1
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Zhou J, Chen P, Liang G, Zhou J, Ou J, Zhou P, Wang T, Zhang D, Zhou H. Heterobimetallic Zinc/Strontium Catalysis: Z/ E-Selective Asymmetric Conjugate Addition of 3-Acetoxy-2-oxindoles to Alkynones. J Org Chem 2024; 89:12307-12317. [PMID: 39190123 DOI: 10.1021/acs.joc.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A chiral Zn-Sr heterobimetallic catalyst system generated in situ has been developed for the first highly Z/E-selective asymmetric conjugate addition of 3-acetoxy-2-oxindoles to alkynones. Both terminal alkynones and nonterminal alkynones could be applied to the heterobimetallic catalytic system. The corresponding 3-alkenyl-3-acyloxy-2-oxindoles were obtained in moderate to excellent yields (55-99%) with high E:Z ratios (8:1-30:1) and high enantioselectivities (86-99% ee).
Collapse
Affiliation(s)
- Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Pengfei Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Wang
- Joint Training Base for Pharmacy Postgraduate Students of Chongqing Medical University and Chongqing Medleader Bio-Pharm Company, Ltd., Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Bruschi C, Gui X, Rauthe P, Fuhr O, Unterreiner AN, Klopper W, Bizzarri C. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO 2 Reduction. Chemistry 2024; 30:e202400765. [PMID: 38742808 DOI: 10.1002/chem.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Tang Y, Li Z, Zeng M, Li R, Song H, Zhang D, Xue F, Qin Y. Asymmetric Synthesis of Triazole Antifungal Agents Enabled by an Upgraded Strategy for the Key Epoxide Intermediate. J Org Chem 2024; 89:4971-4978. [PMID: 38509452 DOI: 10.1021/acs.joc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A streamlined and efficient approach to the key epoxide intermediate for the asymmetric synthesis of triazole antifungal agents is presented. This synthesis highlights a P(NMe2)3-mediated nonylidic olefination of α-keto ester, ensuring the exclusive formation of the requisite (Z)-alkene, followed by a highly enantioselective Jacobsen epoxidation to establish the two vicinal stereocenters in a single step. The versatility of this strategy is exemplified through the efficient synthesis of efinaconazole and ravuconazole.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhuo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Meiqi Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Ran Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
5
|
Wang W, Liu J, Yang L, Song S, Jiao N. A Catalytic Method to Activate Nitromethane by the Cooperation of Homo- and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202312354. [PMID: 38133603 DOI: 10.1002/anie.202312354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
The achievement of directly activating and utilizing bulk small molecules has remained a longstanding objective in the field of chemical synthesis. The present work reports a catalytic activation method for bulk chemical nitromethane (MeNO2 ). This method combines homogeneous Lewis acid with recyclable heterogeneous Brønsted acid catalysis, featuring practicality, sustainability, and low cost, thus solving the inherent drawbacks of previous Nef processes where stoichiometric reductants or activators were required. By combining the advantages of both homo- and heterogeneous catalysts, this chemistry may not only offer new opportunities for the further development of MeNO2 as a nitrogen source for organic synthesis, but also promote the catalysis design in synthetic chemistry.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Licheng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Fiorentini F, Diment WT, Deacy AC, Kerr RWF, Faulkner S, Williams CK. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat Commun 2023; 14:4783. [PMID: 37553344 PMCID: PMC10409799 DOI: 10.1038/s41467-023-40284-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.
Collapse
Affiliation(s)
| | - Wilfred T Diment
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Ruan LX, Sun B, Liu JM, Shi SL. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 2023; 379:662-670. [PMID: 36795811 DOI: 10.1126/science.ade0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Despite the importance of enantioenriched alcohols in medicinal chemistry, total synthesis, and materials science, the efficient and selective construction of enantioenriched tertiary alcohols bearing two contiguous stereocenters has remained a substantial challenge. We report a platform for their preparation through the enantioconvergent, nickel-catalyzed addition of organoboronates to racemic, nonactivated ketones. We prepared several important classes of α,β-chiral tertiary alcohols in a single step with high levels of diastereo- and enantioselectivity through a dynamic kinetic asymmetric addition of aryl and alkenyl nucleophiles. We applied this protocol to modify several profen drugs and to rapidly synthesize biologically relevant molecules. We expect this nickel-catalyzed, base-free ketone racemization process to be a widely applicable strategy for the development of dynamic kinetic processes.
