1
|
Huang M, Hua Z, Guzman R, Ren Z, Gu P, Yang S, Chen H, Zhang D, Ding Y, Ye Y, Li C, Huang Y, Shao R, Zhou W, Xu X, Wang Y. Stoichiometry-engineered phase transition in a two-dimensional binary compound. Nat Commun 2025; 16:4162. [PMID: 40324982 PMCID: PMC12052965 DOI: 10.1038/s41467-025-59429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Due to complex thermodynamic and kinetic mechanism, phase engineering in nanomaterials is often limited by restricted phases and small-scale synthesis, hindering material diversity and scalability. Here, we demonstrate the exploration to unlock the stoichiometry as a degree of freedom for phase engineering in the Pd-Te binary compound. By reducing diffusion rates, we effectively engineer the stoichiometry of the reactants. We visualize the kinetic process, showing the stoichiometry transition from Pd10Te3 to PdTe2 through a sequential multi-step nucleation process. In total, five distinct phases are identified, demonstrating the potential to enhance phase diversity by fine-tuning stoichiometry. By controlling spatially uniform nucleation and halting the phase transition at precise points, we achieve stoichiometry-controllable wafer-scale growth. Notably, four of these phases exhibit superconducting properties. Our findings offer insights into the mechanism of phase transition through stoichiometry engineering, enabling the expansion of the phase library in nanomaterials and advancing scalable applications.
Collapse
Affiliation(s)
- Mengting Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Ze Hua
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Roger Guzman
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Ren
- Centre for Quantum Physics Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Pingfan Gu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shiqi Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Hui Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Decheng Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiming Ding
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Caizhen Li
- Centre for Quantum Physics Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wu Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaolong Xu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Zhang T, Tong Y, Pan C, Pei J, Wang X, Liu T, Yin B, Wang P, Gao Y, Tong L, Yang W. Challenging the ideal strength limit in single-crystalline gold nanoflakes through phase engineering. Nat Commun 2025; 16:926. [PMID: 39843412 PMCID: PMC11754920 DOI: 10.1038/s41467-025-56047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Materials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~102 MPa) is significantly lower than its ideal theoretical limit. Here, through phase engineering, we show that defect-free single-crystalline gold nanoflakes with the hexagonal close-packed (HCP) phase can exhibit a strength of 6.0 GPa, which is beyond the ideal theoretical limit of the conventional FCC counterpart. The lattice structure is thickness-dependent and the FCC-HCP phase transformation happens in the range of 11-13 nm. Suspended-nanoindentations based on atomic force microscopy (AFM) show that the Young's modulus and tensile strength are also thickness-and phase- dependent. The maximum strength is reached in HCP nanoflakes thinner than 10 nm. First-principles and molecular dynamics (MD) calculations demonstrate that the mechanical properties arise from the unconventional HCP structure as well as the strong surface effect. Our study provides valuable insights into the fabrication of nanometals with extraordinary mechanical properties through phase engineering.
Collapse
Affiliation(s)
- Tong Zhang
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuanbiao Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Hangzhou, China
| | - Chenxinyu Pan
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Hangzhou, China
| | - Jun Pei
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xiaomeng Wang
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Tao Liu
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Binglun Yin
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Pan Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Hangzhou, China.
| | - Yang Gao
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Limin Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Hangzhou, China
| | - Wei Yang
- Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang J, Ye J, Chen S, Zhang Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules 2024; 29:1617. [PMID: 38611896 PMCID: PMC11013576 DOI: 10.3390/molecules29071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/14/2024] Open
Abstract
The crystal phase, alongside the composition, morphology, architecture, facet, size, and dimensionality, has been recognized as a critical factor influencing the properties of noble metal nanomaterials in various applications. In particular, unconventional crystal phases can potentially enable fascinating properties in noble metal nanomaterials. Recent years have witnessed notable advances in the phase engineering of nanomaterials (PEN). Within the accessible strategies for phase engineering, the effect of strain cannot be ignored because strain can act not only as the driving force of phase transition but also as the origin of the diverse physicochemical properties of the unconventional crystal phase. In this review, we highlight the development of unconventional crystal-phase noble metal nanomaterials within strain engineering. We begin with a short introduction of the unconventional crystal phase and strain effect in noble metal nanomaterials. Next, the correlations of the structure and performance of strain-engineered unconventional crystal-phase noble metal nanomaterials in electrocatalysis are highlighted, as well as the phase transitions of noble metal nanomaterials induced by the strain effect. Lastly, the challenges and opportunities within this rapidly developing field (i.e., the strain engineering of unconventional crystal-phase noble metal nanocatalysts) are discussed.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | | | | | - Qinyong Zhang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
4
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Li Q, Xu B, Quan Z. Pressure-Regulated Excitonic Transitions in Emergent Metal Halides. Acc Chem Res 2023; 56:3282-3291. [PMID: 37890133 DOI: 10.1021/acs.accounts.3c00537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ConspectusEmergent metal halides are generating significant interest as novel optical materials, and their diverse applications have brought them to the spotlight of chemistry and material science. The optical properties of semiconducting metal halides are fundamentally dominated by excitonic transitions, which refer to the complex processes of excitonic formation, self-trapping, as well as subsequent transitions of intersystem crossing (ISC) and internal conversion (IC). In this regard, high pressure has recently opened a new research dimension to regulate excitonic transitions in metal halides via continuous structural modulations, to understand the intriguing excitonic emissions from a new perspective. In this Account, we aim to rationalize the fundamental strategy for modulating and optimizing the optical properties of metal halides based on delicate exciton regulation via high-pressure method. First, the band gaps of metal halides that are directly related to the efficiency of excitonic formation, are accurately modulated through contraction, distortion, and destruction of metal-halogen polyhedra under compression. Then, considerable enhancement of self-trapped exciton emission is demonstrated by inducing proper polyhedral distortions via high-pressure method. Furthermore, the emission energy of metal halides could also be controllably and widely tuned through pressure-modulated excitonic transitions. Upon compression on different metal halides, excitonic IC is promoted with sufficient polyhedral distortions, and different sets of ISC could also be achieved. In the end, we emphasize the significance of high-pressure investigations in uncovering the complex excitonic transitions in emergent metal halides and predicting novel metal halides with desired optical properties at ambient conditions. It is expected that these discussions could inspire researchers in different fields to perform interdisciplinary high-pressure studies on novel functional materials.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Shandong 252000, P. R. China
| | - Bin Xu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
6
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Li G, Zhang H, Han Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem Rev 2023; 123:10728-10749. [PMID: 37642645 DOI: 10.1021/acs.chemrev.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phase engineering of nanomaterials (PEN) is an emerging field that aims to tailor the physicochemical properties of nanomaterials by precisely manipulating their crystal phases. To advance PEN effectively, it is vital to possess the capability of characterizing the structures and compositions of nanomaterials with precision. Transmission electron microscopy (TEM) is a versatile tool that combines reciprocal-space diffraction, real-space imaging, and spectroscopic techniques, allowing for comprehensive characterization with exceptional resolution in the domains of time, space, momentum, and, increasingly, even energy. In this Review, we first introduce the fundamental mechanisms behind various TEM-related techniques, along with their respective application scopes and limitations. Subsequently, we review notable applications of TEM in PEN research, including applications in fields such as metallic nanostructures, carbon allotropes, low-dimensional materials, and nanoporous materials. Specifically, we underscore its efficacy in phase identification, composition and chemical state analysis, in situ observations of phase evolution, as well as the challenges encountered when dealing with beam-sensitive materials. Furthermore, we discuss the potential generation of artifacts during TEM imaging, particularly in scanning modes, and propose methods to minimize their occurrence. Finally, we offer our insights into the present state and future trends of this field, discussing emerging technologies including four-dimensional scanning TEM, three-dimensional atomic-resolution imaging, and electron microscopy automation while highlighting the significance and feasibility of these advancements.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hui Zhang
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
9
|
Ge Y, Huang B, Li L, Yun Q, Shi Z, Chen B, Zhang H. Structural Transformation of Unconventional-Phase Materials. ACS NANO 2023. [PMID: 37428980 DOI: 10.1021/acsnano.3c01922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The structural transformation of materials, which involves the evolution of different structural features, including phase, composition, morphology, etc., under external conditions, represents an important fundamental phenomenon and has drawn substantial research interest. Recently, materials with unconventional phases that are different from their thermodynamically stable ones have been demonstrated to possess distinct properties and compelling functions and can further serve as starting materials for structural transformation studies. The identification and mechanism study of the structural transformation process of unconventional-phase starting materials can not only provide deep insights into their thermodynamic stability in potential applications but also offer effective approaches for the synthesis of other unconventional structures. Here, we briefly summarize the recent research progress on the structural transformation of some typical starting materials with various unconventional phases, including the metastable crystalline phase, amorphous phase, and heterophase, induced by different approaches. The importance of unconventional-phase starting materials in the structural modulation of resultant intermediates and products will be highlighted. The employment of diverse in situ/operando characterization techniques and theoretical simulations in studying the mechanism of the structural transformation process will also be introduced. Finally, we discuss the existing challenges in this emerging research field and provide some future research directions.
