1
|
Li Z, Wang Y, Wei X, Han M, Li B, Zhao F, Fan W, Chen W, Kang W, Fan L, Xu B, Sun D. Kg-Scale Synthesis of Ultrathin Single-Crystalline MOF/GO/MOF Sandwich Nanosheets with Elevated Electrochemical Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505700. [PMID: 40364462 DOI: 10.1002/adma.202505700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/04/2025] [Indexed: 05/15/2025]
Abstract
The scalable preparation of 2D ultrathin metal-organic framework (MOF) nanosheets remains a significant challenge due to low stripping efficiency and susceptibility to agglomeration. Herein, a facile strategy is developed for the synthesis of 2D ultrathin single-crystal MOF/graphene oxide (GO)/MOF (MGM) sandwich-like nanosheets based on the Ni/Co-BDC MOF (BDC = 1,4-terephthalic acid), with GO serving as a structure-directing agent. Impressively, 1 kg of MGM nanosheets can be obtained in a single batch with a metal-based yield of 98.73%. Furthermore, the universality of this strategy is implemented by the successful synthesis of three additional 2D ultrathin nanosheets: MGM7-ABDC, MGM7-FBDC, and MGM7-BPDC (metal = Ni, Co; ligands = 2-aminoterephthalic acid (2-ABDC), 2-fluoroterephthalic acid (2-FBDC), and 4,4'- biphenyl dicarboxylic acid (BPDC)). The as-prepared MGM7 nanosheets (Ni: Co ratio = 7:3) exhibit excellent electrochemical performance as the cathode for aqueous basic zinc battery (159.2 mA h g-1 at 1 A g-1), anode for sodium-ion battery (SIB, 593.0 mA h g-1 at 0.2 A g-1), and electrocatalyst for the oxygen evolution reaction (OER, 224 mV overpotential at 10 mA cm-2), significantly outperforming both bulk MOFs and conventional MOF nanosheets. This work enables the scalable synthesis of 2D MOF nanosheets with enhanced properties for multiple applications.
Collapse
Affiliation(s)
- Ziyi Li
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yongxin Wang
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Xiaofei Wei
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Mengjia Han
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Binggang Li
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Fei Zhao
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Weidong Fan
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Wenmiao Chen
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Wenpei Kang
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Lili Fan
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Ben Xu
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Daofeng Sun
- Shandong Key Laboratory of Intelligent Energy Materials, State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
2
|
Trębala M, Łamacz A. Modern Catalytic Materials for the Oxygen Evolution Reaction. Molecules 2025; 30:1656. [PMID: 40333588 PMCID: PMC12029354 DOI: 10.3390/molecules30081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
The oxygen evolution reaction (OER) has, in recent years, attracted great interest from scientists because of its prime role in a number of renewable energy technologies. It is one of the reactions that occurs during hydrogen production through water splitting, is used in rechargeable metal-air batteries, and plays a fundamental role in regenerative fuel cells. Therefore, there is an emerging need to develop new, active, stable, and cost-effective materials for OER. This review presents the latest research on various groups of materials, showing their potential to be used as OER electrocatalysts, as well as their shortcomings. Particular attention has been paid to metal-organic frameworks (MOFs) and their derivatives, as those materials offer coordinatively unsaturated sites, high density of transition metals, adjustable pore size, developed surface area, and the possibility to be modified and combined with other materials.
Collapse
Affiliation(s)
- Michał Trębala
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, Gdanska 7/9, 50-344 Wroclaw, Poland
| | - Agata Łamacz
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, Gdanska 7/9, 50-344 Wroclaw, Poland
| |
Collapse
|
3
|
Zhang Y, Wan W, Peng Y, Guo Y, Zhou J, Wang S, Yuan J, Liao Y, Liu L, Zhang Y, Liu S, Wang D, Dai Z. Corrosion-resistant single-atom catalysts for direct seawater electrolysis. Natl Sci Rev 2025; 12:nwaf060. [PMID: 40171000 PMCID: PMC11960101 DOI: 10.1093/nsr/nwaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 04/03/2025] Open
Abstract
Direct seawater electrolysis (DSE) for hydrogen production is an appealing method for renewable energy storage. However, DSE faces challenges such as slow reaction kinetics, impurities, the competing chlorine evolution reaction at the anode, and membrane fouling, making it more complex than freshwater electrolysis. Therefore, developing catalysts with excellent stability under corrosion and fulfilling activity is vital to the advancement of DSE. Single-atom catalysts (SACs) with excellent tunability, high selectivity and high active sites demonstrate considerable potential for use in the electrolysis of seawater. In this review, we present the anodic and cathodic reaction mechanisms that occur during seawater cracking. Subsequently, to meet the challenges of DSE, rational strategies for modulating SACs are explored, including axial ligand engineering, carrier effects and protective layer coverage. Then, the application of in-situ characterization techniques and theoretical calculations to SACs is discussed with the aim of elucidating the intrinsic factors responsible for their efficient electrocatalysis. Finally, the process of scaling up monoatomic catalysts for the electrolysis of seawater is described, and some prospective insights are provided.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weikang Wan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yudi Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Guo
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jialing Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shengchen Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayao Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuru Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Linsheng Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Ami T, Oka K, Kasai H, Kimura T. Developing porous electrocatalysts to minimize overpotential for the oxygen evolution reaction. Chem Commun (Camb) 2025; 61:1533-1558. [PMID: 39686908 DOI: 10.1039/d4cc05348f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The development of electrocatalysts for the oxygen evolution reaction (OER) is one of the most critical issues for improving the efficiency of electrochemical water-splitting, which can produce green hydrogen energy without CO2 emissions. This review outlines the advances in the precise design of inorganic- and organic-based porous electrocatalysts, which are designed by various strategies, to catalyze the OER in the electrolytic cycle for efficient water-splitting. For developing high-performance electrocatalysts with low overpotentials, it is important to design a chemical composition that optimizes binding energy for an intermediate in the OER and allows the easy access of reactants to active sites depending on the porosity of electrocatalysts. Porous structures give us the positive opportunity to increase the accessible surface of active sites and effective diffusion of targeting molecules, which is potentially one of the guidelines for developing active electrocatalysts. Further modification of the frameworks is also powerful for tailoring the function of pore surfaces and the environment of inner spaces. Designable organic molecules can also be embedded inside inorganic- and organic-based frameworks. According to chemical composition (inorganic and organic), nanostructure (crystalline and amorphous) and additional modification (metal doping and organic design) of porous electrocatalysts, the current status of resultant OER performance is surveyed with some problems that should be solved for improving the OER activity. The remarkable progress in OER electrocatalysts is also introduced for demonstrating the bifunctional hydrogen evolution reaction (HER) and for utilizing seawater.
Collapse
Affiliation(s)
- Takahiro Ami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kouki Oka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Carbon Recycling Energy Research Center, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tatsuo Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| |
Collapse
|
5
|
Zhao X, Jia J, Shi H, Li S, Xu C. Strong electronic interaction enhanced electrocatalysis of copper phthalocyanine decorated Co-MOF-74 toward highly efficient oxygen evolution reaction. RSC Adv 2024; 14:40173-40178. [PMID: 39717814 PMCID: PMC11664326 DOI: 10.1039/d4ra05547k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Metal-organic frameworks (MOFs) have been identified as promising electrocatalysts for the oxygen evolution reaction (OER). However, most of the reported MOFs have low electrical conductivity and poor stability, and therefore addressing these problems is crucial for achieving higher electrocatalytic performance. Meanwhile, direct observations of the electrocatalytic behavior, which is of great significance to the understanding of the electrocatalytic mechanism, remain highly challenging. Here, we report on a significant electrocatalytic performance enhancement of Co-MOF-74 for the OER after decoration by copper phthalocyanine (CuPc) molecules. Co-MOF-74@CuPc, synthesized by solvothermal reactions, displays a low overpotential of 293 mV and a robust long-term stability (70 h) at 10 mA cm-2. The enhancement has been attributed to strong electronic interaction between the π-conjugated CuPc molecule and Co-MOF-74, which promotes the electron transfer, increases the electrocatalytic active surface area and regulates the electronic structure during the OER process.
