1
|
Burchell-Reyes K, Paquin JF. Fluorohydrins and where to find them: recent asymmetric syntheses of β-fluoro alcohols and their derivatives. Org Biomol Chem 2025; 23:4593-4615. [PMID: 40241682 DOI: 10.1039/d5ob00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fluorohydrins - or β-fluorinated alcohols - and their fluorinated group derivatives are a biologically relevant class of compounds, with applications ranging from PET tracers to cancer therapeutics. Recent efforts have unlocked asymmetric access to these related motifs through reactions of carbonyls, alkenes, organoboranes, and epoxides or transformations such as cyclizations or ring expansions. The present work provides an overview of synthetic approaches to various fluorohydrins that have been explored in the past decade, as well as selected examples of these syntheses applied to medicinal chemistry.
Collapse
Affiliation(s)
- Kelly Burchell-Reyes
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Lu HX, Lu SL, Li BJ. Amide-Directed Highly Enantioselective Hydrogenation of Diverse Acyclic Multisubstituted Alkenes Under Mild Conditions. Angew Chem Int Ed Engl 2025; 64:e202422698. [PMID: 39778032 DOI: 10.1002/anie.202422698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions. The coordination assistance of the amide group to the metal center generates a highly active catalyst that effectively overcomes the low reactivity of substrates and precisely controls the stereoselectivity. The generality of this catalyst system is exemplified by its efficacy across at least three types of alkenes including β,γ-unsaturated amides, α,β-unsaturated amides, and enamides.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Mata G, Mailyan AK, Fournier J, Beatty JW, Leleti MR, Powers JP, Lawson KV. Stereodivergent Synthesis of the Vicinal Difluorinated Tetralin of Casdatifan Enabled by Ru-Catalyzed Transfer Hydrogenation. Org Lett 2025; 27:833-839. [PMID: 39803968 DOI: 10.1021/acs.orglett.4c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We disclose a stereodivergent strategy to prepare vicinal difluorinated tetralins from γ-substituted tetralones via a combination of catalyst-controlled transfer hydrogenation and substrate-controlled fluorinations. This process is easily scalable and amenable to highly functionalized substrates, as demonstrated here in the late-stage synthesis of casdatifan, a clinical-stage inhibitor of hypoxia-inducible factor-2α. Analysis of the physicochemical properties of casdatifan, which features a cis-vicinal difluoride, revealed a higher level of facial polarization compared to its trans-vicinal difluoride isomers.
Collapse
Affiliation(s)
- Guillaume Mata
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Artur K Mailyan
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jeremy Fournier
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Joel W Beatty
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Manmohan R Leleti
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P Powers
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V Lawson
- Arcus Biosciences, Inc, 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
4
|
Le DN, Johnson HC, Lam YH, Sun C, Cheng L, Belyk KM. Enantio- and Diastereoselective Total Synthesis of Belzutifan Enabled by Rh-Catalyzed Hydrogenation. Org Lett 2024; 26:4059-4064. [PMID: 38709100 DOI: 10.1021/acs.orglett.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Herein, we report a nine-step synthesis of belzutifan enabled by a novel Rh-catalyzed asymmetric hydrogenation to install the contiguous fluorinated stereocenters with high enantioselectivity. Moreover, the final ketone reduction in the synthesis proceeds with high diastereoselectivity, leading to the expedient assembly of the stereotriad. In contrast to the original 16-step synthesis, this route avoids a lengthy bromination-oxidation sequence and introduces the sulfone functionality via nucleophilic aromatic substitution, obviating the need for transition metal catalysis.
Collapse
Affiliation(s)
- Diane N Le
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Heather C Johnson
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-Hong Lam
- Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Chunrui Sun
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lili Cheng
- Chemistry Service Unit, WuXi AppTec (Tianjin), Tianjin 300457, China
| | - Kevin M Belyk
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Faiges J, Biosca M, Pericàs MA, Besora M, Pàmies O, Diéguez M. Unlocking the Asymmetric Hydrogenation of Tetrasubstituted Acyclic Enones. Angew Chem Int Ed Engl 2024; 63:e202315872. [PMID: 38093613 DOI: 10.1002/anie.202315872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Asymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air-stable Ir-P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI /IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cβ and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.