Collapse
Affiliation(s)
- Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Guo Z, Yu G, Zhang Z, Han Y, Guan G, Yang W, Han MY. Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206700. [PMID: 36620937 DOI: 10.1002/adma.202206700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/21/2022] [Indexed: 06/09/2023]
Abstract
The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiguo Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
11
|
Zhang T, Yong X, Yu J, Wang Y, Wu M, Yang Q, Hou X, Liu Z, Wang K, Yang X, Lu S, Zou B. Brightening Blue Photoluminescence in Nonemission MOF-2 by Pressure Treatment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211729. [PMID: 36960911 DOI: 10.1002/adma.202211729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Indexed: 05/17/2023]
Abstract
As equally essential as the synthesis of new materials, maneuvering new structure configurations can endow the brand-new functional properties to existing materials, which is also one of the core goals in the synthesis community. In this respect, pressure-induced emission (PIE) that triggers photoluminescence (PL) in nonemission materials is an emerging stimuli-responsive smart materials technology. In the PIE paradigms, harvesting bright PL at ambient conditions, however, has remained elusive. Herein, a remarkable PIE phenomenon is reported in initially nonemission Zn(BDC)(DMF)(H2 O) (MOF-2), which shows bright blue-emission at 455 nm under pressure. Intriguingly, the bright blue PL with an excellent photoluminescence quantum yield up to 70.4% is unprecedentedly retained to ambient conditions upon decompression from 16.2 GPa. The detailed structural analyses combined with density functional theory calculations reveal that hydrogen bonding cooperativity effect elevates powerfully the rotational barrier of the linker rotor to 3.87 eV mol-1 from initial 0.91 eV mol-1 through pressure treatment. The downgrade rotational freedom turns on PL of MOF-2 after releasing pressure completely. This is the first case of harvesting PIE to ambient conditions. These findings offer a new platform for the creation of promising alternatives to high-performance PL materials based on initially nonemission counterparts.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xue Yong
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Jingkun Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Min Wu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xuyuan Hou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| |
Collapse
|
12
|
Stabilization of unprecedented crystal phases of metal nanomaterials. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Sharma S, Pasricha R, Weston J, Blanton T, Jagannathan R. Synthesis of Self-Assembled Single Atomic Layer Gold Crystals-Goldene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54992-55003. [PMID: 36453468 PMCID: PMC9756290 DOI: 10.1021/acsami.2c19743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
We report, for the first time, a technique to synthesize free-standing, one-atom thick 2D gold crystals (namely, goldene) and self-assembled 2D periodic arrays of goldene. High-resolution transmission electron microscopy (HRTEM) imaging of goldene revealed herringbone and honeycomb lattices, which are primarily gold surface features due to its reconstruction. Imaging of these surface-only features by a nonsurface characterization technique such as HRTEM is an unequivocal proof of the absence of three-dimensionality in goldene. Atomic force microscopy confirmed 1-2 Å thickness of goldene. High-resolution X-ray photoelectron spectroscopy (HR-XPS), selective area electron diffraction, and energy-dispersive X-ray spectroscopy confirmed the chemical identity of goldene. We discovered the phenomenon of electric field-induced self-assembly of goldene supracrystals with a herringbone structure and developed an electric field printing (e-print) technique for goldene arrays. Goldene showed a semiconductor response with a knee voltage of ∼3.2 V, and I/V spectroscopy revealed periodic room temperature Coulomb blockade oscillations. These observations are consistent with the theoretical calculations reported in the literature predicting enhanced Coulombic interactions between gold valence electrons and the nucleus in stable 2D gold. Goldene exhibited multiple, intense, and well-resolved optical absorption peaks and several fine bands across the UV-vis region, and we calculated its optical band gap to be 3.59 eV. Magnetic force microscopy measurements of goldene periodic arrays showed a ∼5 mV peak amplitude confirming its ferromagnetism. Optical and magnetic properties of goldene are consistent with those reported in the literature for 2D planar gold clusters with less than 12 atoms.
Collapse
Affiliation(s)
- Sudhir
Kumar Sharma
- Engineering
Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Renu Pasricha
- Core
Technology Platform, New York University
Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - James Weston
- Core
Technology Platform, New York University
Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Thomas Blanton
- International
Centre for Diffraction Data, 12 Campus Boulevard, Newtown
Square, Pennsylvania 19073, United States
| | - Ramesh Jagannathan
- Engineering
Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
14
|
Li L, Liu C, Liu S, Wang J, Han J, Chan TS, Li Y, Hu Z, Shao Q, Zhang Q, Huang X. Phase Engineering of a Ruthenium Nanostructure toward High-Performance Bifunctional Hydrogen Catalysis. ACS NANO 2022; 16:14885-14894. [PMID: 35998344 DOI: 10.1021/acsnano.2c05776] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The physicochemical properties and catalytic performance of transition metals are highly phase-dependent. Ru-based nanomaterials are superior catalysts toward hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), but studies are mostly limited to conventional hexagonal-close-packed (hcp) Ru, mainly arising from the difficulty in synthesizing Ru with pure face-centered-cubic (fcc) phase. Herein, we report a crystal-phase-dependent catalytic study of MoOx-modified Ru (MoOx-Ru fcc and MoOx-Ru hcp) for bifunctional HER and HOR. MoOx-Ru fcc is proven to outperform MoOx-Ru hcp in catalyzing both HER and HOR with much higher catalytic activity and more durable stability. The modification effect of MoOx gives rise to optimal adsorption of H and OH especially on fcc Ru, which thus has resulted in the superior catalytic performance. This work highlights the significance of phase engineering in constructing superior electrocatalysts and may stimulate more efforts on phase engineering of other metal-based materials for diversified applications.