Collapse
Affiliation(s)
- Xiaohua Zhao
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou 730000 China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haixiong Shi
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou 730000 China
| | - Shanshan Li
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou 730000 China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
6
|
Shen L, Zhang X, He H, Fan X, Peng W, Li Y. Template-Assisted in situ synthesis of superaerophobic bimetallic MOF composites with tunable morphology for boosted oxygen evolution reaction. J Colloid Interface Sci 2024; 676:238-248. [PMID: 39029250 DOI: 10.1016/j.jcis.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
CoFe bimetallic organic frameworks (CoFe-MOFs) with tunable morphology and electronic structure are synthesized in situ utilizing cobalt hydroxide (Co(OH)2) as a semi-sacrificial template and different anionic iron salts as modifying factors in a non-calcined synthesis method. This work defines the impact of three different anionic metallic iron salts (FeCl3, Fe(NO3)3, and Fe2(SO4)3) on the morphology of MOF materials and their resulting oxygen evolution reaction (OER) catalytic activity. Employing ferric chloride (FeCl3) as the metallic iron source, heterostructured electrocatalysts (BN-CoFe-MOF) with nanoparticles decorated nanoneedle tips are obtained, exhibiting a low overpotential (230 mV at 10 mA cm-2) and a Tafel slope of 105.6 mV dec-1 in 1.0 M KOH. It also demonstrates long time stability for at least 50 h at a current density of 10 mA cm-2. The investigation uncovers that the splendid OER activity and stability of the BN-CoFe-MOF heterojunction can be attributed to its large specific surface area, desirable mesoporous structure, superaerophobic characteristic, and high exposure of active centers. This work not only provides an efficient and cost-effective MOF based OER electrocatalyst but also serves as a valuable reference for future research on morphology control and strategies to enhance the OER activity of MOF catalysts.
Collapse
Affiliation(s)
- Luping Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xingjin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China.
| |
Collapse
|
7
|
Tong H, Zheng X, Qi M, Li D, Zhu J, Jiang D. Synergistically coupled CoMo/Fe 2O 3 electrocatalyst for highly efficient and stable overall water splitting. J Colloid Interface Sci 2024; 676:837-846. [PMID: 39067219 DOI: 10.1016/j.jcis.2024.07.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Constructing bifunctional non-precious metal electrocatalysts with advanced industrial value and excellent electrocatalytic performance to achieve efficient overall water splitting is important but difficult. Herein, a heterogeneous electrocatalyst comprising of CoMo alloys anchored Fe2O3 nanosheets was prepared by hydrothermal and electrodeposition methods. The strongly coupled interfaces between the CoMo alloys and Fe2O3 nanosheets promote charge redistribution, which could improve electron transfer efficiency and accelerate reaction kinetics, potentially optimizing reactant adsorption energy. Further density functional theory (DFT) calculations reveal that the construction of CoMo/Fe2O3/NF heterostructured catalyst facilitates to promote interfacial charge redistribution and enhance charge transfer capacity, thus boosting the catalytic performance. Benefiting from this, the optimal CoMo/Fe2O3/NF heterostructure demonstrates a minimal overpotential of 71 mV at 10 mA cm-2 for the HER and 266 mV at 50 mA cm-2 for the OER. Remarkably, the catalyst served as a bifunctional electrode for water splitting, resulting in a cell voltage down to 1.5 V at a current density of 10 mA cm-2. This research provides an effective way for the construction of non-precious iron oxides-based bifunctional electrocatalysts using alloy/metal oxide interfacial engineering strategy.
Collapse
Affiliation(s)
- Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Wang J, Wang D, Zhao Z, Chang G, Guo W, Xu J, Xiang Y, Li J, Li J. 2D MOF Structure Tuning Atomic Ru Sites for Efficient and Robust Proton Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410657. [PMID: 39648556 DOI: 10.1002/smll.202410657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Developing cost-effective ruthenium (Ru)-based HER electrocatalysts as alternatives to commercial Pt/C is crucial for the advancement of proton exchange membrane water electrolysis (PEMWE). However, the strong hydrogen adsorption of Ru-based catalysts restricts its activity. Herein, a strategy is reported to tune the electronic structure and improve mass transfer by implanting Ru atoms onto the (002) facet of two-dimensional zeolitic imidazolate framework-67 (Ru@LZIF(002)) to optimize the d-band center (εd) of Ru and the hydrogen spillover behavior. Benefiting from the ultrathin nanosheet structure and optimized εd of Ru, the over-strong H adsorption energy is weakened and the electron/mass transfer is facilitated. Ru@LZIF(002) exhibits an overpotential of 9.2 mV at 10 mA cm-2 and a long-lasting stability of 35 days at 100 mA cm-2. The mass activity and price activity of Ru@LZIF(002) is 2.9 and 14.7 times higher than Pt/C, respectively. More impressively, Ru@LZIF(002) delivers a cell voltage of 2.01 V at a high current density of 4 A cm-2 in PEMWE. The excellent long-term durability of 1200 hours operating at 4 A cm-2 with an ultralow decay rate of 7.5 × 10-3 mV h-1 has been achieved, making it promising as a cost-effective alternative to Pt/C catalyst for PEMWE applications.
Collapse
Affiliation(s)
- Jia Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - De Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zelin Zhao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Xu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yinyu Xiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Junrui Li
- Department of Chemistry, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
- Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
9
|
Zheng J, Meng D, Guo J, Zhang A, Wang Z. Construction of "Metal Defect/Oxygen Defect Junction" in ZnFe 2O 4-NiCo 2O 4 Heterostructures for Enhancing Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407177. [PMID: 39291902 DOI: 10.1002/smll.202407177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Defect engineering is a promising approach to improve the conductivity and increase the active sites of transition metal oxides used as catalysts for the oxygen evolution reaction (OER). However, when metal defects and oxygen defects coexist closely within the same crystal, their compensating charges can diminish the benefits of both defect structures on the catalyst's local electronic structure. To address this limitation, a novel strategy that employs the heterostructure interface of ZnFe2O4-NiCo2O4 to spatially separate the metal defects from the oxygen defects is proposed. This configuration positions the two types of defects on opposite sides of the heterojunction interface, creating a unique structure termed the "metal-defect/oxygen-defect junction". Physical characterization and simulations reveal that this configuration enhances electron transfer at the heterostructure interface, increases the oxidation state of Fe on the catalyst surface, and boosts bulk charge carrier concentration. These improvements enhance active site performance, facilitating hydroxyl adsorption and deprotonation, thereby reducing the overpotential required for the OER.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Anyu Zhang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Sun H, Yu S, Yin J, Li J, Yu J, Liu T, Liang W, Zhang N, Zhang Y, Ye C, Hu M, Du Y. Ir Doping Modulates the Electronic Structure of Flower-Shaped Phosphides for Water Oxidation. Inorg Chem 2024; 63:21283-21292. [PMID: 39436352 DOI: 10.1021/acs.inorgchem.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Electrolysis of water to produce hydrogen is an efficient, clean, and environmentally friendly hydrogen production method with unlimited development prospects. However, its overall efficiency is hampered by the slow oxygen evolution reaction (OER) with complex electron transfer processes. Therefore, designing efficient and low-cost OER catalysts is the key to solving this problem. In this paper, Ir-doped Co2P/Fe2P (abbreviated as Ir-CoFeP/NF) was grown on nickel foam through the strategies of low amount noble-metal doping and mild phosphating. Phosphide derived from a floral metal-organic framework (MOF) exhibits regular three-dimensional (3D) morphology and large active area, avoiding the stacking of active sites. The addition of Ir can effectively adjust the electronic structure, change the position of the d-band center, and increase active sites, thus enhancing the catalytic activity. Hence, the optimized catalyst exhibits unexpected electrocatalytic OER activity with an ideal overpotential of 213 mV at 10 mA cm-2, as well as a low Tafel slope of 40.63 mV dec-1. Coupling with Pt/C for overall water splitting (OWS), the entire device only needs an ultralow cell voltage of 1.50 V to achieve a current density of 10 mA cm-2. Besides, the OWS can be maintained for more than 70 h. This study demonstrates the superiority of Ir-doped phosphide in accelerating water oxidation.
