF-SIMS) showed the existence of cation-derived residues in the form of a Na-O cluster physiosorbed on top of monolayer MoS2, which was also confirmed by the transfer experiment. The NaOH treatment experiment and density functional theory (DFT) calculations demonstrate that sodium hydroxide clusters, which could be converted from a combination of Na-O clusters and water vapor, could produce an n-doping effect on monolayer MoS2. This study provides a facile route to controllably grow monolayer 2D materials with a desired doping level without further treatment.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Jiafan Qu
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongyan Shi
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Xiudong Sun
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Weiqi Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Wenjun Liu
- School of Physics, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Bo Gao
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
24
|
Abstract
Salt-assisted chemical vapor deposition (SA-CVD), which uses halide salts (e.g., NaCl, KBr, etc.) and molten salts (e.g., Na2MoO4, Na2WO4, etc.) as precursors, is one of the most popular methods favored for the fabrication of two-dimensional (2D) materials such as atomically thin metal chalcogenides, graphene, and h-BN. In this review, the distinct functions of halogens (F, Cl, Br, I) and alkali metals (Li, Na, K) in SA-CVD are first clarified. Based on the current development in SA-CVD growth and its related reaction modes, the existing methods are categorized into the Salt 1.0 (halide salts-based) and Salt 2.0 (molten salts-based) techniques. The achievements, advantages, and limitations of each technique are discussed in detail. Finally, new perspectives are proposed for the application of SA-CVD in the synthesis of 2D transition metal dichalcogenides for advanced electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
25
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
26
|
Peng Q, Li D, Huang P, Ren Y, Li Z, Pi L, Chen P, Wu M, Zhang X, Zhou X, Zhai T. Room-Temperature Ferroelectricity in 2D Metal-Tellurium-Oxyhalide Cd 7Te 7Cl 8O 17 via Selenium-Induced Selective-Bonding Growth. ACS NANO 2021; 15:16525-16532. [PMID: 34559511 DOI: 10.1021/acsnano.1c06099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) ferroelectric materials have attracted increasing interest due to meeting the requirements of integration, miniaturization, and multifunction of devices. However, the exploration of intrinsic 2D ferroelectric materials is still in the early stage, for which the related reports are still limited, especially fewer ones prepared by chemical vapor deposition (CVD). Here, the ultrathin metal-tellurium-oxyhalide Cd7Te7Cl8O17 (CTCO) flakes as thin as 3.8 nm are realized via the selenium-induced selective-bonding CVD method. The growth mechanism has been confirmed by experiments and theoretical calculations, which can be ascribed to the induction of selective bonding of a hydrogen atom in H2O molecules by the introduction of selenium, leading to the generation of strong oxidants. Excitingly, switchable out-of-plane ferroelectric polarization was observed in CTCO flakes down to 6 nm at room temperature, which may be caused by mobile Cl vacancies. This work has implications for the synthesis and applications of 2D ferroelectric materials.
Collapse
Affiliation(s)
- Qiaojun Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Pu Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yangyang Ren
- School of Physics, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Menghao Wu
- School of Physics, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiuwen Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
27
|
Affiliation(s)
- Zhongzhou Cheng
- MIIT Key Laboratory of Advanced Display Materials and Devices Institute of Optoelectronics & Nanomaterials College of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Tong Zhao
- MIIT Key Laboratory of Advanced Display Materials and Devices Institute of Optoelectronics & Nanomaterials College of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices Institute of Optoelectronics & Nanomaterials College of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
28
|
Li Z, Li D, Wang H, Chen P, Pi L, Zhou X, Zhai T. Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. SMALL METHODS 2021; 5:e2100567. [PMID: 34928056 DOI: 10.1002/smtd.202100567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Indexed: 05/21/2023]
Abstract
Intercalation is an effective approach to tune the physical and chemical properties of 2D materials due to their abundant van der Waals gaps that can host high-density intercalated guest matters. This approach has been widely employed to modulate the optical, electrical, and photoelectrical properties of 2D materials for their applications in electronic and optoelectronic devices. Thus it is necessary to review the recent progress of the intercalation strategy in 2D materials and their applications in devices. Herein, various intercalation strategies and the novel properties of the intercalated 2D materials as well as their applications in electronics and optoelectronics are summarized. In the end, the development tendency of this promising approach for 2D materials is also outlined.