Collapse
Affiliation(s)
- Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Yan W, An C, Shen Y, Zeng S, An C. Methane plasma-mediated phase engineering of Ni nanosheets for alkaline hydrogen evolution. NANOSCALE 2022; 14:12275-12280. [PMID: 35876831 DOI: 10.1039/d2nr01525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Engineering of the crystal structures of metallic nanomaterials is an alternative avenue to control the size and shape of nanocatalysts. However, the phase-controlled synthesis of Ni nanocatalysts is challenging because of its low reduction potential under mild conditions. We developed a room-temperature CH4 plasma conversion of Ni(OH)2 nanosheets to hexagonal close packed (hcp) Ni while maintaining a pristine shape. Increasing the temperature resulted in the formation of face-centered cubic (fcc) Ni. The hcp Ni nanosheets exhibited an overpotential of 85 mV at 10 mA cm-2 for an electrocatalytic hydrogen evolution reaction (HER) in alkaline solution, which was superior to that of the fcc (122 mV) counterpart. Density-functional-theory calculations demonstrated that during the HER, the d-band center of hcp Ni was closer to the Fermi level, which aided the formation of H2 molecules. This work could facilitate the synthesis of other metastable metals and metallic alloys with high efficiency for various applications.
Collapse
Affiliation(s)
- Wenxiu Yan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China.
| | - Chao An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China.
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China.
| | - Shuyuan Zeng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
17
|
Li Q, Cheng H, Xing C, Guo S, Wu X, Zhang L, Zhang D, Liu X, Wen X, Lü X, Zhang H, Quan Z. Pressure-Induced Amorphization and Crystallization of Heterophase Pd Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106396. [PMID: 35344277 DOI: 10.1002/smll.202106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Control of structural ordering in noble metals is very important for the exploration of their properties and applications, and thus it is highly desired to have an in-depth understanding of their structural transitions. Herein, through high-pressure treatment, the mutual transformations between crystalline and amorphous phases are achieved in Pd nanosheets (NSs) and nanoparticles (NPs). The amorphous domains in the amorphous/crystalline Pd NSs exhibit pressure-induced crystallization (PIC) phenomenon, which is considered as the preferred structural response of amorphous Pd under high pressure. On the contrary, in the spherical crystalline@amorphous core-shell Pd NPs, pressure-induced amorphization (PIA) is observed in the crystalline core, in which the amorphous-crystalline phase boundary acts as the initiation site for the collapse of crystalline structure. The distinct PIC and PIA phenomena in two different heterophase Pd nanostructures might originate from the different characteristics of Pd NSs and NPs, including morphology, amorphous-crystalline interface, and lattice parameter. This work not only provides insights into the phase transition mechanisms of amorphous/crystalline heterophase noble metal nanostructures, but also offers an alternative route for engineering noble metals with different phases.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Caihong Xing
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Xiaotong Wu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Liming Zhang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Dongzhou Zhang
- Partnership for Extreme Crystallography, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
18
|
Kismarahardja A, Wang Z, Li D, Wang L, Fu L, Chen Y, Fan Z, Chen Y, Han X, Zhang H, Liao X. Deformation-Induced Phase Transformations in Gold Nanoribbons with the 4H Phase. ACS NANO 2022; 16:3272-3279. [PMID: 35072464 DOI: 10.1021/acsnano.1c11166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanical stability of metallic nanomaterials has been intensively studied due to their unique structures and promising applications. Although extensive investigations have been carried out on the deformation behaviors of metallic nanomaterials, the atomic-scale deformation mechanism of metallic nanomaterials with unconventional hexagonal structures remains unclear because of the lack of direct experimental observation. Here, we conduct an atomic-resolution in situ tensile-straining transmission electron microscopy investigation on the deformation mechanism of gold nanoribbons with the 4H (hexagonal) phase. Our results reveal that plastic deformation in the 4H gold nanoribbons comprises three stages, in which both full and partial dislocations are involved. At the early deformation stage, plastic deformation is governed by full dislocation activities. Partial dislocations are subsequently activated in regions that have undergone full dislocation gliding, leading to phase transformation from the 4H phase to the face-centered cubic (FCC) phase. At the last stage of the deformation process, the volume fraction of the FCC phase increases, and full dislocation activities in the FCC regions also play an important role.
Collapse
Affiliation(s)
- Ade Kismarahardja
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhanxin Wang
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Dongwei Li
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Lihua Wang
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Libo Fu
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Yujie Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Xu W, Wu X, Yuan Y, Qin Y, Liu Y, Wang Z, Zhang D, Li H, Lai J, Wang L. Multiphase PdCu nanoparticles with improved C1 selectivity in ethanol oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00869f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PdCu/CNT-300 catalysts with a mixed crystalline phase were successfully prepared. The introduction of Cu elements and the presence of a phase interface in the mixed phase facilitated electron transfer and increased the rate of the EOR.
Collapse
Affiliation(s)
- Wenxia Xu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xueke Wu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yueyue Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingnan Qin
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanru Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zuochao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dan Zhang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
20
|
Jiang D, Song H, Wen T, Jiang Z, Li C, Liu K, Yang W, Huang H, Wang Y. Pressure-Driven Two-Step Second-Harmonic-Generation Switching in BiOIO3. Angew Chem Int Ed Engl 2021; 61:e202116656. [PMID: 34964244 DOI: 10.1002/anie.202116656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Materials with multi-stabilities controllable by external stimuli are potential for high-capacity information storage and switch devices. Herein, we report the observation of pressure-driven two-step second-harmonic-generation (SHG) switching in polar BiOIO 3 for the first time. Structure analyses reveal two pressure-induced phase transitions in BiOIO 3 from the ambient noncentrosymmetric phase (SHG-high) to an intermediate noncentrosymmetric phase (SHG-intermediate) and then to a centrosymmetric phase (SHG-off). The three-state SHG switching is inspected by in-situ high-pressure powder SHG and polarization-dependent single-crystal SHG measurements. Local structure analyses based on the in-situ Raman spectra and X-ray absorption spectra reveal that the SHG switching are caused by the step-wise suppression of lone-pair electrons on the [IO 3 ] - units. The dramatic evolution of the functional units under compression also leads to subtle changes of the optical absorption edge of BiOIO 3 . Materials with switchable multiple stabilities provide a state-of-art platform for next-generation switch and information storage devices.