Collapse
Affiliation(s)
- Lin-Xin Ruan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ming Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
9
|
Xue F, Chen X, He Z. Diethyl phosphite mediated reductive [1 + 4] annulation of α-ketoesters with α, β-unsaturated ketones and synthesis of polysubstituted 2,3-dihydrofurans. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Feixue X, Jianwei Z, Taishan Y, Jie H, Zhengjie H. Synthesis of Polysubstituted 2,3-Dihydrofurans via P(NMe 2) 3- Mediated [1+4] Annulation of 1,2-Dicarbonyl Compounds with α, β-Unsaturated Ketones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ghobadi E, Saednia S, Emami S. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur J Med Chem 2022; 231:114161. [DOI: 10.1016/j.ejmech.2022.114161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
12
|
Saito Y, Kobayashi S. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous‐Flow Enantioselective Friedel–Crafts Carbon–Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Saito
- Department of Chemistry School of Science The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
13
|
Saito Y, Kobayashi S. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous-Flow Enantioselective Friedel-Crafts Carbon-Carbon Bond-Forming Reactions. Angew Chem Int Ed Engl 2021; 60:26566-26570. [PMID: 34661969 DOI: 10.1002/anie.202112797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/17/2021] [Indexed: 11/11/2022]
Abstract
While continuous-flow reactions with chiral heterogeneous catalysts provide a highly efficient method to synthesize optically active compounds, chiral heterogeneous Lewis acid catalysis has been less extensively explored. We have developed the first example of chiral heterogeneous Sc catalysts, which demonstrated excellent activity and selectivity for continuous-flow enantioselective Friedel-Crafts reactions of isatins with indoles. Noncovalent interactions between chiral Sc complexes and heteropoly acid-anchored amine-functionalized SiO2 as support were utilized for the synthesis. The heteropoly acid was found to be crucial for the preparation, activity, and selectivity of the catalysts. The chiral ligand could be easily tuned without chemical modification and the continuous-flow synthesis of a biologically active compound was achieved.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Jiang J, Xiao L. Copper-Catalyzed Cross-Dehydrogenative Coupling of α-Hydroxy Esters with Nitromethane. Synlett 2021. [DOI: 10.1055/a-1539-9116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractAn efficient copper-catalyzed tandem oxidation/nitroaldol reaction of hydroxyl compounds with nucleophiles is developed. In this work, β-nitro-α-hydroxy esters were prepared via cross-dehydrogenative coupling reaction using α-hydroxy esters as hydroxy compounds and nitromethane as a nucleophile. The reaction is believed to undergo an oxidation of the hydroxy group and then an addition of the generated carbonyl group. It is an example of CDC reactions related to hydroxy compounds via carbonyl intermediates.