Collapse
Affiliation(s)
- Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
29
|
Zhao M, Yang S, Zhang K, Zhang L, Chen P, Yang S, Zhao Y, Ding X, Zu X, Li Y, Zhao Y, Qiao L, Zhai T. A Universal Atomic Substitution Conversion Strategy Towards Synthesis of Large-Size Ultrathin Nonlayered Two-Dimensional Materials. NANO-MICRO LETTERS 2021; 13:165. [PMID: 34351515 PMCID: PMC8342677 DOI: 10.1007/s40820-021-00692-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Nonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
Collapse
Affiliation(s)
- Mei Zhao
- School of Physics, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Kenan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Sanjun Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yang Zhao
- School of Physics, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| |
Collapse
|
30
|
Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008422. [PMID: 34032317 DOI: 10.1002/adma.202008422] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of efficient electrocatalysts for energy conversion is important for green energy development. Owing to their high surface areas and unusual electronic structure, 2D electrocatalysts have attracted increasing interest. Among them, non-van der Waals (non-vdW) 2D materials with numerous chemical bonds in all three dimensions and novel chemical and electronic properties beyond those of vdW 2D materials have been studied increasingly over the past decades. Herein, the progress of non-vdW 2D electrocatalysts is critically reviewed, with a special emphasis on electronic structure modulation. Strategies for heteroatom doping, vacancy engineering, pore creation, alloying, and heterostructure engineering are analyzed for tuning electronic structures and achieving intrinsically enhanced electrocatalytic performances. Lastly, a roadmap for the future development of non-vdW 2D electrocatalysts is provided from material, mechanism, and performance viewpoints.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanping Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiaohan Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lijun Gao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
31
|
Xie M, Dai F, Li J, Dang X, Guo J, Lv W, Zhang Z, Lu X. Tailoring the Electronic Metal–Support Interactions in Supported Atomically Dispersed Gold Catalysts for Efficient Fenton‐like Reaction. Angew Chem Int Ed Engl 2021; 60:14370-14375. [DOI: 10.1002/anie.202103652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Fangfang Dai
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Jing Li
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Weiqiang Lv
- University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
32
|
Xie M, Dai F, Li J, Dang X, Guo J, Lv W, Zhang Z, Lu X. Tailoring the Electronic Metal–Support Interactions in Supported Atomically Dispersed Gold Catalysts for Efficient Fenton‐like Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Fangfang Dai
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Jing Li
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Weiqiang Lv
- University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
33
|
Li N, Zhu L, Shang H, Wang F, Zhang Y, Yao Y, Wang J, Zhan X, Wang F, He J, Wang Z. Controlled synthesis and Raman study of a 2D antiferromagnetic P-type semiconductor: α-MnSe. NANOSCALE 2021; 13:6953-6964. [PMID: 33885497 DOI: 10.1039/d1nr00822f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) non-van der Waals magnetic materials have attracted considerable attention due to their high-temperature ferromagnetism, active surface/interface properties originating from dangling bonds, and good stability under ambient conditions. Here, we demonstrate the controlled synthesis and systematic Raman investigation of ultrathin non-van der Waals antiferromagnetic α-MnSe single crystals. Square and triangular nanosheets with different growth orientations can be achieved by introducing different precursors via the atmospheric chemical vapor deposition (APCVD) method. The temperature-dependent resonant enhancement in the Raman intensity of two peaks at 233.8 cm-1 and 459.9 cm-1 gives obvious evidence that the antiferromagnetic spin-ordering is below TN∼ 160 K. Besides, a new peak located at 254.2 cm-1, gradually appearing as the temperature decreased from 180 K to 100 K, may also be a signature of phase transition from paramagnetic to antiferromagnetic. The phonon dispersion spectra of α-MnSe simulated by density functional perturbation theory (DFPT) match well with the observed Raman signals. Moreover, a fabricated α-MnSe phototransistor exhibits p-type conducting behavior and high photodetection performance. We believe that these findings will be beneficial for the applications of 2D α-MnSe in magnetic and semiconducting fields.