Collapse
Affiliation(s)
- Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Huimin Song
- Peking University, School of Materials Science and Engineering, CHINA
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| | - Hongwei Huang
- China University of Geosciences Beijing, No. 29, Xueyuan Road, Haidian DIstrict, 100083, Beijing, CHINA
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research, HP-ISSC, CHINA
| |
Collapse
|
21
|
Jiang D, Song H, Wen T, Jiang Z, Li C, Liu K, Yang W, Huang H, Wang Y. Pressure‐Driven Two‐Step Second‐Harmonic‐Generation Switching in BiOIO3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Huimin Song
- Peking University School of Materials Science and Engineering CHINA
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| | - Hongwei Huang
- China University of Geosciences Beijing No. 29, Xueyuan Road, Haidian DIstrict 100083 Beijing CHINA
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research HP-ISSC CHINA
| |
Collapse
|
22
|
Zhao R, Yue X, Li Q, Fu G, Lee JM, Huang S. Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100391. [PMID: 34159714 DOI: 10.1002/smll.202100391] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of anion-exchange membrane technology and adequate supply of high-performance non-noble metal oxygen reduction reaction (ORR) catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells (AEMFCs) become possible. However, the kinetics of the anodic hydrogen oxidation reaction (HOR) in AEMFCs is significantly decreased compared to the HOR in proton exchange membrane fuel cells (PEMFCs). Therefore, it is urgent to develop HOR catalysts with low price, high activity, and robust stability. However, comprehensive timely reviews on this specific subject do not exist enough yet and it is necessary to update reported major achievements and to point out future investigation directions. In this review, the current reaction mechanisms on HOR are summarized and deeply understood. The debates between the mechanisms are greatly harmonized. Recent advances in developing highly active and stable electrocatalysts for the HOR are reviewed. Moreover, the side reaction control is for the first time systematically introduced. Finally, the challenges and future opportunities in the field of HOR catalysis are outlined.
Collapse
Affiliation(s)
- Ruopeng Zhao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation, Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
23
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Li Z, Ai X, Chen H, Liang X, Li X, Wang D, Zou X. Asymmetrically strained hcp rhodium sublattice stabilized by 1D covalent boron chains as an efficient electrocatalyst. Chem Commun (Camb) 2021; 57:5075-5078. [PMID: 33889894 DOI: 10.1039/d1cc00774b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermetallic rhodium boride (RhB) comprising an asymmetrically strained hcp Rh sublattice is synthesized. The covalent interaction of interstitial boron atoms is found to be the main contributor to the generation of asymmetric strains and the stabilization of the hcp Rh sublattice. In addition, RhB is identified as a hydrogen-evolving eletrocatalyst with Pt-like activity, because the Rh(d)-B(s,p) orbital hybridization induces an optimized electronic structure.
Collapse
Affiliation(s)
- Zhenyu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sun M, Geng T, Yong X, Lu S, Ai L, Xiao G, Cai J, Zou B, Zang S. Pressure-Triggered Blue Emission of Zero-Dimensional Organic Bismuth Bromide Perovskite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004853. [PMID: 33977076 PMCID: PMC8097370 DOI: 10.1002/advs.202004853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Indexed: 05/20/2023]
Abstract
Understanding the structure-property relationships in Zero-dimensional (0D) organic-inorganic metal halide perovskites (OMHPs) is essential for their use in optoelectronic applications. Moreover, increasing the emission intensity, particularly for blue emission, is considerably a challenge. Here, intriguing pressure-induced emission (PIE) is successfully achieved from an initially nonluminous 0D OMHP [(C6H11NH3)4BiBr6]Br·CH3CN (Cy4BiBr7 ) upon compression. The emission intensity increases significantly, even reaching high-efficiency blue luminescence, as the external pressure is increased to 4.9 GPa. Analyses of the in situ high-pressure experiments and first-principle calculations indicate that the observed PIE can be attributed to the enhanced exciton binding energy associated with [BiBr6]3- octahedron distortion under pressure. This study of Cy4BiBr7 sheds light on the relationship between the structure and optical properties of OMHPs. The results may improve potential applications of such materials in the fields of pressure sensing and trademark security.
Collapse
Affiliation(s)
- Meng‐En Sun
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Ting Geng
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Xue Yong
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Siyu Lu
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Lin Ai
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Jinmeng Cai
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
26
|
Li Y, Wang M, Yi Y, Lu C, Dou S, Sun J. Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005573. [PMID: 33734605 DOI: 10.1002/smll.202005573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Layered transition metal dichalcogenides (TMDs) of group VIB have been widely used in the realms of energy storage and conversions. Along with the existence of semiconducting states, their metallic phases have recently attracted numerous attentions owing to their fascinating physical and chemical properties. Many efforts have been devoted to obtain metallic TMDs with high purity and yield. Nevertheless, such metallic phase is thermodynamically metastable and tends to convert into semiconducting phase, which necessitates the exploration over effective strategies to ensure the stability. In this review, typical fabrication routes are introduced and those critical factors during preparation are elaborately discussed. Moreover, the stabilized strategies are summarized with concrete examples highlighting the key mechanisms toward efficient stabilization. Finally, emerging energy applications are overviewed. This review presents comprehensive research status of metallic group VIB TMDs, aiming to facilitate further scientific investigations and promote future practical applications in the fields of energy storage and conversion.
Collapse
Affiliation(s)
- Yihui Li
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Menglei Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Chen Lu
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| |
Collapse
|
27
|
Metal-Organic Framework-Based Stimuli-Responsive Polymers. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.
Collapse
|
28
|
Wang Y, Liu H, Wu M, Wang K, Sui Y, Liu Z, Lu S, Nie Z, Tse JS, Yang X, Zou B. New-phase retention in colloidal core/shell nanocrystals via pressure-modulated phase engineering. Chem Sci 2021; 12:6580-6587. [PMID: 34040733 PMCID: PMC8133026 DOI: 10.1039/d1sc00498k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Core/shell nanocrystals (NCs) integrate collaborative functionalization that would trigger advanced properties, such as high energy conversion efficiency, nonblinking emission, and spin-orbit coupling. Such prospects are highly correlated with the crystal structure of individual constituents. However, it is challenging to achieve novel phases in core/shell NCs, generally non-existing in bulk counterparts. Here, we present a fast and clean high-pressure approach to fabricate heterostructured core/shell MnSe/MnS NCs with a new phase that does not occur in their bulk counterparts. We determine the new phase as an orthorhombic MnP structure (B31 phase), with close-packed zigzagged arrangements within unit cells. Encapsulation of the solid MnSe nanorod with an MnS shell allows us to identify two separate phase transitions with recognizable diffraction patterns under high pressure, where the heterointerface effect regulates the wurtzite → rocksalt → B31 phase transitions of the core. First-principles calculations indicate that the B31 phase is thermodynamically stable under high pressure and can survive under ambient conditions owing to the synergistic effect of subtle enthalpy differences and large surface energy in nanomaterials. The ability to retain the new phase may open up the opportunity for future manipulation of electronic and magnetic properties in heterostructured nanostructures.