Collapse
Affiliation(s)
- Huiyu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Shudi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jun Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Tianpeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengyun Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
11
|
Xu Z, Wang S, Tu W, Shen L, Wu L, Xu S, Zhang H, Pan H, Yang XY. A Superior Bifunctional Electrocatalyst in Which Directional Electron Transfer Occurs Between a Co/Ni Alloy and Fe─N─C Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401730. [PMID: 39036843 DOI: 10.1002/smll.202401730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Stable, efficient, and economical bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are needed for rechargeable Zn-air batteries. In this study, a directional electron transfer pathway is exploited in a spatial heterojunction of CoyNix@Fe─N─C heterogeneous catalyst for effective bifunctional electrolysis (OER/ORR). Thereinto, the Co/Ni alloy is strongly coupled to the Fe─N─C support through Co/Ni─N bonds. DFT calculations and experimental findings confirm that Co/Ni─N bonds play a bridging role in the directional electron transfer from Co/Ni alloy to the Fe─N─C support, increasing the content of pyridinic nitrogen in the ORR-active support. In addition, the discovered directional electron transfer mechanism enhances both the ORR/OER activity and the durability of the catalyst. The Co0.66Ni0.34@Fe─N─C with the optimal Ni/Co ratio exhibits satisfying bifunctional electrocatalytic performance, requiring an ORR half-wave potential of 0.90 V and an OER overpotential of 317 mV at 10 mA cm-2 in alkaline electrolytes. The assembled rechargeable zinc-air batteries (ZABs) incorporating Co0.66Ni0.34@Fe─N─C cathode exhibits a charge-discharge voltage gap comparable to the Pt/C||IrO2 assembly and high robustness for over 60 h at 20 mA cm-2.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
- R&D Center of Materials and Stack Technology for Fuel Cell, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| | - Shihao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
- R&D Center of Materials and Stack Technology for Fuel Cell, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| | - Wenmao Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| | - Ling Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| | - Lu Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| | - Shilong Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
- R&D Center of Materials and Stack Technology for Fuel Cell, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
- R&D Center of Materials and Stack Technology for Fuel Cell, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| | - Hongfei Pan
- R&D Center of Materials and Stack Technology for Fuel Cell, Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
12
|
Aziz R, Abad S, Onaizi SA. Electrochemical conversion of CO 2 using metalorganic frameworks-based materials: A review on recent progresses and outlooks. CHEMOSPHERE 2024; 365:143312. [PMID: 39265732 DOI: 10.1016/j.chemosphere.2024.143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Global warming has been mainly attributed to the excessive release of carbon dioxide (CO2) to the atmosphere. Several CO2 capture and conversion technologies have been developed in the past few decades with their own merits and limitations. Electrochemical conversion of CO2 is one of the most attractive techniques for combating CO2 emissions. However, the efficacy of the electrochemical reduction of CO2 hinges on the efficiency of the utilized materials (i.e., electrocatalysts). Metal organic frameworks (MOFs)-based materials have recently emerged as attractive tools for various applications, including the electrochemical conversion of CO2. Although there are some review articles on CO2 capture and conversion using different materials, reviews focusing specifically on the electrochemical conversion of CO2 using MOFs-based materials are still comparatively lacking. Additionally, the field of electrochemical conversion of CO2 into valuable chemicals is currently gaining high momentum, requiring comprehensive and recent reviews, which would provide researchers/professionals with a quick and easy access to the recent developments in this rapidly evolving research area. Accordingly, this article comprehensively reviews recent studies on the electrochemical conversion of CO2 using pristine/modified/functionalized MOFs as well as composite materials containing MOFs. Additionally, single atom catalysts (SACs) derived from MOFs and their applications for the electrochemical conversion of CO2 has also been reviewed. Furthermore, obstacles, challenges, limitations, and remaining research gaps have been identified, and future works to tackle them have been highlighted. Overall, this review article provides valuable discussion and insights into the recent advancements in the field of electrochemical conversion of CO2 into chemicals using MOFs-based materials.
Collapse
Affiliation(s)
- Ruqaiya Aziz
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Suha Abad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.
| |
Collapse
|
13
|
Liu L, Qi G, Wang M, He J, Zheng Y, Guan J, Lv P, Zeng D. Construction of intelligent response gene vector based on MOF/Fe 3O 4/AuNRs for tumor-targeted gene delivery. Int J Biol Macromol 2024; 277:134313. [PMID: 39098672 DOI: 10.1016/j.ijbiomac.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to efficiently carry cargo due to their excellent porosity and high surface area. Nevertheless, conventional MOFs and their derivatives exhibit low efficiency in transporting nucleic acids and other small molecules, as well as having poor colloidal stability. In this study, a ZIF-90 loaded with iron oxide nanoparticles and Au nanorods was prepared, and then surface-functionalized with polyethyleneimine (PEI) to create a multifunctional nanocomposite (AFZP25k) with pH, photothermal, and magnetic responsiveness. AFZP25k can condense plasmid DNA to form AFZP25k/DNA complexes, with a maximum binding efficiency of 92.85 %. DNA release assay showed significant light and pH responsiveness, with over 80 % cumulative release after 6 h of incubation. When an external magnetic field is applied, the cellular uptake efficiency in HeLa cells reached 81.51 %, with low cytotoxicity and specific distribution. In vitro transfection experiments demonstrated a gene transfection efficiency of 44.77 % in HeLa cells. Following near-infrared irradiation, the uptake efficiency and transfection efficiency of AFZP25k in HeLa cells increased by 21.3 % and 13.59 % respectively. The findings indicate the potential of AFZP25k as an efficient and targeted gene delivery vector in cancer gene therapy.
Collapse
Affiliation(s)
- Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guowei Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiayu He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqiu Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peiwen Lv
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
14
|
Wang L, Wang J, Xiao Z, Wu R, Fan C, Zhang D, Fan Y. Rational Construction of Co 4(μ-O) 6(COO) 6 SBU-Based MOFs through Mixed-Ligand Strategy to Enhance Electrocatalytic Oxygen Evolution Performance. Inorg Chem 2024; 63:18182-18192. [PMID: 39297886 DOI: 10.1021/acs.inorgchem.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly becoming an important choice for developing robust and efficient electrocatalysts; therefore, exploring the relationship between the structure, catalytic activity, and stability of MOFs is of great significance. MOFs 1-3 with different spatial configurations are designed and synthesized based on linear pyridine ligands, tetragonal carboxylic acid ligands, and triangular carboxylic acid ligands, while MOF 4 displays a three-dimensional (3D) supramolecule assembled through a mixed-ligand strategy. Compared with MOFs 1-3, MOF 4 has the lowest overpotential of 106 mV (at 10 mA·cm-2) and a Tafel slope of 80.9 mV·dec-1, as well as sturdy long-term stability in the process of oxygen evolution reaction (OER). The presence of dense metal clusters and μ3-O promotes the optimal catalytic performance of MOF 4. Density functional theory (DFT) calculations of MOF 4 demonstrate that the process from O* to OOH* is the rate-determining step. This investigation further reveals the relationship between MOF structural composition and electrocatalytic OER performance and provides an effective strategy for the assembly of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Zhengting Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- College of Food Engineering, Qingdao Institute of Technology, Qingdao, Shandong 266300, P. R. China
| | - Chuanbin Fan
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
15
|
Hu F, Ning S, Li Z, Zhu H, Fujita T, Yin X, Chen L, Zeng D, Hamza MF, Wei Y, Wang X. A new strategy to construct MOF-on-MOF derivatives for the removal of tetracycline hydrochloride from water by activation of peroxymonosulfate. CHEMOSPHERE 2024; 362:142676. [PMID: 38936487 DOI: 10.1016/j.chemosphere.2024.142676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
A MOF-on-MOF composite derivative material named ZIF-67@Ce-MOF-600 was designed and synthesized. The preparation of ZIF-67@Ce-MOF-600 was optimized from the aspects of the ratio of metal and ligand, heat-treatment temperature. It was demonstrated by XRD, FT-IR, SEM-EDS and TEM. The optimum conditions for the activation of PMS by ZIF-67@Ce-MOF-600 for the degradation of tetracycline (TC) were investigated by adjusting the catalyst dosage, TC, pH, peoxymonosulfate (PMS) concentration, and different kinds of water, co-existing anions and pollution. Under optimal conditions (20 mg catalysts and 50 mg PMS added) in 100 mL of tetracyclines (TC) solvent (20 mg TC/L), the removal rate could reach up to 99.2% and after five cycles was 70.5%. The EPR results indicated the presence of free radicals and non-free radical, among which free radicals intended to play a major role in the degradation process. Its possible degradation pathways and attack sites were analyzed by liquid-phase mass spectrometry and DFT analysis.
Collapse
Affiliation(s)
- Fengtao Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China.
| | - Zengzhiqiang Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hao Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Lifeng Chen
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Deqian Zeng
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Li A, Tang X, Cao R, Song D, Wang F, Yan H, Chen H, Wei Z. Directed Surface Reconstruction of Fe Modified Co 2VO 4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401818. [PMID: 38529734 DOI: 10.1002/adma.202401818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm-2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (-).
Collapse
Affiliation(s)
- Ang Li
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Xiaoxia Tang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Runjie Cao
- College of Polymer Science and Engineering, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, 610064, China
| | - Dongcai Song
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Fangzheng Wang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hua Yan
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| |
Collapse
|
17
|
Zheng Z, Zhou P, Tang X, Zeng Q, Yi S, Liao J, Hu M, Wu D, Zhang B, Liang J, Huang C. Hierarchical MOFs with Good Catalytic Properties and Structural Stability in Oxygen-Rich and High-Temperature Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309302. [PMID: 38372497 DOI: 10.1002/smll.202309302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/14/2024] [Indexed: 02/20/2024]
Abstract
Metal-organic framework materials are ideal materials characterized by open frameworks, adjustable components, and high catalytic activity. They are extensively utilized for catalysis. Due to decomposition and structural collapse under high temperatures and an oxygen-rich environment, the potential of thermal catalysis is greatly limited. In this research, Co-rich hollow spheres (Co-HSs) with a gradient composition are designed and synthesized to investigate their thermal catalytic properties in the ammonium perchlorate(AP)system. The results demonstrate that Co-HSs@AP exhibits good thermal catalytic activity and a high-temperature decomposition of 292.5 °C, which is 121.6 °C lower than pure AP. The hierarchical structure confers structural stability during the thermal decomposition process. Thermogravimetry-infrared indicates that the inclusion of Co-HSs successfully boosts the level of reactive oxygen species and achieves thorough oxidation of NH3. Based on the above phenomenon, macro dynamics calculations are carried out. The results show that Co-HSs can promote the circulation of lattice oxygen and reactive oxygen species and the multidimensional diffusion of NH3 in an oxygen-rich environment. This material has significant potential for application in the fields of thermal catalysis and ammonia oxidation.