Collapse
Affiliation(s)
- Ningning Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu L, Cao L, Li L, Duan J, Liao X, Long F, Zhou J, Xiao Y, Zeng YJ, Zhou S. Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide. MATERIALS HORIZONS 2021; 8:1286-1296. [PMID: 34821921 DOI: 10.1039/d1mh00009h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Deficient intrinsic species and suppressed Curie temperatures (Tc) in two-dimensional (2D) magnets are major barriers for future spintronic applications. As an alternative, delaminating non-van der Waals (vdW) magnets can offset these shortcomings and involve robust bandgaps to explore 2D magneto-photoconductivity at ambient temperature. Herein, non-vdW α-MnSe2 is first delaminated as quasi-2D nanosheets for the study of emerging semiconductor, ferromagnetism and magneto-photoconductivity behaviors. Abundant nonstoichiometric surfaces induce the renormalization of the band structure and open a bandgap of 1.2 eV. The structural optimization strengthens ferromagnetic super-exchange interactions between the nearest-neighbor Mn2+, which enables us to achieve a high Tc of 320 K well above room temperature. The critical fitting of magnetization and transport measurements both verify that it is of quasi-2D nature. The above observations are evidenced by multiple microscopic and macroscopic characterization tools, in line with the prediction of first-principles calculations. Profiting from the negative magnetoresistance effect, the self-powered infrared magneto-photoconductivity performance including a responsivity of 330.4 mA W-1 and a millisecond-level response speed are further demonstrated. Such merits stem from the synergistic modulation of magnetic and light fields on photogenerated carriers. This provides a new strategy to manipulate both charge and spin in 2D non-vdW systems and displays their alluring prospects in magneto-photodetection.
Collapse
Affiliation(s)
- Liang Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lin Z, Ding Y, Zheng W, Zhu Y, Zhu S, Huang F. 2D van der Waals Molecular Crystal β-HgI 2 : Economical, Rapid, and Substrate-Free Liquid-Phase Synthesis and Strong In-Plane Optical Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005368. [PMID: 33319918 DOI: 10.1002/smll.202005368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/07/2020] [Indexed: 06/12/2023]
Abstract
2D materials have a great potential for wide-range applications due to their adjustable bandgap characteristics and special crystal structures. β-HgI2 is a new 2D van der Waals inorganic molecular crystal material with a wide bandgap of 4.03 eV, on whose preparation and properties there are few relevant reports due to the feature of instability of molecular crystals. Here, an economical method to control the synthesis of large-size 2D β-HgI2 single crystal by using a mineralizer-assisted solution is reported. According to angle-resolved polarization Raman spectroscopy and first-principles optical absorption calculation, 2D β-HgI2 flake has a strong in-plane anisotropic light scattering characteristic and high optical absorption dichroism (az /ay = 3.4), which is due to a low in-plane symmetry of the orthorhombic structure of β-HgI2 . More importantly, due to the molecular crystal structure of β-HgI2 , its sensitivity to temperature is less than that of 2D materials such as MoS2 , which has been confirmed by temperature-dependent Raman spectroscopy. In the work, more 2D inorganic molecular crystals are studied in the aspect of growth, which provides a theoretical basis for 2D molecular crystal optoelectronic devices' potential applications.