Collapse
Affiliation(s)
- Yixuan Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Hao Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Yongming Sui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - John S Tse
- Department of Physics and Engineering Physics, University of Saskatchewan Saskatoon Saskatchewan S7N 5E2 Canada
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| |
Collapse
|
29
|
Yu D, Gao L, Sun T, Guo J, Yuan Y, Zhang J, Li M, Li X, Liu M, Ma C, Liu Q, Pan A, Yang J, Huang H. Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO 2 Electroreduction. NANO LETTERS 2021; 21:1003-1010. [PMID: 33411541 DOI: 10.1021/acs.nanolett.0c04051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis of the unconventional phase of noble metal nanocrystals may create new opportunities in exploring intriguing physicochemical properties but remains challenging. In the research field of thin film growth, the interface strain offers a general driving force to stabilize the metastable phase of epitaxial film. Herein we extend this concept to the field of noble metal nanocrystals and report the solution synthesis of metastable face-centered tetragonal Au that has not been discovered before. The successful synthesis relies on the formation of intermetallic AuCu3@Au core-shell structure, where the interface strain stabilizes the metastable fct Au overlayer. Compared with the face-centered cubic Au counterpart, the metastable fct Au shows greatly improved catalytic activity toward CO2 reduction to CO. The density functional theory calculations and spectroscopic studies reveal that the metastable fct Au upshifts the d-band center, which lowers the energy barrier of key intermediate COOH* formation and thus facilitates the reaction kinetics.
Collapse
Affiliation(s)
- Dan Yu
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Lei Gao
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Jingchun Guo
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuliang Yuan
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jiawei Zhang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Mengfan Li
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Chao Ma
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Qinghua Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Anlian Pan
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
30
|
Li J, Liu B, Dong J, Li C, Dong Q, Lin T, Liu R, Wang P, Shen P, Li Q, Liu B. Size and morphology effects on the high pressure behaviors of Mn 3O 4 nanorods. NANOSCALE ADVANCES 2020; 2:5841-5847. [PMID: 36133888 PMCID: PMC9419549 DOI: 10.1039/d0na00610f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 06/16/2023]
Abstract
The high-pressure behaviors of Mn3O4 nanorods were studied by high pressure powder synchrotron X-ray diffraction and Raman spectroscopy. We found that the initial hausmannite phase transforms into the orthorhombic CaTi2O4-type structure, and then to the marokite-like phase upon compression. Upon decompression, the marokite-like phase is retained at the ambient pressure. Compared with Mn3O4 bulk and nanoparticles, Mn3O4 nanorods show obviously different phase transition behaviors. Upon compression, the phase transition sequence of Mn3O4 nanorods is similar with the nanoparticles, while the decompression behavior is consistent with the bulk counterparts. The hausmannite phase shows higher stability and smaller bulk modulus in Mn3O4 nanorods than those of the corresponding bulk and nanoparticles. We proposed that the higher phase stability and compressibility of the nanorods are concerned with their nanosize effects and the rod morphology. Both the growth orientation and the suppressed Jahn-Teller distortion of the Mn3O4 nanorods are crucial factors for their high pressure behaviors.
Collapse
Affiliation(s)
- Juanying Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Bo Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Junyan Dong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Chenyi Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Qing Dong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Tao Lin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Peng Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Pengfei Shen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518055 China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University No. 2699 Qianjin Street Changchun 130012 People's Republic of China
| |
Collapse
|
31
|
Lu S, Liang J, Long H, Li H, Zhou X, He Z, Chen Y, Sun H, Fan Z, Zhang H. Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. Acc Chem Res 2020; 53:2106-2118. [PMID: 32972128 DOI: 10.1021/acs.accounts.0c00487] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gold (Au), a transition metal with an atomic number of 79 in the periodic table of elements, was discovered in approximately 3000 B.C. Due to the ultrahigh chemical stability and brilliant golden color, Au had long been thought to be a most inert material and was widely utilized in art, jewelry, and finance. However, it has been found that Au becomes exceptionally active as a catalyst when its size shrinks to the nanometer scale. With continuous efforts toward the exploration of catalytic applications over the past decades, Au nanomaterials show critical importance in many catalytic processes. Besides catalysis, Au nanomaterials also possess other promising applications in plasmonics, sensing, biology and medicine, due to their unique localized surface plasmon resonance, intriguing biocompatibility, and superior stability. Unfortunately, the practical applications of Au nanomaterials could be limited because of the scarce reserves and high price of Au. Therefore, it is quite essential to further explore novel physicochemical properties and functions of Au nanomaterials so as to enhance their performance in different types of applications.Recently, phase engineering of nanomaterials (PEN), which involves the rearrangement of atoms in the unit cell, has emerged as a fantastic and effective strategy to adjust the intrinsic physicochemical properties of nanomaterials. In this Account, we give an overview of the recent progress on crystal phase control of Au nanomaterials using wet-chemical synthesis. Starting from a brief introduction of the research background, we first describe the development history of wet-chemical synthesis of Au nanomaterials and especially emphasize the key research findings. Subsequently, we introduce the typical Au nanomaterials with untraditional crystal phases and heterophases that have been observed, such as 2H, 4H, body-centered phases, and crystal-phase heterostructures. Importantly, crystal phase control of Au nanomaterials by wet-chemical synthesis is systematically described. After that, we highlight the importance of crystal phase control in Au nanomaterials by demonstrating the remarkable effect of crystal phases on their physicochemical properties (e.g., electronic and optical properties) and potential applications (e.g., catalysis). Finally, after a concise summary of recent advances in this emerging research field, some personal perspectives are provided on the challenges, opportunities, and research directions in the future.
Collapse
Affiliation(s)
- Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Huiwu Long
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Han S, Cai C, Xia GJ, Sun C, Shi X, Zhou W, Li J, Wang YG, Gu M. Carbon Monoxide Gas Induced 4H-to- fcc Phase Transformation of Gold As Revealed by In-Situ Transmission Electron Microscopy. Inorg Chem 2020; 59:14415-14423. [PMID: 32945649 DOI: 10.1021/acs.inorgchem.0c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hexagonal 4H phase gold nanostructures shows great potential for catalysis, optical, and biomedical fields. However, its phase stability remains largely unclear. Here, we report the 4H-to-face-centered cubic (fcc) phase transformation of gold induced by CO gas interactions and an electron beam observed through in-situ transmission electron microscopy (in-situ TEM). The atomic scale transformation mechanism is revealed experimentally and supported by first-principle calculations. Density functional theory calculations show that the 4H-to-fcc phase transformation processes via the transition of layer sliding with expanded layer spacing, which can be facilitated by both the adsorbed CO molecules and the extra electron provided by the electron beam. The transformation first takes place at the edges of the nanorods with the collective assistance of both CO and extra electrons, and then the inner portion of the bulk crystal follows with extra electrons as the lubricant. These results promote the understanding of the toxic effect of CO gas and shining light on the structural conversion and atomic migration of noble metal catalysts when they interact with CO molecules.
Collapse
Affiliation(s)
| | | | | | - Congli Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | | | - Weidong Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Li
- Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
33
|
Li Q, Mosquera MA, Jones LO, Parakh A, Chai J, Jin R, Schatz GC, Gu XW. Pressure-Induced Optical Transitions in Metal Nanoclusters. ACS NANO 2020; 14:11888-11896. [PMID: 32790326 DOI: 10.1021/acsnano.0c04813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, a comprehensive understanding of the relationship between atomic structures and optical properties of ultrasmall metal nanoclusters with diameters between 1 and 3 nm is lacking. To address this challenge, it is necessary to develop tools for perturbing the atomic structure and modulating the optical properties of metal nanoclusters beyond what can be achieved using synthetic chemistry. Here, we present a systematic high-pressure study on a series of atomically precise ligand-protected metal nanoclusters. A diamond anvil cell is used as a high-pressure chamber to gradually compress the metal nanoclusters, while their optical properties are monitored in situ. Our experimental results show that the photoluminescence (PL) of these nanoclusters is enhanced by up to 2 orders of magnitude at pressures up to 7 GPa. The absorption onset red-shifts with increasing pressure up to ∼12 GPa. Density functional theory calculations reveal that the red-shift arises because of narrowing of the spacing between discrete energy levels of the cluster due to delocalization of the core electrons to the carbon ligands. The pressure-induced PL enhancement is ascribed to (i) the enhancement of the near-band-edge transition strength, (ii) suppression of the nonradiative vibrations, and (iii) hindrance of the excited-state structural distortions. Overall, our results demonstrate that high pressure is an effective tool for modulating the optical properties and improving the luminescence brightness of metal nanoclusters. The insights into structure-property relations obtained here also contribute to the rational design of metal nanoclusters for various optical applications.