Collapse
Affiliation(s)
- Jin Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education
| | - Lili Xiao
- School of Materials Science and Engineering, Sichuan University of Science and Engineering
| |
Collapse
|
15
|
He Q, Zhang D, Zhang F, Liu X, Feng X. Asymmetric Catalytic Epoxidation of Terminal Enones for the Synthesis of Triazole Antifungal Agents. Org Lett 2021; 23:6961-6966. [PMID: 34424719 DOI: 10.1021/acs.orglett.1c02588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An enantioselective epoxidation of α-substituted vinyl ketones was realized to construct the key epoxide intermediates for the synthesis of various triazole antifungal agents. The reaction proceeded efficiently in high yields with good enantioselectivities by employing a chiral N,N'-dioxide/ScIII complex as the chiral catalyst and 35% aq. H2O2 as the oxidant. It enabled the facile transformation for optically active isavuconazole, efinaconazole, and other potential antifungal agents.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
17
|
Yang Y, Tang C, Liang G, Deng P, Zhou J, Yang Z, Chen P, Zhou H. Cooperative Heterobimetallic Zinc/Alkaline Earth Metal Catalysis: A Zn/Sr Aminophenol Sulfonamide Complex for Catalytic Asymmetric Michael Addition of 3-Acetoxy-2-oxindoles to β-Ester Enones. J Org Chem 2021; 86:7119-7130. [DOI: 10.1021/acs.joc.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuchen Yang
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Tang
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ping Deng
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zinan Yang
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Sharifzadeh Z, Berijani K, Morsali A. High performance of ultrasonic-assisted synthesis of two spherical polymers for enantioselective catalysis. ULTRASONICS SONOCHEMISTRY 2021; 73:105499. [PMID: 33667905 PMCID: PMC7937831 DOI: 10.1016/j.ultsonch.2021.105499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/02/2021] [Accepted: 02/16/2021] [Indexed: 05/11/2023]
Abstract
Chiral polymers have aroused great attention in among chiral supramolecular materials based on their features. Herein, for the first time, the synthesis of chiral polymeric composites (CMNPs/1,4-Zbtb & 1,3-Zbtb) have been reported with entrapment through three strategies: ultrasonic irradiation, solvothermal, and mechanical stirring. According to the obtained results, it is found that ultrasound-assisted synthesis can be considered as an inexpensive and efficient method than the others, from the point ofviewof energy and time consuming. In this strategy, encapsulation of chiral magnetic nanoparticles (CMNPs) by using tetrazole-based polymers (Zbtbs) happens, in-situly. These chiral sphere-like inorganic-organic polymers can be considered as core and shell composites with catalytic activity due to their acidic (semi unsaturated Zn: open metal sites) and basic (abundant basic nitrogens) centers. In these structures, the unprecedented chirality induction can happen from the core to shell by non-covalent interaction, easily. They could catalyze symmetric oxidation and asymmetric henry condensation to give chiral β-nitroalkanol. Circular dichroism and chiral gas chromatography were used to characterize the produced enantiomers. These chiral polymeric materials can be considered as unique acid-base bifunctional catalysts with efficient properties such as high stability, enantiomeric excess, enantioselectivity to the main product, and protecting from CMNPs leaching.
Collapse
Affiliation(s)
- Zahra Sharifzadeh
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran
| | - Kayhaneh Berijani
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran.
| |
Collapse
|
19
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Zhu M, Zhang Q, Zi W. Diastereodivergent Synthesis of β‐Amino Alcohols by Dual‐Metal‐Catalyzed Coupling of Alkoxyallenes with Aldimine Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Zhu M, Zhang Q, Zi W. Diastereodivergent Synthesis of β‐Amino Alcohols by Dual‐Metal‐Catalyzed Coupling of Alkoxyallenes with Aldimine Esters. Angew Chem Int Ed Engl 2021; 60:6545-6552. [DOI: 10.1002/anie.202014510] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Shan H, Lu C, Zhao B, Yao Y. Asymmetric epoxidation of α,β-unsaturated ketones catalyzed by rare-earth metal amides RE[N(SiMe 3) 2] 3 with chiral TADDOL ligands. NEW J CHEM 2021. [DOI: 10.1039/d0nj05228k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first application of rare-earth metal catalyst combined with TADDOLs in the asymmetric epoxidation of α,β-unsaturated ketones is disclosed.
Collapse
Affiliation(s)
- Haiwen Shan
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chengrong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
23
|
Abstract
This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents.