Collapse
Affiliation(s)
- Zeyu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Peng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Xiaolin Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Qihui Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Shengping Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Jun Liao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingjie Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Dan Wu
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Bin Zhang
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Jiqiu Liang
- System Design Institute of Hubei Aerospace Technology Academy, Wuhan, 430040, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| |
Collapse
|
18
|
Zhou H, Gu S, Lu Y, Zhang G, Li B, Dou F, Cao S, Li Q, Sun Y, Shakouri M, Pang H. Stabilizing Ni 2+ in Hollow Nano MOF/Polymetallic Phosphides Composites for Enhanced Electrochemical Performance in 3D-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401856. [PMID: 38529841 DOI: 10.1002/adma.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Polymetallic phosphides exhibit favorable conductivities. A reasonable design of nano-metal-organic frame (MOF) composite morphologies and in situ introduction of polymetallic phosphides into the framework can effectively improve electrolyte penetration and rapid electron transfer. To address existing challenges, Ni, with a strong coordination ability with N, is introduced to partially replace Co in nano-Co-MOF composite. The hollow nanostructure is stabilized through CoNi bimetallic coordination and low-temperature controllable polymetallic phosphide generation rate. The Ni, Co, and P atoms, generated during reduction, effectively enhance electron transfer rate within the framework. X-ray absorption fine structure (XAFS) characterization results further confirm the existence of Ni-N, Ni-Ni, and Co-Co structures in the nanocomposite. The changes in each component during the charge-discharge process of the electrochemical reactions are investigated using in situ X-ray diffraction (XRD). Theoretical calculations further confirm that P can effectively improve conductivity. VZNPGC//MXene MSCs, constructed with active materials derived from the hollow nano MOF composites synthesized through the Ni2+ stabilization strategy, demonstrate a specific capacitance of 1184 mF cm-2, along with an energy density of 236.75 µWh cm-2 (power density of 0.14 mW cm-2). This approach introduces a new direction for the synthesis of highly conductive nano-MOF composites.
Collapse
Affiliation(s)
- Huijie Zhou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shunyu Gu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yibo Lu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Bing Li
- Tourism Cooking Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Fei Dou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Qian Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yangyang Sun
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
19
|
Yin H, Liu X, Wang L, Isimjan TT, Cai D, Yang X. Real Active Site Identification of Co/Co 3O 4 Anchoring Ni-MOF Nanosheets with Fast OER Kinetics for Overall Water Splitting. Inorg Chem 2024; 63:7045-7052. [PMID: 38569164 DOI: 10.1021/acs.inorgchem.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Doping metals and constructing heterostructures are pivotal strategies to enhance the electrocatalytic activity of metal-organic frameworks (MOFs). Nevertheless, effectively designing MOF-based catalysts that incorporate both doping and multiphase interfaces poses a significant challenge. In this study, a one-step Co-doped and Co3O4-modified Ni-MOF catalyst (named Ni NDC-Co/CP) with a thickness of approximately 5.0 nm was synthesized by a solvothermal-assisted etching growth strategy. Studies indicate that the formation of the Co-O-Ni-O-Co bond in Ni NDC-Co/CP was found to facilitate charge density redistribution more effectively than the Co-O-Ni bimetallic synergistic effect in NiCo NDC/CP. The designating Ni NDC-Co/CP achieved superior oxygen evolution reaction (OER) activity (245 mV @ 10 mA cm-2) and robust long stability (100 h @ 100 mA cm-2) in 1.0 M KOH. Furthermore, the Ni NDC-Co/CP(+)||Pt/C/CP(-) displays pregnant overall water splitting performance, achieving a current density of 10 mA cm-2 at an ultralow voltage of 1.52 V, which is significantly lower than that of commercial electrolyzer using Pt/C and IrO2 electrode materials. In situ Raman spectroscopy elucidated the transformation of Ni NDC-Co to Ni(Co)OOH under an electric field. This study introduces a novel approach for the rational design of MOF-based OER electrocatalysts.
Collapse
Affiliation(s)
- Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xinqiang Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dandan Cai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
20
|
Mao S, Ye L, Jin S, Zhou C, Pang J, Xu W. Enhanced Electrocatalytic Oxygen Evolution by In Situ Growth of Tetrametallic Metal-Organic Framework Electrocatalyst FeCoNiMn-MOF on Nickel Foam. Inorg Chem 2024; 63:6005-6015. [PMID: 38507712 DOI: 10.1021/acs.inorgchem.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Developing highly efficient, cost-effective, non-noble-metal-based electrocatalysts with superior performance and stability for oxygen evolution reactions is of immense challenge as well as great importance for the upcoming sustainable and green energy conversion technologies. The multivariate metal-organic frameworks with hierarchical porous structures and unsaturated coordination modes are considered to be promising emerging energy materials. In this work, a series of multimetallic MOFs were directly grown on nickel foam (NF) through the solvothermal method. Notably, the optimized tetrametallic FeCoNiMn-MOF/NF shows a low overpotential of 239 mV to achieve a current density of 50 mA cm-2 with a Tafel slope of 62.05 mV dec-1 for OER in 1 M KOH. It also exhibits excellent stability and durability over 100 h in chronoamperometric studies. The enhanced performance is closely tied to the high activity of iron and nickel ions and the decomposed and reconstructed Ni/Fe-OOH intermediates of the FeCoNiMn-MOF/NF during the OER process, which are revealed by XPS analysis and in situ Raman spectroscopy. This present work demonstrates the feasibility and advantage of utilizing highly efficient and durable multimetallic MOFs for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Shengbin Mao
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
21
|
Abdpour S, Fetzer MNA, Oestreich R, Beglau THY, Boldog I, Janiak C. Bimetallic CPM-37(Ni,Fe) metal-organic framework: enhanced porosity, stability and tunable composition. Dalton Trans 2024; 53:4937-4951. [PMID: 38270136 DOI: 10.1039/d3dt03695b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A newly synthesized series of bimetallic CPM-37(Ni,Fe) metal-organic frameworks with different iron content (Ni/Fe ≈ 2, 1, 0.5, named CPM-37(Ni2Fe), CPM-37(NiFe) and CPM-37(NiFe2)) demonstrated high N2-based specific SBET surface areas of 2039, 1955, and 2378 m2 g-1 for CPM-37(Ni2Fe), CPM-37(NiFe), and CPM-37(NiFe2), having much higher values compared to the monometallic CPM-37(Ni) and CPM-37(Fe) with 87 and 368 m2 g-1 only. It is rationalized that the mixed-metal nature of the materials increases the structural robustness due to the better charge balance at the coordination bonded cluster, which opens interesting application-oriented possibilities for mixed-metal CPM-37 and other less-stable MOFs. In this work, the CPM-37-derived α,β-Ni(OH)2, γ-NiO(OH), and, plausibly, γ-FeO(OH) phases obtained via decomposition in the alkaline medium demonstrated a potent electrocatalytic activity in the oxygen evolution reaction (OER). The ratio Ni : Fe ≈ 2 from CPM-37(Ni2Fe) showed the best OER activity with a small overpotential of 290 mV at 50 mA cm-2, low Tafel slope of 39 mV dec-1, and more stable OER performance compared to RuO2 after 20 h chronopotentiometry at 50 mA cm-2.
Collapse
Affiliation(s)
- Soheil Abdpour
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Marcus N A Fetzer
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - István Boldog
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
22
|
Shi Y, Li W, Hu X, Zhang X, Huang X, Li Z, Zhai X, Shen T, Shi J, He Y, Zou X. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem 2024; 434:137260. [PMID: 37713760 DOI: 10.1016/j.foodchem.2023.137260] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Herein, a ratiometric fluorescent probe was developed for sensitive detection of salicylic acid (SA) in rice using silk-derived carbon quantum dots @ Curcumin @ iron-based metal organic framework (SCQDs@Cur@Fe-MOFs). Fe-MOFs with porous structure not only provided holes for SCQDs to evade self-aggregation of SCQDs, but Fe2+ ions from MOFs was ingeniously employed to capture active sites of Cur, solving the problem of lacking sufficient specificity of Cur to SA while converting weak response signal to amplified "turn on" mode. Upon exposed to SA, the probe interacted with SA to form Cur-Fe2+-SA ternary complex, which inhibited the internal filtration effect between Cur and SCQDs, and triggered a cascade of response signaling. With this strategy, the proposed probe achieved sensitive determination of salicylic acid in rice with detection limit as low as 0.14 μmol/L. This study provides unique insight into constructing economical and eco-friendly fluorescent sensor for SA detection with superior performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Jiang Y, Chen TY, Chen JL, Liu Y, Yuan X, Yan J, Sun Q, Xu Z, Zhang D, Wang X, Meng C, Guo X, Ren L, Liu L, Lin RYY. Heterostructured Bimetallic MOF-on-MOF Architectures for Efficient Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306910. [PMID: 37884276 DOI: 10.1002/adma.202306910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Electron modulation presents a captivating approach to fabricate efficient electrocatalysts for the oxygen evolution reaction (OER), yet it remains a challenging undertaking. In this study, an effective strategy is proposed to regulate the electronic structure of metal-organic frameworks (MOFs) by the construction of MOF-on-MOF heterogeneous architectures. As a representative heterogeneous architectures, MOF-74 on MOF-274 hybrids are in situ prepared on 3D metal substrates (NiFe alloy foam (NFF)) via a two-step self-assembly method, resulting in MOF-(74 + 274)@NFF. Through a combination of spectroscopic and theory calculation, the successful modulation of the electronic property of MOF-(74 + 274)@NFF is unveiled. This modulation arises from the phase conjugation of the two MOFs and the synergistic effect of the multimetallic centers (Ni and Fe). Consequently, MOF-(74 + 274)@NFF exhibits excellent OER activity, displaying ultralow overpotentials of 198 and 223 mV at a current density of 10 mA cm-2 in the 1.0 and 0.1 M KOH solutions, respectively. This work paves the way for manipulating the electronic structure of electrocatalysts to enhance their catalytic activity.