Collapse
Affiliation(s)
- Qi Li
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Martín A Mosquera
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Abhinav Parakh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinsong Chai
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Sow C, Sarma A, Schropp A, Dzhigaev D, Keller TF, Schroer CG, Sanyal MK, Kulkarni GU. Unraveling the Spatial Distribution of Catalytic Non-Cubic Au Phases in a Bipyramidal Microcrystallite by X-ray Diffraction Microscopy. ACS NANO 2020; 14:9456-9465. [PMID: 32491827 DOI: 10.1021/acsnano.0c02031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tuning of crystal structures and shapes of submicrometer-sized noble metals have revealed fascinating catalytic, optical, electrical, and magnetic properties that enable developments of environmentally friendly and durable nanotechnological applications. Several attempts have been made to stabilize Au, knowing its extraordinary stability in its conventional face-centered cubic (fcc) lattice, into different lattices, particularly to develop Au-based catalysis for industry. Here, we report the results from scanning X-ray diffraction microscopy (SXDM) measurements on an ambient-stable penta-twinned bipyramidal Au microcrystallite (about 1.36 μm in length and 230 nm in diameter) stabilized in noncubic lattice, exhibiting catalytic properties. With more than 82% of the crystal volume, the majority crystallite structure is identified as body-centered orthorhombic (bco), while the remainder is the standard fcc. A careful analysis of the diffraction maps reveals that the tips are made up of fcc, while the body contains mainly bco with very high strain. The reported structural imaging technique of representative single crystallite will be useful to investigate the growth mechanism of similar multiphase nano- and micrometer-sized crystals.
Collapse
Affiliation(s)
- Chaitali Sow
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| | - Abhisakh Sarma
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Thomas F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Physics Department, Universität Hamburg, D-20355 Hamburg, Germany
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Physics Department, Universität Hamburg, D-20355 Hamburg, Germany
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Giridhar U Kulkarni
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
35
|
Qu M, Zhang F, Wang D, Li H, Hou J, Zhang X. Observation of Non‐FCC Copper in Alkynyl‐Protected Cu
53
Nanoclusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mei Qu
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Fu‐Qiang Zhang
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Dian‐Hui Wang
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
| | - Huan Li
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
| | - Juan‐Juan Hou
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Xian‐Ming Zhang
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| |
Collapse
|
36
|
Abstract
Phase has emerged as an important structural parameter - in addition to composition, morphology, architecture, facet, size and dimensionality - that determines the properties and functionalities of nanomaterials. In particular, unconventional phases in nanomaterials that are unattainable in the bulk state can potentially endow nanomaterials with intriguing properties and innovative applications. Great progress has been made in the phase engineering of nanomaterials (PEN), including synthesis of nanomaterials with unconventional phases and phase transformation of nanomaterials. This Review provides an overview on the recent progress in PEN. We discuss various strategies used to synthesize nanomaterials with unconventional phases and induce phase transformation of nanomaterials, by taking noble metals and layered transition metal dichalcogenides as typical examples. Moreover, we also highlight recent advances in the preparation of amorphous nanomaterials, amorphous-crystalline and crystal phase-based hetero-nanostructures. We also provide personal perspectives on challenges and opportunities in this emerging field, including exploration of phase-dependent properties and applications, rational design of phase-based heterostructures and extension of the concept of phase engineering to a wider range of materials.
Collapse
|
37
|
Fan WW, Cheng Y, Zheng LY, Cao QE. Reversible Phase Transition of Porous Coordination Polymers. Chemistry 2020; 26:2766-2779. [PMID: 31697441 DOI: 10.1002/chem.201903985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Porous coordination polymers or metal-organic frameworks with reversible phase-transition behavior possess some attractive properties, and can respond to external stimuli, including physical and chemical stimuli, in a dynamic fashion. Their phase transitions can be triggered by adsorption/desorption of guest molecules, temperature changes, high pressure, light irradiation, and electric fields; these mainly include two types of transitions: crystal-amorphous and crystal-crystal transitions. These types of porous coordination polymers have received much attention because of their interesting properties and potential applications. Herein, reversible phase transition porous coordination polymers are summarized and classified based on different stimuli sources. Corresponding typical examples are then introduced. Finally, examples of their applications in gas separation, chemical sensors, guest molecule encapsulation, and energy storage are also presented.
Collapse
Affiliation(s)
- Wen-Wen Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Yi Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Li-Yan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Yunnan University), Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, P.R. China
| |
Collapse
|
38
|
Uddin N, Zhang H, Du Y, Jia G, Wang S, Yin Z. Structural-Phase Catalytic Redox Reactions in Energy and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905739. [PMID: 31957161 DOI: 10.1002/adma.201905739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The structure-property engineering of phase-based materials for redox-reactive energy conversion and environmental decontamination nanosystems, which are crucial for achieving feasible and sustainable energy and environment treatment technology, is discussed. An exhaustive overview of redox reaction processes, including electrocatalysis, photocatalysis, and photoelectrocatalysis, is given. Through examples of applications of these redox reactions, how structural phase engineering (SPE) strategies can influence the catalytic activity, selectivity, and stability is constructively reviewed and discussed. As observed, to date, much progress has been made in SPE to improve catalytic redox reactions. However, a number of highly intriguing, unresolved issues remain to be discussed, including solar photon-to-exciton conversion efficiency, exciton dissociation into active reductive/oxidative electrons/holes, dual- and multiphase junctions, selective adsorption/desorption, performance stability, sustainability, etc. To conclude, key challenges and prospects with SPE-assisted redox reaction systems are highlighted, where further development for the advanced engineering of phase-based materials will accelerate the sustainable (active, reliable, and scalable) production of valuable chemicals and energy, as well as facilitate environmental treatment.