Collapse
|
24
|
Eder I, Haider V, Zebrowski P, Waser M. Recent Progress in the Asymmetric Syntheses of α‐Heterofunctionalized (Masked) α‐ and β‐Amino Acid Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabella Eder
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Victoria Haider
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Paul Zebrowski
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Mario Waser
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| |
Collapse
|
25
|
Qu S, Smith SM, Laina‐Martín V, Neyyappadath RM, Greenhalgh MD, Smith AD. Isothiourea-Catalyzed Acylative Kinetic Resolution of Tertiary α-Hydroxy Esters. Angew Chem Int Ed Engl 2020; 59:16572-16578. [PMID: 32491267 PMCID: PMC7540711 DOI: 10.1002/anie.202004354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 01/08/2023]
Abstract
A highly enantioselective isothiourea-catalyzed acylative kinetic resolution (KR) of acyclic tertiary alcohols has been developed. Selectivity factors of up to 200 were achieved for the KR of tertiary alcohols bearing an adjacent ester substituent, with both reaction conversion and enantioselectivity found to be sensitive to the steric and electronic environment at the stereogenic tertiary carbinol centre. For more sterically congested alcohols, the use of a recently-developed isoselenourea catalyst was optimal, with equivalent enantioselectivity but higher conversion achieved in comparison to the isothiourea HyperBTM. Diastereomeric acylation transition state models are proposed to rationalize the origins of enantiodiscrimination in this process. This KR procedure was also translated to a continuous-flow process using a polymer-supported variant of the catalyst.
Collapse
Affiliation(s)
- Shen Qu
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Samuel M. Smith
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Víctor Laina‐Martín
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | - Mark D. Greenhalgh
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Andrew D. Smith
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
26
|
Yamada T, Park K, Ito N, Masuda H, Teranishi W, Cui S, Sajiki H. Robust Continuous-Flow Synthesis of Deuterium-Labeled β-Nitroalcohols Catalyzed by Basic Anion Exchange Resin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoya Ito
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hayato Masuda
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Wataru Teranishi
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
27
|
Zheng Y, Jia Y, Yuan Y, Jiang ZX, Yang Z. F --Free Deoxyhydrotrifluoromethylation of α-Keto Esters with Ph 3P +CF 2CO 2-: Synthesis of α-CF 3-Substituted Esters. J Org Chem 2020; 85:10913-10923. [PMID: 32692174 DOI: 10.1021/acs.joc.0c01518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trifluoromethylated compounds are usually obtained via trifluoromethylation reaction by the use of CF3SiMe3 and NaSO2CF3, Umemoto's and Togni's reagents. Here, an external fluorine anion-free direct deoxyhydrotrifluoromethylation of α-keto esters with a difluoromethylating reagent has been achieved, in which the employment of water can promote the dissociation of the CF2 group to form a CF3 moiety, which provides the successful transformation. The current protocol demonstrates one of the most practical approaches to generate α-trifluoromethyl esters with a broad substrate scope and high functional group compatibility, in which it is applicable to late-stage modification of biologically active compounds and can be readily scaled up. Mechanistic investigation reveals that an in situ-generated gem-difluoroalkene intermediate is decomposed by water, giving rise to acid fluoride and HF.
Collapse
Affiliation(s)
- Ying Zheng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Yuan
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
28
|
Qu S, Smith SM, Laina‐Martín V, Neyyappadath RM, Greenhalgh MD, Smith AD. Isothiourea‐Catalyzed Acylative Kinetic Resolution of Tertiary α‐Hydroxy Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shen Qu
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Samuel M. Smith
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Víctor Laina‐Martín
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | | | - Mark D. Greenhalgh
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Andrew D. Smith
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
29
|
Jin S, Dang HT, Haug GC, Nguyen VD, Arman HD, Larionov OV. Deoxygenative α-alkylation and α-arylation of 1,2-dicarbonyls. Chem Sci 2020; 11:9101-9108. [PMID: 34094191 PMCID: PMC8161533 DOI: 10.1039/d0sc03118f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 01/26/2023] Open
Abstract
Construction of C-C bonds at the α-carbon is a challenging but synthetically indispensable approach to α-branched carbonyl motifs that are widely represented among drugs, natural products, and synthetic intermediates. Here, we describe a simple approach to generation of boron enolates in the absence of strong bases that allows for introduction of both α-alkyl and α-aryl groups in a reaction of readily accessible 1,2-dicarbonyls and organoboranes. Obviation of unselective, strongly basic and nucleophilic reagents permits carrying out the reaction in the presence of electrophiles that intercept the intermediate boron enolates, resulting in two new α-C-C bonds in a tricomponent process.