Collapse
Affiliation(s)
- Yuanjuan Jiang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ying Liu
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaolu Yuan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jicong Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zichen Xu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Limin Ren
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Lingmei Liu
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ryan Yeh-Yung Lin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
24
|
Kaid MM, Shehab MK, Fang H, Ahmed AI, El-Hakam SA, Ibrahim AA, Jena P, El-Kaderi HM. Selective Reduction of Multivariate Metal-Organic Frameworks for Advanced Electrocatalytic Cathodes in High Areal Capacity and Long-Life Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2283-2295. [PMID: 38166008 DOI: 10.1021/acsami.3c15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lithium-sulfur batteries hold great promise as next-generation high-energy-density batteries. However, their performance has been limited by the low cycling stability and sulfur utilization. Herein, we demonstrate that a selective reduction of the multivariate metal-organic framework, MTV-MOF-74 (Co, Ni, Fe), transforms the framework into a porous carbon decorated with bimetallic CoNi alloy and Fe3O4 nanoparticles capable of entrapping soluble lithium polysulfides while synergistically facilitating their rapid conversion into Li2S. Electrochemical studies on coin cells containing 89 wt % sulfur loading revealed a reversible capacity of 1439.8 mA h g-1 at 0.05 C and prolonged cycling stability for 1000 cycles at 1 C/1060.2 mA h g-1 with a decay rate of 0.018% per cycle. At a high areal sulfur loading of 6.9 mg cm-2 and lean electrolyte/sulfur ratio (4.5 μL:1.0 mg), the battery based on the 89S@CoNiFe3O4/PC cathode provides a high areal capacity of 6.7 mA h cm-2. The battery exhibits an outstanding power density of 849 W kg-1 at 5 C and delivers a specific energy of 216 W h kg-1 at 2 C, corresponding to a specific power of 433 W kg-1. Density functional theory shows that the observed results are due to the strong interaction between the CoNi alloy and Fe3O4, facilitated by charge transfer between the polysulfides and the substrate.
Collapse
Affiliation(s)
- Mahmoud M Kaid
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hong Fang
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Physics, Rutgers University, Camden, New Jersey 08102, United States
| | - Awad I Ahmed
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Sohier A El-Hakam
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
25
|
Liu P, Li Y, Xu H, Shi L, Kong J, Lv X, Zhang J, Che R. Hierarchical Fe-Co@TiO 2 with Incoherent Heterointerfaces and Gradient Magnetic Domains for Electromagnetic Wave Absorption. ACS NANO 2024; 18:560-570. [PMID: 38109426 DOI: 10.1021/acsnano.3c08569] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Induced polarization response and integrated magnetic resonance show prosperous advantages in boosting electromagnetic wave absorption but still face huge challenges in revealing the intrinsic mechanism. In this work, we propose a self-confined strategy to construct hierarchical Fe-Co@TiO2 microrods with numerous incoherent heterointerfaces and gradient magnetic domains. The results demonstrate that the use of polyvinylpyrrolidone (PVP) coating is crucial for the subsequent deposition of Co-zeolitic imidazolate frameworks (ZIF-67), the distance of ordered arranged metal ions manipulates the size of magnetic domains, and the pyrolysis of PVP layers restricts the eutectic process of Fe-Co alloys to some extent. As a result, these introduced lattice defects, oxygen vacancies, and incoherent heterointerfaces inevitably generate a strong polarization response, and the regulated gradient magnetic domains realize integrated magnetic resonance, including macroscopic magnetic coupling, long-range magnetic diffraction, and nanoscale magnetic bridge connection, and both of the intrinsic mechanisms in dissipating electromagnetic energy are quantitatively clarified by Lorentz off-axis electron holography. Owing to the cooperative merits, the Fe-Co@TiO2 absorbents exhibit enhanced absorption intensity and strong absorption bandwidth. This study inspires us to develop a generalized strategy for manipulating the size of magnetic domains, and the integrated magnetic resonance theory provides a versatile methodology in clarifying magnetic loss mechanism.
Collapse
Affiliation(s)
- Panbo Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Yurou Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Hanxiao Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Lingzi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, P. R. China
| | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, P. R. China
- Zhejiang Laboratory, Hangzhou 3111100, P. R. China
| |
Collapse
|
26
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Nasseri F, Nasseri MA, Kassaee MZ, Yavari I. Synergistic performance of a new bimetallic complex supported on magnetic nanoparticles for Sonogashira and C-N coupling reactions. Sci Rep 2023; 13:18153. [PMID: 37875534 PMCID: PMC10598020 DOI: 10.1038/s41598-023-44168-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
This paper describes the synthesis of a novel Cu-Ni bimetallic system comprising of magnetic nanoparticles, as the core, and 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (4-ABPT), as a conjugated bridge, between nickel and copper species. With low Cu and Ni loading (0.06 mol% Ni, 0.08 mol% Cu), the resulting Fe3O4@SiO2@4-ABPT/Cu-Ni showed to be a highly efficient catalyst for the Sonogashira and C-N cross-coupling reactions. The developed catalyst was well characterized by FT-IR, XRD, EDX-mapping, FE-SEM, TEM, ICP, VSM, TGA/DTG/DTA, LSV, and XPS techniques. Fe3O4@SiO2@4-ABPT/Cu-Ni nanocatalyst was compatible with a wide range of amines and aryl halides in the Sonogashira and C-N cross-coupling reactions and offered desired coupling products in high to excellent yields under palladium- and solvent-free conditions. Based on the XPS results, the 4-ABPT ligand can adjust electron transfer between Ni and Cu in Fe3O4@SiO2@4-ABPT/Cu-Ni, promoting the formation and stabilization of Cu+ and Ni3+ species. Electronic interactions and the synergistic effect between these metals increased the selectivity and activity of Fe3O4@SiO2@4-ABPT/Cu-Ni catalyst in the Sonogashira and C-N cross-coupling reactions compared with its monometallic counterparts. Additionally, the magnetic properties of Fe3O4@SiO2@4-ABPT/Cu-Ni facilitated its separation from the reaction mixture, promoting its reuse for several times with no significant loss in its catalytic activity or performance.
Collapse
Affiliation(s)
- Fatemeh Nasseri
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Mohammad Ali Nasseri
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran.
| | - Mohamad Zaman Kassaee
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
| |
Collapse
|
28
|
Si W, Liao Q, Chu Y, Zhang Z, Chu X, Qin L. A multi-layer core-shell structure CoFe 2O 4@Fe 3C@NiO composite with high broadband electromagnetic wave-absorption performance. NANOSCALE 2023; 15:16381-16389. [PMID: 37789822 DOI: 10.1039/d3nr03837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enhancing the absorption strength of electromagnetic waves and broadening the absorption band are constant goals in designing and preparing absorbing materials. The use of composites has shown to be a very efficient method for acquiring broadband-absorbing materials, while the construction of a core-shell structure has demonstrated a significant enhancement in absorption capability. In this paper, the nanocomposite metal-organic framework (MOF) derivative CoFe2O3@C with a double core-shell structure and the nanocomposite MOF derivative CoFe2O4@Fe3C@NiO with a three-layered core-shell structure have been prepared using a chemical compound. The multi-layer structure provides more active sites for the multiple reflection and scattering of electromagnetic waves, effectively improving the attenuation capability. The effective absorption band (EAB) (reflection loss (RL) ≤ -5 dB) of both CoFe2O3@C and CoFe2O4@Fe3C@NiO are broadened compared to that of the ZIF-67 derivative. In particular, the minimum reflection loss (RLmin) of CoFe2O3@C was -52.7 dB at 13.3 GHz and 2.04 mm, and the EAB (RL ≤ -5 dB) is as wide as 9.35 GHz. Compared with the ZIF-67 derivative, the EAB exhibits a twofold rise, accompanied by a corresponding thickness increase of just 0.24 mm. At a matched thickness of 2.2 mm, the EAB of CoFe2O4@Fe3C@NiO can even reach 11.9 GHz.