Collapse
Affiliation(s)
- Nasir Uddin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yaping Du
- School of Materials Science and Engineering, National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
39
|
Qu M, Zhang F, Wang D, Li H, Hou J, Zhang X. Observation of Non‐FCC Copper in Alkynyl‐Protected Cu
53
Nanoclusters. Angew Chem Int Ed Engl 2020; 59:6507-6512. [DOI: 10.1002/anie.202001185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Mei Qu
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Fu‐Qiang Zhang
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Dian‐Hui Wang
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
| | - Huan Li
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
| | - Juan‐Juan Hou
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Xian‐Ming Zhang
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen 041004 P. R. China
| |
Collapse
|
40
|
Han S, Xia GJ, Cai C, Wang Q, Wang YG, Gu M, Li J. Gas-assisted transformation of gold from fcc to the metastable 4H phase. Nat Commun 2020; 11:552. [PMID: 31992711 PMCID: PMC6987310 DOI: 10.1038/s41467-019-14212-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
The metastable hexagonal 4H-phase gold has recently attracted extensive interest due to its exceptional performance in catalysis. However, gold usually crystallizes to its lowest free energy structure called face-centered cubic (fcc). The phase transformation from the stable fcc phase to the metastable 4H phase is thus of great significance in crystal phase engineering. Herein, we report this unusual phenomenon on a 4H gold nanorod template with the aid of CO gas and an electron beam. In situ transmission electron microscopy was used to directly visualize the interface propagation kinetics between the 4H-Au-nanorod and fcc-Au nanoparticle. Epitaxial growth was initiated at the contact interface, and then propagated to convert all parts of these fcc nanoparticles to 4H phase. Density functional theory calculations and ab initio molecular dynamics simulations show that the CO molecules can assist the Au diffusion process and promote the flexibility of Au particles during the epitaxial growth. The phase transformation was driven by the reduction of Gibbs free energy by eliminating the interface between fcc and 4H phases. Crystal phase engineering enables the growth of nanostructures with controlled crystal phases that show superior functional properties. Here, the authors find that CO gas-metal atom interactions combined with the electron beam can trigger phase transformations of precious metals at room temperature.
Collapse
Affiliation(s)
- Shaobo Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China
| | - Guang-Jie Xia
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China
| | - Chao Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China
| | - Qi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China
| | - Yang-Gang Wang
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China.
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, 518055, Shenzhen, Guangdong, China.,Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
41
|
Geng T, Ma Z, Chen Y, Cao Y, Lv P, Li N, Xiao G. Bandgap engineering in two-dimensional halide perovskite Cs 3Sb 2I 9 nanocrystals under pressure. NANOSCALE 2020; 12:1425-1431. [PMID: 31912845 DOI: 10.1039/c9nr09533k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halide perovskites have attracted great attention owing to their outstanding performance in optoelectronic applications and solar cells. Recently, two-dimensional (2D) Cs3Sb2I9 nanocrystals (NCs) have attracted sustained interest due to their potentially useful photovoltaic behavior. However, their practical application is impeded by the large bandgap. In this study, the bandgap of 2D Cs3Sb2I9 NCs is successfully narrowed from 2.05 eV to 1.36 eV by means of a high pressure with a measurable rate of 33.7%. Optical changes of 2D Cs3Sb2I9 NCs originate from Sb-I bond contraction and I-Sb-I bond angle changes within the [SbI6]3- octahedra, which determines the overlap of orbitals. Angle dispersive synchrotron X-ray diffraction spectra and Raman spectra of Cs3Sb2I9 NCs indicate that the structural amorphization gradually begins at about 14.0 GPa and the changes are reversible once pressure is completely released. The band gap is slightly smaller after decompression than that under the initial ambient conditions, resulting from the incomplete recrystallization process. First-principles calculations further elucidate that variations in band gaps are mainly governed by the orbital interactions associated with the distortion of the Sb-I octahedral network upon compression. The research enhances the fundamental understanding of 2D Cs3Sb2I9 NCs and is expected to greatly advance the research progress of perovskites in band gap interception at high pressures. Meanwhile, this study demonstrates that pressure processing can be used as a robust strategy to improve materials-by-design in applications.
Collapse
Affiliation(s)
- Ting Geng
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Yun Q, Lu Q, Li C, Chen B, Zhang Q, He Q, Hu Z, Zhang Z, Ge Y, Yang N, Ge J, He YB, Gu L, Zhang H. Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS NANO 2019; 13:14329-14336. [PMID: 31774269 DOI: 10.1021/acsnano.9b07775] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, crystal-phase engineering has been emerging as a promising strategy to tune the physicochemical properties of noble metal catalysts and further improve their catalytic performance. However, the synthesis of noble metal catalysts with an unconventional crystal phase as well as desired composition and morphology still remains a great challenge. Herein, a series of PdM (M = Zn, Cd, ZnCd) nanosheets (NSs) with thickness less than 5 nm have been synthesized via a facile one-pot wet-chemical method. In particular, different from the conventional face-centered cubic (fcc) phase, PdM NSs possess an unconventional face-centered tetragonal (fct) phase. As a proof-of-concept application, the fct PdZn NSs exhibit significantly enhanced mass activity and stability in ethanol oxidation reaction, compared to the pure Pd NSs and commercial Pd black catalyst.
Collapse
Affiliation(s)
- Qinbai Yun
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- Institute for Sports Research , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Cuiling Li
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Qiyuan He
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhaoning Hu
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yiyao Ge
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , No. 1 Beiertiao , Zhongguancun, Beijing 100190 , China
| | - Jingjie Ge
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yan-Bing He
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School , Tsinghua University , Shenzhen 518055 , China
| | - Lin Gu
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics , Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100190 , China
| | - Hua Zhang
- Department of Chemistry , City University of Hong Kong , Kowloon , Hong Kong, China
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
43
|
Saleem F, Cui X, Zhang Z, Liu Z, Dong J, Chen B, Chen Y, Cheng H, Zhang X, Ding F, Zhang H. Size-Dependent Phase Transformation of Noble Metal Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903253. [PMID: 31441232 DOI: 10.1002/smll.201903253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 06/10/2023]
Abstract
As an important aspect of crystal phase engineering, controlled crystal phase transformation of noble metal nanomaterials has emerged as an effective strategy to explore novel crystal phases of nanomaterials. In particular, it is of significant importance to observe the transformation pathway and reveal the transformation mechanism in situ. Here, the phase transformation behavior of face-centered cubic (fcc) Au nanoparticles (fcc-AuNPs), adhering to the surface of 4H nanodomains in 4H/fcc Au nanorods, referred to as 4H-AuNDs, during in situ transmission electron microscopy imaging is systematically studied. It is found that the phase transformation is dependent on the ratio of the size of the monocrystalline nanoparticle (NP) to the diameter of 4H-AuND. Furthermore, molecular dynamics simulation and theoretical modeling are used to explain the experimental results, giving a size-dependent phase transformation diagram which provides a general guidance to predict the phase transformation pathway between fcc and 4H Au nanomaterials. Impressively, this method is general, which is used to study the phase transformation of other metal NPs, such as Pd, Ag, and PtPdAg, adhering to 4H-AuNDs. The work opens an avenue for selective phase engineering of nanomaterials which may possess unique physicochemical properties and promising applications.