Collapse
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
30
|
Yu T, Ding Z, Nie W, Jiao J, Zhang H, Zhang Q, Xue C, Duan X, Yamada YMA, Li P. Recent Advances in Continuous-Flow Enantioselective Catalysis. Chemistry 2020; 26:5729-5747. [PMID: 31916323 DOI: 10.1002/chem.201905151] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Indexed: 11/05/2022]
Abstract
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Chao Xue
- State Key Laboratory for Efficient Development and, Utilization of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Xinhua Duan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
31
|
Yu Z, Xu Q, Liu L, Wu Z, Huang J, Lin J, Su W. Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00078-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Karalius A, Zhang Y, Kravchenko O, Elofsson U, Szabó Z, Yan M, Ramström O. Formation and Out‐of‐Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angew Chem Int Ed Engl 2020; 59:3434-3438. [DOI: 10.1002/anie.201911706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Antanas Karalius
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Yang Zhang
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Ulla Elofsson
- Bioscience and Materials divisionResearch Institutes of Sweden Box 5607 114 86 Stockholm Sweden
| | - Zoltán Szabó
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Mingdi Yan
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
33
|
Karalius A, Zhang Y, Kravchenko O, Elofsson U, Szabó Z, Yan M, Ramström O. Formation and Out‐of‐Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antanas Karalius
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Yang Zhang
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Ulla Elofsson
- Bioscience and Materials divisionResearch Institutes of Sweden Box 5607 114 86 Stockholm Sweden
| | - Zoltán Szabó
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Mingdi Yan
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
34
|
Dong L, Chen FE. Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Adv 2020; 10:2313-2326. [PMID: 35494598 PMCID: PMC9048686 DOI: 10.1039/c9ra10263a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
This review summarizes the current state and applications of catalytic Henry reactions involving complex nitroalkanes coupling with various carbonyl compounds to generate chiral β-nitro alcohol scaffolds with four adjacent stereogenic centers.
Collapse
Affiliation(s)
- Lin Dong
- Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. of China
| | - Fen-Er Chen
- Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. of China
| |
Collapse
|
35
|
Trost BM, Schultz JE, Bai Y. Development of Chemo‐ and Enantioselective Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation of α‐Nitroesters. Angew Chem Int Ed Engl 2019; 58:11820-11825. [DOI: 10.1002/anie.201904034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Yu Bai
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
36
|
Trost BM, Schultz JE, Bai Y. Development of Chemo‐ and Enantioselective Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation of α‐Nitroesters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Yu Bai
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
37
|
Sherwood J, Granelli J, McElroy CR, Clark JH. A Method of Calculating the Kamlet-Abboud-Taft Solvatochromic Parameters Using COSMO-RS. Molecules 2019; 24:molecules24122209. [PMID: 31200457 PMCID: PMC6630472 DOI: 10.3390/molecules24122209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
There is demand for safer and bio-based solvents, brought on by legislation and sustainability objectives. The prediction of physical properties is highly desirable to help design new molecules. Here we present an in silico approach to obtain calculated Kamlet-Abboud-Taft solvatochromic parameters using virtual experiments. The tautomerisation equilibrium of methyl acetoacetate and dimedone was calculated in different solvents with COSMO-RS theory and converted into estimates of solvent dipolarity and hydrogen bond accepting ability, respectively. Hydrogen bond donating ability was calculated as a function of the electron deficient surface area on protic solvents. These polarity descriptors correlate with rate constants and equilibria, and so ability of calculated Kamlet-Abboud-Taft solvatochromic parameters to recreate experimental free energy relationships was tested with sixteen case studies taken from the literature. The accuracy of the calculated parameters was also satisfactory for solvent selection, as demonstrated with a 1,4-addition reaction and a multicomponent heterocycle synthesis.