Collapse
Affiliation(s)
- Zeguo Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Ying Ding
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Wei Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Yanming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Siqi Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Feng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| |
Collapse
|
36
|
Xie C, Yang P, Huan Y, Cui F, Zhang Y. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides. Dalton Trans 2020; 49:10319-10327. [PMID: 32648888 DOI: 10.1039/d0dt01561j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition (CVD) route has emerged as an effective method for the successful synthesis of two-dimensional (2D) materials with satisfactory crystal quality, especially for the synthesis of wafer-scale, uniform thickness or large domain size single-crystal transition metal chalcogenides (TMCs). To achieve this, the salt-assisted CVD strategy has been proved to be powerful to reduce the high melting point of the metal related precursor, decrease the nucleation density and increase the reaction rate on the solid template. However, the specific roles of alkali metals and halide components still remain unclear. Herein, the functions of salts in the growth of TMCs have been discussed by summarizing some recent achievements in salt-assisted synthesis results, wherein salts are mainly introduced as additives in metal precursors to achieve the wafer-scale uniform growth of monolayer and thickness-tunable multi-layered TMCs, and for serving as 3D templates (especially NaCl) to realize the scalable production of TMCs. Moreover, the existing challenges and viable future directions are also proposed for in-depth understanding of salt-assisted C4VD methods and for exploring more efficient CVD strategies.
Collapse
Affiliation(s)
- Chunyu Xie
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Pengfei Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yahuan Huan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Fangfang Cui
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Feng X, Sun Z, Pei K, Han W, Wang F, Luo P, Su J, Zuo N, Liu G, Li H, Zhai T. 2D Inorganic Bimolecular Crystals with Strong In-Plane Anisotropy for Second-Order Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003146. [PMID: 32589323 DOI: 10.1002/adma.202003146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Indexed: 05/07/2023]
Abstract
2D inorganic bimolecular crystals, consisting of two different inorganic molecules, are expected to possess novel physical and chemical properties due to the synergistic effect of the individual components. However, 2D inorganic bimolecular crystals remain unexploited because of the difficulties in preparation arising from non-typical layered structures and intricate intermolecular interactions. Here, the synthesis of 2D inorganic bimolecular crystal SbI3 ·3S8 nanobelts via a facile vertical microspacing sublimation strategy is reported. The as-synthesized SbI3 ·3S8 nanobelts exhibit strong in-plane anisotropy of phonon vibrations and intramolecular vibrations as well as show anisotropic light absorption with a high dichroism ratio of 3.9. Furthermore, it is revealed that the second harmonic generation intensity of SbI3 ·3S8 nanobelts is highly dependent on the excitation wavelength and crystallographic orientation. This work can inspire the growth of more 2D inorganic bimolecular crystals and excite potential applications for bimolecular optoelectronic devices.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ke Pei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Wei Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Fakun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Nian Zuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
38
|
|
39
|
Yin C, Gong C, Chu J, Wang X, Yan C, Qian S, Wang Y, Rao G, Wang H, Liu Y, Wang X, Wang J, Hu W, Li C, Xiong J. Ultrabroadband Photodetectors up to 10.6 µm Based on 2D Fe 3 O 4 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002237. [PMID: 32406177 DOI: 10.1002/adma.202002237] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 05/06/2023]
Abstract
The ultrabroadband spectrum detection from ultraviolet (UV) to long-wavelength infrared (LWIR) is promising for diversified optoelectronic applications of imaging, sensing, and communication. However, the current LWIR-detecting devices suffer from low photoresponsivity, high cost, and cryogenic environment. Herein, a high-performance ultrabroadband photodetector is demonstrated with detecting range from UV to LWIR based on air-stable nonlayered ultrathin Fe3 O4 nanosheets synthesized via a space-confined chemical vapor deposition (CVD) method. Ultrahigh photoresponsivity (R) of 561.2 A W-1 , external quantum efficiency (EQE) of 6.6 × 103 %, and detectivity (D*) of 7.42 × 108 Jones are achieved at the wavelength of 10.6 µm. The multimechanism synergistic effect of photoconductive effect and bolometric effect demonstrates the high sensitivity for light with any light intensities. The outstanding device performance and complementary mixing photoresponse mechanisms open up new potential applications of nonlayered 2D materials for future infrared optoelectronic devices.