Collapse
Affiliation(s)
- Faisal Saleem
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaoya Cui
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongqiang Liu
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Physics, Qufu Normal University, Qufu, 273165, China
| | - Jichen Dong
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
44
|
Chen Q, Cheng T, Fu H, Zhu Y. Crystal phase regulation in noble metal nanocrystals. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63385-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Zangoli M, Gazzano M, Monti F, Maini L, Gentili D, Liscio A, Zanelli A, Salatelli E, Gigli G, Baroncini M, Di Maria F. Thermodynamically versus Kinetically Controlled Self-Assembly of a Naphthalenediimide-Thiophene Derivative: From Crystalline, Fluorescent, n-Type Semiconducting 1D Needles to Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16864-16871. [PMID: 30993968 DOI: 10.1021/acsami.9b02404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The control over aggregation pathways is a key requirement for present and future technologies, as it can provide access to a variety of sophisticated structures with unique functional properties. In this work, we demonstrate an unprecedented control over the supramolecular self-assembly of a semiconductive material, based on a naphthalenediimide core functionalized with phenyl-thiophene moieties at the imide termini, by trapping the molecules into different arrangements depending on the crystallization conditions. The control of the solvent evaporation rate enables the growth of highly elaborated hierarchical self-assembled structures: either in an energy-minimum thermodynamic state when the solvent is slowly evaporated forming needle-shaped crystals (polymorph α) or in a local energy-minimum state when the solvent is rapidly evaporated leading to the formation of nanofibers (polymorph β). The exceptional persistence of the kinetically trapped β form allowed the study and comparison of its characteristics with that of the stable α form, revealing the importance of molecular aggregation geometry in functional properties. Intriguingly, we found that compared to the thermodynamically stable α phase, characterized by a J-type aggregation, the β phase exhibits (i) an unusual strong blue shift of the emission from the charge-transfer state responsible for the solid-state luminescent enhancement, (ii) a higher work function with a "rigid shift" of the electronic levels, as shown by Kelvin probe force microscopy and cyclic voltammetry measurements, and (iii) a superior field-effect transistor mobility in agreement with an H-type aggregation as indicated by X-ray analysis and theoretical calculations.
Collapse
Affiliation(s)
- Mattia Zangoli
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
- Mediteknology srl , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | | | - Filippo Monti
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | - Lucia Maini
- Department of Chemistry Giacomo Ciamician , University of Bologna , Via Selmi 2 , I-40126 Bologna , Italy
| | - Denis Gentili
- CNR-ISMN , Via P. Gobetti 101 , I-40129 Bologna , Italy
| | - Andrea Liscio
- CNR-IMM , Via del Fosso del Cavaliere 100 , I-00133 Roma , Italy
| | | | - Elisabetta Salatelli
- Department of Industrial Chemistry Toso Montanari , University of Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Giuseppe Gigli
- CNR-NANOTEC, c/o Campus Ecotekne, University of Salento , via Monteroni , I-73100 Lecce , Italy
| | - Massimo Baroncini
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
- Department of Agricultural and Food Sciences-DISTAL , University of Bologna , Viale Fanin 44 , I-40126 Bologna , Italy
| | - Francesca Di Maria
- CNR-NANOTEC, c/o Campus Ecotekne, University of Salento , via Monteroni , I-73100 Lecce , Italy
- CNR-ISOF , Via P. Gobetti 101 , I-40129 Bologna , Italy
| |
Collapse
|
46
|
Bai F, Bian K, Huang X, Wang Z, Fan H. Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. Chem Rev 2019; 119:7673-7717. [PMID: 31059242 DOI: 10.1021/acs.chemrev.9b00023] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanoparticle (NP) high pressure behavior has been extensively studied over the years. In this review, we summarize recent progress on the studies of pressure induced NP phase behavior, property, and applications. This review starts with a brief overview of high pressure characterization techniques, coupled with synchrotron X-ray scattering, Raman, fluorescence, and absorption. Then, we survey the pressure induced phase transition of NP atomic crystal structure including size dependent phase transition, amorphization, and threshold pressures using several typical NP material systems as examples. Next, we discuss the pressure induced phase transition of NP mesoscale structures including topics on pressure induced interparticle separation distance, NP coupling, and NP coalescence. Pressure induced new properties and applications in different NP systems are highlighted. Finally, outlooks with future directions are discussed.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Kaifu Bian
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Hongyou Fan
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.,Department of Chemical and Biological Engineering, Albuquerque, University of New Mexico, Albuquerque, New Mexico 87106, United States.,Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
47
|
Li Q, Yin L, Chen Z, Deng K, Luo S, Zou B, Wang Z, Tang J, Quan Z. High Pressure Structural and Optical Properties of Two-Dimensional Hybrid Halide Perovskite (CH 3NH 3) 3Bi 2Br 9. Inorg Chem 2019; 58:1621-1626. [PMID: 30604960 DOI: 10.1021/acs.inorgchem.8b03190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional (2D) hybrid halide perovskite is emerging as the next generation of photoelectronic materials. Herein, a typical 2D halide perovskite of MA3Bi2Br9 (MA = CH3NH3) is chosen for high pressure research to explore the distinct structural and property characteristics of the inorganic and organic compositions therein. Upon compression above 4.3 GPa, the distortion and tilting of inorganic BiBr6 octahedra dominate the phase transition of MA3Bi2Br9 from trigonal to monoclinic. Meanwhile, exceptionally anisotropic compressibilities are observed between intra- and interlayer structures, which originate from the unique geometry of puckered layer. In addition, the presence of organic MA+ cations contributes to the flexible structural nature of MA3Bi2Br9. Meanwhile, the geometrical changes of inorganic components determine the relationships between structure and band gap under pressure. This work not only demonstrates the intriguing structure nature of MA3Bi2Br9 but also reveals the individual contributions on the structure-property diagram from inorganic (BiBr6 octahedra) and organic (MA cations) components.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China.,SUSTech Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China
| | - Lixiao Yin
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Zhongwei Chen
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Kerong Deng
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Shuiping Luo
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Zewei Quan
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| |
Collapse
|
48
|
Mendoza-Cruz R, Parajuli P, Ojeda-Galván HJ, Rodríguez ÁG, Navarro-Contreras HR, Velázquez-Salazar JJ, Bazán-Díaz L, José-Yacamán M. Orthorhombic distortion in Au nanoparticles induced by high pressure. CrystEngComm 2019. [DOI: 10.1039/c9ce00104b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A shape-dependent orthorhombic lattice distortion is induced in Au nanoparticles below 12 GPa in a DAC.
Collapse
Affiliation(s)
- Rubén Mendoza-Cruz
- Department of Physics & Astronomy
- University of Texas at San Antonio
- San Antonio
- USA
- Department of Chemical and Biomedical Engineering
| | - Prakash Parajuli
- Department of Physics & Astronomy
- University of Texas at San Antonio
- San Antonio
- USA
| | - H. Joazet Ojeda-Galván
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT)
- Universidad Autónoma de San Luis Potosí (UASLP)
- 78000 San Luis Potosí
- Mexico
- Instituto de Física, Luis Rivera Terrazas
| | - Ángel Gabriel Rodríguez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT)
- Universidad Autónoma de San Luis Potosí (UASLP)
- 78000 San Luis Potosí
- Mexico
| | - Hugo R. Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT)
- Universidad Autónoma de San Luis Potosí (UASLP)
- 78000 San Luis Potosí
- Mexico
| | | | - Lourdes Bazán-Díaz
- Department of Physics & Astronomy
- University of Texas at San Antonio
- San Antonio
- USA
- Department of Chemical and Biomedical Engineering
| | - Miguel José-Yacamán
- Department of Physics & Astronomy
- University of Texas at San Antonio
- San Antonio
- USA
| |
Collapse
|