Collapse
Affiliation(s)
- James Sherwood
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK.
| | - Joe Granelli
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK.
| | - Con R McElroy
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK.
| | - James H Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK.
| |
Collapse
|
38
|
Karasawa T, Saito A, Kumagai N, Shibasaki M. Solvent-Dependent Enantiodivergence in anti-Selective Catalytic Asymmetric Nitroaldol Reactions. Org Lett 2019; 21:3581-3583. [PMID: 30995054 DOI: 10.1021/acs.orglett.9b00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
anti-Selective catalytic asymmetric nitroaldol reactions of α-keto esters promoted by a heterogeneous Nd/Na heterobimetallic catalyst exhibited a significant, unexpected disparity in enantioselection that was solvent-dependent. This phenomenon exclusively occurred when the stereogenic center of a diamide ligand had the smallest substituent (Me group, derived from l-Ala), which behaved uniquely in comparison with other structurally similar ligands to provide antipodal products under otherwise identical conditions.
Collapse
Affiliation(s)
- Tomoya Karasawa
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Akira Saito
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| |
Collapse
|
39
|
Liu M, Gui D, Deng P, Zhou H. Asymmetric Henry Reaction of 2-Acylpyridine N-Oxides Catalyzed by a Ni-Aminophenol Sulfonamide Complex: An Unexpected Mononuclear Catalyst. Molecules 2019; 24:E1471. [PMID: 31013997 PMCID: PMC6514737 DOI: 10.3390/molecules24081471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
The asymmetric Henry reaction of 2-acylpyridine N-oxide remains a challenge as N-oxides generally act as competitive catalyst inhibitors or displace activating ligands. A novel variable yield (up to 99%) asymmetric Henry reaction of 2-acypyridine N-oxides catalyzed by a Ni-aminophenol sulfonamide complex with good to excellent enantioselectivity (up to 99%) has been developed. Mechanistic studies suggest that the unique properties of the electron-pairs of N-oxides for complexation with Ni makes the unexpected mononuclear complex, rather than the previously reported dinuclear complex, the active species.
Collapse
Affiliation(s)
- Mouxiong Liu
- School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China.
| | - Dongdong Gui
- School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China.
| | - Ping Deng
- School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- School of Pharmaceutical Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
Li TB, Zhao FJ, Liu Z, Jin Y, Liu Y, Pei XQ, Zhang ZG, Wang G, Wu ZL. Structure-guided engineering of ChKRED20 from Chryseobacterium sp. CA49 for asymmetric reduction of aryl ketoesters. Enzyme Microb Technol 2019; 125:29-36. [PMID: 30885322 DOI: 10.1016/j.enzmictec.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Abstract
ChKRED20 is a robust NADH-dependent ketoreductase identified from the genome of Chryseobacterium sp. CA49 that can use 2-propanol as the ultimate reducing agent. The wild-type can reduce over 100 g/l ketones for some pharmaceutical relevant substrates, exhibiting a remarkable potential for industrial application. In this work, to overcome the limitation of ChKRED20 to aryl ketoesters, we first refined the X-ray crystal structure of ChKRED20/NAD+ complex at a resolution of 1.6 Å, and then performed three rounds of iterative saturation mutagenesis at critical amino acid sites to reshape the active cavity of the enzyme. For methyl 2-oxo-2-phenylacetate and ethyl 3-oxo-3-phenylpropanoate, several gain-of-activity mutants were achieved, and for ethyl 2-oxo-4-phenylbutanoate, improved mutants were achieved with kcat/Km increasing to 196-fold of the wild-type. All three substrates were completely reduced at 100 g/l loading catalyzed with selected ChKRED20 mutants, and deliver the corresponding chiral alcohols with >90% isolated yield and 97 - >99%ee.
Collapse
Affiliation(s)
- Tong-Biao Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Jiao Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yun Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Xiao-Qiong Pei
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Zhong-Liu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
41
|
Hubbell AK, LaPointe AM, Lamb JR, Coates GW. Regioselective Carbonylation of 2,2-Disubstituted Epoxides: An Alternative Route to Ketone-Based Aldol Products. J Am Chem Soc 2019; 141:2474-2480. [DOI: 10.1021/jacs.8b12286] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aran K. Hubbell
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jessica R. Lamb
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|