Collapse
Affiliation(s)
- Wei Si
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Qingwei Liao
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| | - Yu Chu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Zhang
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Xiangcheng Chu
- State Key Laboratory of New Ceramics and Fine Processing, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lei Qin
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| |
Collapse
|
29
|
Li S, Wang Z, Wang T, Yang Y, Xiao Y, Tian Y, Zhu H, Jing X, Zhu G. Preparation of Trimetallic-Organic Framework Film Electrodes via Secondary Growth for Efficient Oxygen Evolution Reaction. Chemistry 2023; 29:e202301129. [PMID: 37702118 DOI: 10.1002/chem.202301129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 09/14/2023]
Abstract
Metal-organic frameworks (MOFs) are promising electrocatalysts for clean energy conversion systems. However, developing MOF-based electrodes with high performance toward oxygen evolution reaction (OER) is still challenging. In this work, a series of MOF film electrodes derived from Ni-btz were prepared by employing the secondary growth strategy under solvothermal conditions. Fe and Co ions were also incorporated into the Ni-btz framework to produce a trimetallic coupling effect to obtain enhanced OER activity. The as-prepared FeCoNi-btz/NF exhibited not only good stability but also excellent OER performance under alkaline conditions. Furthermore, the possible intermediates including metal oxides and metal oxyhydroxides were confirmed by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Shulin Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Zixiong Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Tienan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuting Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yang Xiao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Xiaofei Jing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
30
|
Jiang L, Gu M, Wang H, Huang X, Gao A, Sun P, Liu X, Zhang X. Synergistically Regulating the Electronic Structure of CoS by Cation and Anion Dual-Doping for Efficient Overall Water Splitting. CHEMSUSCHEM 2023; 16:e202300592. [PMID: 37313584 DOI: 10.1002/cssc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Precisely regulating the electronic construction of the reactive center is an essential method to improve the electrocatalysis, but achieving efficient multifunctional characteristics remains a challenge. Herein, CoS sample dual-doped by Cu and F atoms, as bifunctional electrocatalyst, is designed and synthesized for water electrolysis. According to the experimental results, Cu atom doping can perform primary electronic adjustment and obtain bifunctional properties, and then the electronic structure is adjusted for the second time to achieve an optimal state by introducing F atom. Meanwhile, this dual-doping strategy will result in lattice distortion and expose more active sites. As expected, dual-doped Cu-F-CoS show the brilliant electrocatalytic activity, revealing ultralow overpotentials (59 mV for HER, 213 mV for OER) at 10 mA cm-2 in alkaline electrolyte. Besides, it also exhibits distinguished water electrolysis activity with cell voltage as low as 1.52 V at 10 mA cm-2 . Our work can provide an atomic-level perception for adjusting the electronic construction of reactive sites by means of dual-doping engineering and put forward a contributing path for the electrocatalysts with multifunctional designing.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Mingzheng Gu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaomin Huang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - An Gao
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Ping Sun
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xudong Liu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaojun Zhang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei, 230601, China
| |
Collapse
|
31
|
Ye L, Zhu P, Wang T, Li X, Zhuang L. High-performance flower-like and biocompatible nickel-coated Fe 3O 4@SiO 2 magnetic nanoparticles decorated on a graphene electrocatalyst for the oxygen evolution reaction. NANOSCALE ADVANCES 2023; 5:4852-4862. [PMID: 37705805 PMCID: PMC10496884 DOI: 10.1039/d3na00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 09/15/2023]
Abstract
The electrocatalytic oxygen evolution reaction (OER) plays a crucial role in renewable clean energy conversion technologies and has developed into an important direction in the field of advanced energy, becoming the focus of basic research and industrial development. Herein, we report the synthesis and application of flower-like nickel-coated Fe3O4@SiO2 magnetic nanoparticles decorated on a graphene electrocatalyst for the OER that exhibit high efficiency and robust durability. The catalysts were optimized using a rotating ring-disk electrode to test their oxygen evolution properties in 1.0 M KOH solution. Importantly, owing to the high specific surface area and conductivity of C3N4 and graphene, the as-synthesized Fe3O4@SiO2@NiO/graphene/C3N4 exhibits a small Tafel slope of 40.46 mV dec-1, low overpotential of 288 mV at 10 mA cm-2, and robust OER durability within a prolonged test period of 100 h. The cytotoxicity of Fe3O4@SiO2, Fe3O4@SiO2@NiO, and Fe3O4@SiO2@NiO/graphene/C3N4 was evaluated in HeLa and MC3T3-E1 cells, demonstrating that they are efficient and biocompatible catalysts for the OER. Owing to its excellent electrocatalytic efficiency and eco-friendliness, Fe3O4@SiO2@NiO/graphene/C3N4 has considerable potential as a new multifunctional composite for large-scale applications in catalysis, biology, medicine, and high-efficiency hydrogen production.
Collapse
Affiliation(s)
- Li Ye
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Pengcheng Zhu
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Tianxing Wang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Xiaolei Li
- Fels Cancer Institute of Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Philadelphia PA USA
| | - Lin Zhuang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
32
|
Huang H, Ning S, Xie Y, He Z, Teng J, Chen Z, Fan Y, Shi JY, Barboiu M, Wang D, Su CY. Synergistic Modulation of Electronic Interaction to Enhance Intrinsic Activity and Conductivity of Fe-Co-Ni Hydroxide Nanotube for Highly Efficient Oxygen Evolution Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302272. [PMID: 37127855 DOI: 10.1002/smll.202302272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The large-scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost-effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe-Co-Ni hydroxide (denoted as FeCoNiOx Hy ) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiOx Hy features synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiOx Hy by facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiOx Hy to facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co3+ . Therefore, FeCoNiOx Hy delivers remarkably accelerated OER kinetics and superior apparent activity, indicated by an ultra-low overpotential potential of 257 mV at a high current density of 200 mA cm-2 . This work is of fundamental and practical significance for synergistic catalysis related to advanced energy conversion materials and technologies.
Collapse
Affiliation(s)
- Huanfeng Huang
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shunlian Ning
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanyu Xie
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhujie He
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Teng
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhuodi Chen
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanan Fan
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Ying Shi
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Adaptive Supramolecular Nanosystems Group, Institut Europeen des Membranes, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Dawei Wang
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
33
|
Chai N, Kong Y, Liu T, Ying S, Jiang Q, Yi FY. (FeMnCe)-co-doped MOF-74 with significantly improved performance for overall water splitting. Dalton Trans 2023; 52:11601-11610. [PMID: 37551436 DOI: 10.1039/d3dt01892j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Developing inexpensive electrocatalysts with high activity and stability is of great value for overall water splitting. In this work, we designed a series of 3d-4f (FeMnCe)-trimetallic MOF-74 with different ratios of 3d- and 4f-metal centers. Among them, FeMn6Ce0.5-MOF-74/NF exhibited the best electrocatalytic performance for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline solution. It only requires a low overpotential of 281 mV@100 mA cm-2 for OER and 186 mV@-10 mA cm-2 for HER in 1 M KOH. With FeMn6Ce0.5-MOF-74/NF as the anode and cathode in the overall water splitting system, only 1.65 V is needed to deliver a current density of 10 mA cm-2. In particular, for the as-fabricated FeMn6Ce0.5-MOF-74/NF||Pt/C cell unit, only 1.40 V is needed to achieve 10 mA cm-2. Therefore, the successful design of 3d-4f mixed-metallic MOF-74 provides a new viewpoint to develop highly efficient non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| |
Collapse
|
34
|
Akbari N, Nandy S, Chae KH, Najafpour MM. Dynamic Changes of an Anodized FeNi Alloy during the Oxygen Evolution Reaction under Alkaline Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11807-11818. [PMID: 37556847 DOI: 10.1021/acs.langmuir.3c01540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An efficient and durable oxygen evolution reaction (OER) catalyst is necessary for the water-splitting process toward energy conversion. The OER through water oxidation reactions could provide electrons for H2O, CO2, and N2 reduction and produce valuable compounds. Herein, the FeNi (1:1 Ni/Fe) alloy as foam, after anodizing at 50 V in a two-electrode system in KOH solution (1.0 M), was characterized by Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-angle annular dark-field imaging (HAADF)-scanning transmission electron microscopy (STEM) and used as an efficient and durable OER electrocatalyst in KOH solution (1.0 M). The overpotential for the onset of the OER based on extrapolation of the Tafel plot was 225 mV. The overpotentials for the current densities of 10 and 30 mA/cm2 are observed at 270 and 290 mV, respectively. In addition, a low Tafel slope is observed, 38.0 mV per decade, for the OER. To investigate the mechanism of the OER, in situ surface-enhanced Raman spectroscopy was used to detect FeNi hydroxide and characteristic peaks of H2O. Impurities in KOH can adsorb onto the electrode surface during the OER. Peaks corresponding to Ni(III) (hydr)oxide and FeO42- can be detected during the OER, but high-valent FeNi (hydr)oxides are unstable and reduce under the open circle potential. Metal hydroxide transformations during the OER and anion adsorption should be carefully considered. In addition, Fe3O4 may convert to γ-Fe2O3 during the OER. This study aims to offer logical perspectives on the dynamic changes that occur during the OER under alkaline conditions in an anodized FeNi alloy. These changes encompass variations in morphology, surface oxidation, the generation of high-valent species, and phase conversion during the OER.