Collapse
Affiliation(s)
- Chujun Yin
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuanhui Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Junwei Chu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Chaoyi Yan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shifeng Qian
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Gaofeng Rao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yuqing Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Chaobo Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
40
|
Wang R, Xu X, Yu Y, Ran M, Zhang Q, Li A, Zhuge F, Li H, Gan L, Zhai T. The mechanism of the modulation of electronic anisotropy in two-dimensional ReS 2. NANOSCALE 2020; 12:8915-8921. [PMID: 32266914 DOI: 10.1039/d0nr00518e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the anisotropy and strategies for the modulation of the anisotropy in ReS2 have been widely reported, a comprehensive study on the inherent electronic anisotropy of ReS2 is still absent to date; therefore, the mechanism of anisotropy evolution is ambiguous as well. In this study, we have conducted a systematic investigation on the evolution of electronic anisotropy in bilayer ReS2, under the modulation of charge doping levels and temperature. It is found that the adjustability of electronic anisotropy is largely attributed to the angle-dependent scattering from defects or vacancies at a low doping level. At a high doping level, in contrast, the inherent electronic anisotropy can be recovered by filling the traps to attenuate the influence of scattering. This work renders insights into the exploration of electronic anisotropy in 2D materials.
Collapse
Affiliation(s)
- Renyan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang P, Zhang P, Xu S, Wang H, Zhang X, Zhang H. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. NANOSCALE 2020; 12:2309-2327. [PMID: 31930261 DOI: 10.1039/c9nr08890c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) ferromagnetism is critical for both scientific investigation and technological development owing to its low-dimensionality that brings in quantization of electronic states as well as free axes for device modulation. However, the scarcity of high-temperature 2D ferromagnets has been the obstacle of many research studies, such as the quantum anomalous Hall effect (QAHE) and thin-film spintronics. Indeed, in the case of the isotropic Heisenberg model with finite-range exchange interactions as an example, low-dimensionality is shown to be contraindicated with ferromagnetism. However, the advantages of low-dimensionality for micro-scale patterning could enhance the Curie temperature (TC) of 2D ferromagnets beyond the TC of bulk materials, opening the door for designing high-temperature ferromagnets in the 2D limit. In this paper, we review the recent advances in the field of 2D ferromagnets, including their material systems, physical properties, and potential device applications.
Collapse
Affiliation(s)
- Pu Huang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peng Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shaogang Xu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huide Wang
- Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Zhang
- Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
42
|
Abstract
Our review provides a comprehensive overview of the latest evolution of broadband photodetectors (BBPDs) based on 2D materials (2DMs). We begin with BBPDs built on various 2DM channels, including narrow-bandgap 2DMs, 2D topological semimetals, 2D charge density wave compounds, and 2D heterojunctions. Then, we introduce defect-engineered 2DM BBPDs, including vacancy engineering, heteroatom incorporation, and interfacial engineering. Subsequently, we summarize 2DM based mixed-dimensional (0D-2D, 1D-2D, 2D-3D, and 0D-2D-3D) BBPDs. Finally, we provide several viewpoints for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | |
Collapse
|
43
|
Cui F, Zhao X, Xu J, Tang B, Shang Q, Shi J, Huan Y, Liao J, Chen Q, Hou Y, Zhang Q, Pennycook SJ, Zhang Y. Controlled Growth and Thickness-Dependent Conduction-Type Transition of 2D Ferrimagnetic Cr 2 S 3 Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905896. [PMID: 31825536 DOI: 10.1002/adma.201905896] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/01/2019] [Indexed: 06/10/2023]
Abstract
2D magnetic materials have attracted intense attention as ideal platforms for constructing multifunctional electronic and spintronic devices. However, most of the reported 2D magnetic materials are mainly achieved by the mechanical exfoliation route. The direct synthesis of such materials is still rarely reported, especially toward thickness-controlled synthesis down to the 2D limit. Herein, the thickness-tunable synthesis of nanothick rhombohedral Cr2 S3 flakes (from ≈1.9 nm to tens of nanometers) on a chemically inert mica substrate via a facile chemical vapor deposition route is demonstrated. This is accomplished by an accurate control of the feeding rate of the Cr precursor and the growth temperature. Furthermore, it is revealed that the conduction behavior of the nanothick Cr2 S3 is variable with increasing thickness (from 2.6 to 4.8 nm and >7 nm) from p-type to ambipolar and then to n-type. Hereby, this work can shed light on the scalable synthesis, transport, and magnetic properties explorations of 2D magnetic materials.