Collapse
Affiliation(s)
- Jorge Faiges
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Biosca
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Miquel A Pericàs
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Besora
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Oscar Pàmies
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Montserrat Diéguez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| |
Collapse
|
6
|
Nie Y, Yuan Q, Zhang W. Axis-Unfixed Biphenylphosphine-Oxazoline Ligands: Design and Applications in Asymmetric Catalytic Reactions. CHEM REC 2023; 23:e202300133. [PMID: 37166412 DOI: 10.1002/tcr.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Indexed: 05/12/2023]
Abstract
The design and synthesis of chiral ligands plays an important role in asymmetric catalytic reactions. Over the past decades, various types of chiral phosphine-oxazolines (PHOX ligands) have been developed and have greatly advanced the field of asymmetric catalysis. Novel chiral PHOX ligand with an axis-unfixed biphenyl backbone, developed by our group, have shown interesting coordination behavior and excellent chiral inducing ability in various transition-metal-catalyzed asymmetric reactions. This personal account focuses on our developed axis-unfixed biphenylphosphine-oxazoline ligand (BiphPHOX), including an overview of its design and applications, which will provide inspiration for the exploration of novel ligands and related reactions.
Collapse
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Biosca M, de la Cruz-Sánchez P, Faiges J, Margalef J, Salomó E, Riera A, Verdaguer X, Ferré J, Maseras F, Besora M, Pàmies O, Diéguez M. P-Stereogenic Ir-MaxPHOX: A Step toward Privileged Catalysts for Asymmetric Hydrogenation of Nonchelating Olefins. ACS Catal 2023; 13:3020-3035. [PMID: 36910869 PMCID: PMC9990153 DOI: 10.1021/acscatal.2c05579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Indexed: 02/16/2023]
Abstract
The Ir-MaxPHOX-type catalysts demonstrated high catalytic performance in the hydrogenation of a wide range of nonchelating olefins with different geometries, substitution patterns, and degrees of functionalization. These air-stable and readily available catalysts have been successfully applied in the asymmetric hydrogenation of di-, tri-, and tetrasubstituted olefins (ee's up to 99%). The combination of theoretical calculations and deuterium labeling experiments led to the uncovering of the factors responsible for the enantioselectivity observed in the reaction, allowing the rationalization of the most suitable substrates for these Ir-catalysts.
Collapse
Affiliation(s)
- Maria Biosca
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Pol de la Cruz-Sánchez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jorge Faiges
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ernest Salomó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Joan Ferré
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Oscar Pàmies
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Montserrat Diéguez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Peters BBC, Andersson PG. The Implications of the Brønsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins. J Am Chem Soc 2022; 144:16252-16261. [PMID: 36044252 PMCID: PMC9479089 DOI: 10.1021/jacs.2c07023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral iridium complexes derived from Crabtree's catalyst are highly useful in modern hydrogenations of olefins attributed to high reactivity, stereoselectivity, and stability. Despite that these precatalysts are pH neutral, the reaction mixtures turn acidic under hydrogenation conditions. This Perspective is devoted to the implications of the intrinsic Brønsted acidity of catalytic intermediates in asymmetric hydrogenation of olefins. Despite that the acidity has often been used only as a rationale for side-product formation, more recent methodologies have started to use this property advantageously. We hope that this Perspective serves as a stimulant for the development of such compelling and new asymmetric hydrogenations. The inherent scientific opportunities in utilizing or annihilating the generated Brønsted acid are enormous, and potential new innovations are outlined toward the end.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
9
|
Dai Y, Meng W, Feng X, Du H. Chiral FLP-catalyzed asymmetric hydrogenation of 3-fluorinated chromones. Chem Commun (Camb) 2022; 58:1558-1560. [PMID: 35014638 DOI: 10.1039/d1cc06964k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The asymmetric hydrogenation of fluorinated olefins is an efficient pathway towards the synthesis of chiral fluorine-containing compounds. This paper described metal-free asymmetric hydrogenation of 3-fluorinated chromones with the use of readily available achiral borane and chiral oxazoline as an FLP catalyst for the first time. A variety of optically active 3-fluorochroman-4-ones were obtained in high yields with up to 88% ee.
Collapse
Affiliation(s)
- Yun Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yin C, Pan Y, Zhang X, Yin Q. Catalytic Asymmetric Hydrogenation of Tetrasubstituted Unsaturated Lactams: An Efficient Approach to Enantioenriched 3,4-Disubstituted Piperidines. Org Lett 2022; 24:675-680. [PMID: 35005963 DOI: 10.1021/acs.orglett.1c04132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric hydrogenation of tetrasubstituted alkenes remains a formidable challenge in asymmetric catalysis. We report herein an unprecedented Rh-catalyzed enantioselective and diastereoselective hydrogenation of easily accessed α,β-disubstituted unsaturated lactams to afford synthetically valuable chiral lactams with 1,2-consecutive stereocenters. The reaction could be performed on the gram scale, and the products could be concisely transformed to enantiomerically pure trans-3,4-disubstituted piperidines, which are prevalent structural units in medicinal agents.