Collapse
Affiliation(s)
- Nader Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
35
|
Zhang Y, Wang R, Zhu L, Li X, Sun C, Liu H, Zhu L, Wang K. Carbon Quantum Dots-Doped Ni 3Se 4/Co 9Se 8/Fe 3O 4 Multilayer Nanosheets Prepared Using the One-Step Solvothermal Method to Boost Electrocatalytic Oxygen Evolution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5115. [PMID: 37512388 PMCID: PMC10383042 DOI: 10.3390/ma16145115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Oxygen evolution reaction is a momentous part of electrochemical energy storage and conversion devices such as rechargeable metal-air batteries. It is particularly urgent to develop low-cost and efficient electrocatalysts for oxygen evolution reactions. As a potential substitute for noble metal electrocatalysts, transition metal selenides still prove challenging in improving the activity of oxygen evolution reaction and research into reaction intermediates. In this study, a simple one-step solvothermal method was used to prepare a polymetallic compound carbon matrix composite (Co9Se8/Ni3Se4/Fe3O4@C) with a multilayered nanosheets structure. It exhibited good OER activity in an alkaline electrolyte solution, with an overpotential of 268 mV at 10 mA/cm2. In addition, this catalyst also showed excellent performance in the 24 h stability test. The composite presents a multi-layer sheet structure, which effectively improves the contact between the active site and the electrolyte. The selenide formed by Ni and Co has a synergistic effect, and Fe3O4 and Co9Se8 form a heterojunction structure which can effectively improve the reaction activity by initiating the electronic coupling effect through the interface modification. In addition, carbon quantum dots have rich heteroatoms and electron transferability, which improves the electrochemical properties of the composites. This work provides a new strategy for the preparation of highly efficient OER electrocatalysts utilizing the multi-metal synergistic effect.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Runze Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Longqi Zhu
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xu Li
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
| | - Caixia Sun
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Haizhen Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao 266555, China
| | - Kuikui Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
36
|
Zhang C, Wang L, Wu CD. Stabilization of transition metal heterojunctions inside porous materials for high-performance catalysis. Dalton Trans 2023. [PMID: 37317703 DOI: 10.1039/d3dt01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal-based heterostructural materials are a class of very promising substitutes for noble metal-based catalysts for high-performance catalysis, due to their inherent internal electric field at the interface in the heterojunctions, which could induce electron relocalization and facilitate charge carrier migration between different metal sites at heterostructural boundaries. However, redox-active metal species suffer from reduction, oxidation, migration, aggregation, leaching and poisoning in catalysis, which results in heavy deterioration of the catalytic properties of transition metal-based heterojunctions and frustrates their practical applications. To improve the stability of transition metal-based heterojunctions and sufficiently expose redox-active sites at the heterosurfaces, many kinds of porous materials have been used as porous hosts for the stabilization of non-precious metal heterojunctions. This review article will discuss recently developed strategies for encapsulation and stabilization of transition metal heterojunctions inside porous materials, and highlight their improved stability and catalytic performance through the spatial confinement effect and synergistic interaction between the heterojunctions and the host matrices.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lei Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
37
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
38
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
39
|
Huang P, Meng M, Zhou G, Wang P, Wei W, Li H, Huang R, Liu F, Liu L. Dynamic orbital hybridization triggered spin-disorder renormalization via super-exchange interaction for oxygen evolution reaction. Proc Natl Acad Sci U S A 2023; 120:e2219661120. [PMID: 37186826 PMCID: PMC10214196 DOI: 10.1073/pnas.2219661120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
The oxygen evolution reaction (OER) underpins many aspects of energy storage and conversion in modern industry and technology, but which still be suffering from the dilemma of sluggish reaction kinetics and poor electrochemical performance. Different from the viewpoint of nanostructuring, this work focuses on an intriguing dynamic orbital hybridization approach to renormalize the disordering spin configuration in porous noble-metal-free metal-organic frameworks (MOFs) to accelerate the spin-dependent reaction kinetics in OER. Herein, we propose an extraordinary super-exchange interaction to reconfigure the domain direction of spin nets at porous MOFs through temporarily bonding with dynamic magnetic ions in electrolytes under alternating electromagnetic field stimulation, in which the spin renormalization from disordering low-spin state to high-spin state facilitates rapid water dissociation and optimal carrier migration, leading to a spin-dependent reaction pathway. Therefore, the spin-renormalized MOFs demonstrate a mass activity of 2,095.1 A gmetal-1 at an overpotential of 0.33 V, which is about 5.9 time of pristine ones. Our findings provide a insight into reconfiguring spin-related catalysts with ordering domain directions to accelerate the oxygen reaction kinetics.
Collapse
Affiliation(s)
- Peilin Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Ming Meng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou466001, People’s Republic of China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Wenxian Wei
- Testing Center, Yangzhou University, Yangzhou225009, People’s Republic of China
| | - Hao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Rong Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Fuchi Liu
- Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guangxi541004, People’s Republic of China
| | - Lizhe Liu
- Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing210093, People’s Republic of China
| |
Collapse
|
40
|
Luo J, Zhou Y, Wang X, Gu Y, Liu W, Wang S, Zhang J. CoMoO 4-CoP/NC heterostructure anchored on hollow polyhedral N-doped carbon skeleton for efficient water splitting. J Colloid Interface Sci 2023; 648:90-101. [PMID: 37295373 DOI: 10.1016/j.jcis.2023.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023]
Abstract
We report the synthesis and electrocatalytic properties of a CoMoO4-CoP heterostructure anchored on a hollow polyhedral N-doped carbon skeleton (CoMoO4-CoP/NC) for water-splitting applications. The preparation involved the anion exchange of MoO42- to the organic ligand of ZIF-67, the self-hydrolysis of MoO42-, and NaH2PO2 phosphating annealing. CoMoO4 was found to enhance thermal stability and prevent active site agglomeration during annealing, while the hollow structure of CoMoO4-CoP/NC provided a large specific surface area and high porosity that facilitated mass transport and charge transfer. The interfacial electron transfer from Co to Mo and P sites promoted the generation of electron-deficient Co sites and electron-enriched P sites, which accelerated water dissociation. CoMoO4-CoP/NC exhibited excellent electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with overpotentials of 122 mV and 280 mV at 10 mA cm-2, respectively. The CoMoO4-CoP/NC‖CoMoO4-CoP/NC two-electrode system only required an overall water splitting (OWS) cell voltage of 1.62 V to achieve 10 mA cm-2 in an alkaline electrolytic cell. In addition, the material showed comparable activity to 20% Pt/C‖RuO2 in a pure water home-made membrane electrode device, demonstrating potential for practical applications in proton exchange membrane (PEM) electrolyzers. Our results suggest that CoMoO4-CoP/NC is a promising electrocatalyst for efficient and cost-effective water splitting.
Collapse
Affiliation(s)
- Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xingzhao Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yufeng Gu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanli Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shutao Wang
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
41
|
Zhou H, Zhu G, Dong S, Liu P, Lu Y, Zhou Z, Cao S, Zhang Y, Pang H. Ethanol-Induced Ni 2+ -Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211523. [PMID: 36807415 DOI: 10.1002/adma.202211523] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The synthesis of metal-organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF-67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF-67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+ , Co2+ , and N atoms, spatially separated surface-active sites are created through metal-ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three-dimensional (3D) structure of ZIF-67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo-MOF@CoOOH@V2 O5 nanocomposites is confirmed using X-ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D-printed micro-supercapacitor, exhibiting a high area specific capacitance of 585 mF cm-2 and energy density of 159.23 µWh cm-2 (at power density = 0.34 mW cm-2 ). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high-performance nanomaterials for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shengyang Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Pin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Yiyao Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
42
|
Huang XY, Kang YR, Yan S, Elmarakbi A, Fu YQ, Xie WF. Metal-organic framework-derived trimetallic oxides with dual sensing functions for ethanol. NANOSCALE 2023; 15:8181-8188. [PMID: 37078095 DOI: 10.1039/d3nr00841j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metal-organic framework (MOF)-derived metal oxide semiconductors have recently received extensive attention in gas sensing applications due to their high porosity and three-dimensional architecture. Still, challenges remain for MOF-derived materials, including low-cost and facile synthetic methods, rational nanostructure design, and superior gas-sensing performances. Herein, a series of Fe-MIL-88B-derived trimetallic FeCoNi oxides (FCN-MOS) with a mesoporous structure were synthesized by a one-step hydrothermal reaction followed by calcination. The FCN-MOS system consists of three main phases: α-Fe2O3 (n-type), CoFe2O4, and NiFe2O4 (p-type), and the nanostructure and pore size can be controlled by altering the content of α-Fe2O3, CoFe2O4, and NiFe2O4. The sensors based on FCN-MOS exhibit a high response of 71.9, a good selectivity towards 100 ppm ethanol at 250 °C, and long-term stability up to 60 days. Additionally, the FCN-MOS-based sensors show a p-n transition gas sensing behavior with the alteration of the Fe/Co/Ni ratio.