Collapse
Affiliation(s)
- Fangfang Cui
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaoxu Zhao
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - Junjie Xu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bin Tang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Qiuyu Shang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jianping Shi
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yahuan Huan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117574, Singapore
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
44
|
Li N, Zhang Y, Cheng R, Wang J, Li J, Wang Z, Sendeku MG, Huang W, Yao Y, Wen Y, He J. Synthesis and Optoelectronic Applications of a Stable p-Type 2D Material: α-MnS. ACS NANO 2019; 13:12662-12670. [PMID: 31424906 DOI: 10.1021/acsnano.9b04205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
α-MnS, as a nonlayered p-type material with a wide band gap of 2.7 eV, has been expected to supplement the scarcity of two-dimensional (2D) p-type semiconductors, which are desperately required for constructing atomically thin p-n junctions. However, the preparation and property investigation of 2D α-MnS has scarcely been reported so far. Herein, we report the controlled synthesis of ultrathin large-scale α-MnS single crystals down to 4.78 nm via a facile chemical vapor deposition (CVD) method. Importantly, top-gating field-effect transistors based on the as-synthesized α-MnS nanosheets show p-type transport behavior with an ultrahigh on/off ratio exceeding 106, surpassing most reported p-type 2D materials. Meanwhile, α-MnS phototransistors exhibit an ultrahigh detectivity of 3.2 × 1014 Jones, as well as an excellent photoresponsivity of 139 A/W and a fast response time of 12 ms. Besides, outstanding environmental stability and admirable flexibility have also been demonstrated in the as-synthesized α-MnS nanosheets. We believe that this work broadens the scope of the CVD synthesis strategy for various p-type 2D materials and demonstrates their significant application potentials in electronics and optoelectronics.
Collapse
Affiliation(s)
- Ningning Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- Sino-Danish College , University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
- Sino-Danish Center for Education and Research , Beijing , 100049 , P. R. China
| | - Yu Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- School of Physics and Technology , Wuhan University , Wuhan , 430072 , P. R. China
| | - Ruiqing Cheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Junjun Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jie Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Zhenxing Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Marshet Getaye Sendeku
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Wenhao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Yuyu Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- Sino-Danish College , University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
- Sino-Danish Center for Education and Research , Beijing , 100049 , P. R. China
| | - Yao Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jun He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- School of Physics and Technology , Wuhan University , Wuhan , 430072 , P. R. China
| |
Collapse
|
45
|
Abstract
Two-dimensional molecular crystals, consisting of zero-dimensional molecules, are very appealing due to their novel physical properties. However, they are mostly limited to organic molecules. The synthesis of inorganic version of two-dimensional molecular crystals is still a challenge due to the difficulties in controlling the crystal phase and growth plane. Here, we design a passivator-assisted vapor deposition method for the growth of two-dimensional Sb2O3 inorganic molecular crystals as thin as monolayer. The passivator can prevent the heterophase nucleation and suppress the growth of low-energy planes, and enable the molecule-by-molecule lateral growth along high-energy planes. Using Raman spectroscopy and in situ transmission electron microscopy, we show that the insulating α-phase of Sb2O3 flakes can be transformed into semiconducting β-phase under heat and electron-beam irradiation. Our findings can be extended to the controlled growth of other two-dimensional inorganic molecular crystals and open up opportunities for potential molecular electronic devices. Two-dimensional molecular crystals made of inorganic units would be desirable for their chemical and electronic properties, but have been difficult to obtain. Here the authors show the synthesis of monolayer Sb2O3 molecular crystals on mica substrates by passivator-assisted vapor deposition.