Collapse
Affiliation(s)
- Xin-Yu Huang
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, P. R. China.
| | - Ya-Ru Kang
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Yan
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, P. R. China.
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Wan-Feng Xie
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, P. R. China.
- Department of Physics, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
43
|
Dong YW, Wang FL, Wu Y, Zhai XJ, Xu N, Zhang XY, Lv RQ, Chai YM, Dong B. Directed electron regulation promoted sandwich-like CoO@FeBTC/NF with p-n heterojunctions by gel electrodeposition for oxygen evolution reaction. J Colloid Interface Sci 2023; 645:410-419. [PMID: 37156149 DOI: 10.1016/j.jcis.2023.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm-2, and can maintain 100 h long time stability at 500 mA cm-2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid-liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm-2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Na Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin-Yu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ren-Qing Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
44
|
Han M, Zhao Z, Zhang X, Wang P, Xing L, Jia D, Wang L, Chen X, Gao H, Wang G. Phosphorus-Doped directly interconnected networks of amorphous Metal-Organic framework nanowires for efficient methanol oxidation. J Colloid Interface Sci 2023; 641:675-684. [PMID: 36965339 DOI: 10.1016/j.jcis.2023.03.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Developing high-performance and low-cost electrocatalysts toward methanol oxidation reaction (MOR) is essential for fuel cell applications. Herein, we report a defect engineering strategy integrating amorphization and phosphorization to construct directly interconnected networks of amorphous NiCo-based metal-organic framework nanowires (a-NiCo-MOFNWs) with phosphorus (P) doping. The resulting P-doped a-NiCo-MOFNWs (a-NiCo-MOFNWs-P) network displays superior MOR efficiency and long-term durability over 1000 cyclic voltammetry (CV) measurements. The special structure of directly interconnected networks and the synergistic effect between the amorphous MOFs and dispersed phosphorus species give rise to abundant exposed active sites, accelerated electron transport, and increased porosity for mass transfer, thus boosting the reaction kinetics of MOR. This work provides additional insights into the network assembly and structural evolution of one-dimensional (1D) MOFs, and also opens up new avenues for the design of highly reactive and robust non-precious metal-based electrocatalysts.
Collapse
Affiliation(s)
- Mengyi Han
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Zhiyong Zhao
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Xiaowei Zhang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China.
| | - Peng Wang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Liwen Xing
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Jia
- Research Institute of Petroleum Processing, Sinopec, 18 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School, University of Science and Technology Beijing, Shunde 528399, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
45
|
Liu WX, Zhou WN, Song S, Zhao YG, Lu Y. Preparation and Characterization of Nano-Fe 3O 4 and Its Application for C18-Functionalized Magnetic Nanomaterials Used as Chromatographic Packing Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1111. [PMID: 36986005 PMCID: PMC10058610 DOI: 10.3390/nano13061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
A new type of magnetic nanomaterial with Fe3O4 as the core and organic polymer as the shell was synthesized by seed emulsion polymerization. This material not only overcomes the problem of insufficient mechanical strength of the organic polymer, it also solves the problem that Fe3O4 is prone to oxidation and agglomeration. In order to make the particle size of Fe3O4 meet the requirement of the seed, the solvothermal method was used to prepare Fe3O4. The effects of the reaction time, amount of solvent, pH value, and polyethylene glycol (PEG) on the particle size of Fe3O4 were investigated. In addition, in order to accelerate the reaction rate, the feasibility of preparing Fe3O4 by microwave was studied. The results showed that under the optimum conditions, the particle size of Fe3O4 could reach 400 nm and had good magnetic properties. After three stages of oleic acid coating, seed emulsion polymerization, and C18 modification, the obtained C18-functionalized magnetic nanomaterials were used for the preparation of the chromatographic column. Under optimal conditions, stepwise elution significantly shortened the elution time of sulfamethyldiazine, sulfamethazine, sulfamethoxypyridazine, and sulfamethoxazole while still achieving a baseline separation.
Collapse
Affiliation(s)
- Wen-Xin Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wei-Na Zhou
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
46
|
Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
47
|
Do VH, Prabhu P, Jose V, Yoshida T, Zhou Y, Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Pd-PdO Nanodomains on Amorphous Ru Metallene Oxide for High-Performance Multifunctional Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208860. [PMID: 36598813 DOI: 10.1002/adma.202208860] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Developing highly efficient multifunctional electrocatalysts is crucial for future sustainable energy pursuits, but remains a great challenge. Herein, a facile synthetic strategy is used to confine atomically thin Pd-PdO nanodomains to amorphous Ru metallene oxide (RuO2 ). The as-synthesized electrocatalyst (Pd2 RuOx-0.5 h) exhibits excellent catalytic activity toward the pH-universal hydrogen evolution reaction (η10 = 14 mV in 1 m KOH, η10 = 12 mV in 0.5 m H2 SO4 , and η10 = 22 mV in 1 m PBS), alkaline oxygen evolution reaction (η10 = 225 mV), and overall water splitting (E10 = 1.49 V) with high mass activity and operational stability. Further reduction endows the material (Pd2 RuOx-2 h) with a promising alkaline oxygen reduction activity, evidenced by high halfway potential, four-electron selectivity, and excellent poison tolerance. The enhanced catalytic activity is attributed to the rational integration of favorable nanostructures, including 1) the atomically thin nanosheet morphology, 2) the coexisting amorphous and defective crystalline phases, and 3) the multi-component heterostructural features. These structural factors effectively regulate the material's electronic configuration and the adsorption of intermediates at the active sites for favorable reaction energetics.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - P Prabhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Vishal Jose
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Hiroko Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5198, Japan
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| |
Collapse
|
48
|
Kumari P, Kareem A, Jhariat P, Senthilkumar S, Panda T. Phase Purity Regulated by Mechano-Chemical Synthesis of Metal-Organic Frameworks for the Electrocatalytic Oxygen Evolution Reaction. Inorg Chem 2023; 62:3457-3463. [PMID: 36763341 DOI: 10.1021/acs.inorgchem.2c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Three new metal organic frameworks (ZnTIA-1mc, CuTIA-1mc, and CoTIA-1mc) were synthesized by the mechanochemical grinding (mc) method in the unadulterated form. They compared with their solvothermally synthesized (st) counterparts, where the mixtures of isomeric forms have been isolated. Kinetics study with the function of grinding time during the mechanosynthesis process revealed the formation of new metastable phases. Less crystallinity and short of mechanical defects in the structure of synthesized mc metal organic frameworks showed enhanced electrocatalytic activity toward oxygen evolution reaction (OER). Among all, CoTIA-1mc showed high OER activity with 289 mV overpotential, 10 mA cm-2 current density, and 55.4 mV dec-1 Tafel slope in 1 M KOH which is close to the commercially used RuO2.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Abdul Kareem
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Pampa Jhariat
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tamas Panda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.,Centre for Clean Environment (CCE), Vellore Institute of Technology, Vellore Campus, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
49
|
Parsaei M, Akhbari K, White J. Synthesis, Characterization and Comprehensive Study of Antibacterial Activity of a 3D Co(II) Coordination Polymer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
50
|
Zhang C, Qi Q, Mei Y, Hu J, Sun M, Zhang Y, Huang B, Zhang L, Yang S. Rationally Reconstructed Metal-Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208904. [PMID: 36369974 DOI: 10.1002/adma.202208904] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Reconstructing metal-organic framework (MOFs) toward a designed framework structure provides breakthrough opportunities to achieve unprecedented oxygen evolution reaction (OER) electrocatalytic performance, but has rarely, if ever, been proposed and investigated yet. Here, the first successful fabrication of a robust OER electrocatalyst by precision reconstruction of an MOF structure is reported, viz., from MOF-74-Fe to MIL-53(Fe)-2OH with different coordination environments at the active sites. Due to the radically reduced eg -t2g crystal-field splitting in Fe-3d and the much suppressed electron-hopping barriers through the synergistic effects of the O species the efficient OER of in MIL-53(Fe)-2OH is guaranteed. Benefiting from this desired electronic structure, the designed MIL-53(Fe)-2OH catalyst exhibits high intrinsic OER activity, including a low overpotential of 215 mV at 10 mA cm-2 , low Tafel slope of 45.4 mV dec-1 and high turnover frequency (TOF) of 1.44 s-1 at 300 mV overpotential, over 80 times that of the commercial IrO2 catalyst (0.0177 s-1 ).Consistent with the density functional theory (DFT) calculations, the real-time kinetic simulation reveals that the conversion from O* to OOH* is the rate-determining step on the active sites of MIL-53(Fe)-2OH.
Collapse
Affiliation(s)
- Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qianglong Qi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yunjie Mei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Minzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|