Collapse
|
46
|
Zhao S, Wang L, Fu L. Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals. iScience 2019; 20:527-545. [PMID: 31655063 PMCID: PMC6818371 DOI: 10.1016/j.isci.2019.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional atomic single crystals (2DASCs) have drawn immense attention because of their potential for fundamental research and new technologies. Novel properties of 2DASCs are closely related to their atomic structures, and effective modulation of the structures allows for exploring various practical applications. Precise vapor-phase synthesis of 2DASCs with tunable thickness, selectable phase, and controllable chemical composition can be realized to adjust their band structures and electronic properties. This review highlights the latest advances in the precise vapor-phase synthesis of 2DASCs. We thoroughly elaborate on strategies toward the accurate control of layer number, phase, chemical composition of layered 2DASCs, and thickness of non-layered 2DASCs. Finally, we suggest forward-looking solutions to the challenges and directions of future developments in this emerging field.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
47
|
Gong C, Chu J, Yin C, Yan C, Hu X, Qian S, Hu Y, Hu K, Huang J, Wang H, Wang Y, Wangyang P, Lei T, Dai L, Wu C, Chen B, Li C, Liao M, Zhai T, Xiong J. Self-Confined Growth of Ultrathin 2D Nonlayered Wide-Bandgap Semiconductor CuBr Flakes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903580. [PMID: 31339207 DOI: 10.1002/adma.201903580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/18/2019] [Indexed: 05/08/2023]
Abstract
2D planar structures of nonlayered wide-bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self-confined chemical vapor deposition method is described. The enhanced spin-triplet exciton (Zf , 2.98 eV) luminescence and polarization-enhanced second-harmonic generation based on the 2D CuBr flakes demonstrate the potential of short-wavelength luminescent applications. Solar-blind and self-driven ultraviolet (UV) photodetectors based on the as-synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W-1 , an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short-wavelength light-emitting devices, nonlinear optical devices, and UV photodetectors.
Collapse
Affiliation(s)
- Chuanhui Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Junwei Chu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chujun Yin
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
| | - Chaoyi Yan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaozong Hu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shifeng Qian
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Kai Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jianwen Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Peihua Wangyang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liping Dai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chunyang Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Bo Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
| | - Chaobo Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
| | - Min Liao
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
48
|
|
49
|
Yu Z, Yuan L, Wei Y, Li H, Meng X, Li Y, Endres F. In situ Ga-alloying in germanium nano-twists by the inhibition of fractal growth with fast Li +-mobility. Chem Commun (Camb) 2019; 55:10412-10415. [PMID: 31403632 DOI: 10.1039/c9cc04408f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, Ge0.90Ga0.10 nano-twists were prepared by an in situ Ga-alloying method to inhibit the fractal growth of Ge. The mobility of Li+ in the Ge0.90Ga0.10 nano-twists was two orders higher than that in Ge. This advantage promotes fast charging of Li-ion batteries with the rate capability of 819 mA h g-1 at 16 A g-1.
Collapse
Affiliation(s)
- Zhaoliang Yu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu N, Bo G, Liu Y, Xu X, Du Y, Dou SX. Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805147. [PMID: 30756479 DOI: 10.1002/smll.201805147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/05/2019] [Indexed: 06/09/2023]
Abstract
A new family of single-atom-thick 2D germanium-based materials with graphene-like atomic arrangement, germanene and functionalized germanene, has attracted intensive attention due to their large bandgap and easily tailored electronic properties. Unlike carbon atoms in graphene, germanium atoms tend to adopt mixed sp2 /sp3 hybridization in germanene, which makes it chemically active on the surface and allows its electronic states to be easily tuned by chemical functionalization. Impressive achievements in terms of the applications in energy storage and catalysis have been reported by using germanene and functionalized germanene. Herein, the fabrication of epitaxial germanene on different metallic substrates and its unique electronic properties are summarized. Then, the preparation strategies and the fundamental properties of hydrogen-functionalized germanene (germanane or GeH) and other ligand-terminated forms of germanene are presented. Finally, the progress of their applications in energy storage and catalysis, including both experimental results and theoretical predictions, is analyzed.
Collapse
Affiliation(s)
- Nana Liu
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Guyue Bo
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yani Liu
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre, and School of Physics, Beihang University, Beijing, 10191, P. R. China
| | - Xun Xu
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre, and School of Physics, Beihang University, Beijing, 10191, P. R. China
| | - Yi Du
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre, and School of Physics, Beihang University, Beijing, 10191, P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre, and School of Physics, Beihang University, Beijing, 10191, P. R. China
| |
Collapse
|