Collapse
Affiliation(s)
- Congcong Yin
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingmin Pan
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Charvillat T, Bernardelli P, Daumas M, Pannecoucke X, Ferey V, Besset T. Hydrogenation of fluorinated molecules: an overview. Chem Soc Rev 2021; 50:8178-8192. [PMID: 34060550 DOI: 10.1039/d0cs00736f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The review aims at providing an overview on the developments made in hydrogenation reactions of molecules having various fluorinated groups (F, CF3, CF2H, CF2Rf). Indeed, the hydrogenation of fluorine-containing molecules is a straightforward and atom-economical way to access challenging (chiral) fluorinated scaffolds. This promising field is still in its infancy and milestones are expected in the coming years. To illustrate that, the review will highlight the major contributions made in that field and will be organized by fluorinated groups.
Collapse
Affiliation(s)
- T Charvillat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - P Bernardelli
- Sanofi Sanofi R&D, Integrated Drug Discovery, Small Molecule Medicinal Chemistry, 1 avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - M Daumas
- Sanofi R&D, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - X Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - V Ferey
- Sanofi R&D, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - T Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| |
Collapse
|
13
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
14
|
Feng SX, Yang S, Tu FH, Lin PP, Huang LL, Wang H, Huang ZS, Li Q. Iodine(III)-Mediated Fluorination/Semipinacol Rearrangement Cascade of 2-Alkylidenecyclobutanol Derivatives: Access to β-Monofluorinated Cyclopropanecarbaldehydes. J Org Chem 2021; 86:6800-6812. [PMID: 33899472 DOI: 10.1021/acs.joc.1c00578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hypervalent iodine(III)-mediated ring-contractive fluorination reaction of 2-alkylidenecyclobutanol derivatives is presented. The protocol allows the facile synthesis of β-monofluorinated cyclopropanecarbaldehydes via a fluorination/semipinacol rearrangement cascade using nucleophilic Py·HF as the fluorine source. For challenging electron-rich arene substrates, the installation of a protecting group on the free alcohol is pivotal for maintaining the reaction efficiency. The synthetic utility was demonstrated by the scalability of this reaction and further transformations of the products.
Collapse
Affiliation(s)
- Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peng-Peng Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
15
|
|
16
|
Wu H, Margarita C, Jongcharoenkamol J, Nolan MD, Singh T, Andersson PG. Kinetic resolution of racemic allylic alcohols via iridium-catalyzed asymmetric hydrogenation: scope, synthetic applications and insight into the origin of selectivity. Chem Sci 2020; 12:1937-1943. [PMID: 34163958 PMCID: PMC8179068 DOI: 10.1039/d0sc05276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Asymmetric hydrogenation is one of the most commonly used tools in organic synthesis, whereas, kinetic resolution via asymmetric hydrogenation is less developed. Herein, we describe the first iridium catalyzed kinetic resolution of a wide range of trisubstituted secondary and tertiary allylic alcohols. Large selectivity factors were observed in most cases (s up to 211), providing the unreacted starting materials in good yield with high levels of enantiopurity (ee up to >99%). The utility of this method is highlighted in the enantioselective formal synthesis of some bioactive natural products including pumiliotoxin A, inthomycin A and B. DFT studies and a selectivity model concerning the origin of selectivity are presented. Asymmetric hydrogenation is one of the most commonly used tools in organic synthesis, whereas, kinetic resolution via asymmetric hydrogenation was less developed.![]()
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Cristiana Margarita
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Jira Jongcharoenkamol
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Mark D Nolan
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden .,School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
17
|
Ponra S, Yang J, Wu H, Rabten W, Andersson PG. Asymmetric synthesis of 1,2-fluorohydrin: iridium catalyzed hydrogenation of fluorinated allylic alcohol. Chem Sci 2020; 11:11189-11194. [PMID: 34094359 PMCID: PMC8162319 DOI: 10.1039/d0sc04032k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
We have developed a simple protocol for the preparation of 1,2-fluorohydrin by asymmetric hydrogenation of fluorinated allylic alcohols using an efficient azabicyclo thiazole-phosphine iridium complex. The iridium-catalyzed asymmetric synthesis of chiral 1,2-fluorohydrin molecules was carried out at ambient temperature with operational simplicity, and scalability. This method was compatible with various aromatic, aliphatic, and heterocyclic fluorinated compounds as well as a variety of polyfluorinated compounds, providing the corresponding products in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Sudipta Ponra
- Department of Organic Chemistry, Stockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Jianping Yang
- Department of Organic Chemistry, Stockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Haibo Wu
- Department of Organic Chemistry, Stockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Wangchuk Rabten
- Department of Organic Chemistry, Stockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
18
|
Moock D, Wiesenfeldt MP, Freitag M, Muratsugu S, Ikemoto S, Knitsch R, Schneidewind J, Baumann W, Schäfer AH, Timmer A, Tada M, Hansen MR, Glorius F. Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation. ACS Catal 2020; 10:6309-6317. [PMID: 32551183 PMCID: PMC7295364 DOI: 10.1021/acscatal.0c01074] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Indexed: 12/31/2022]
Abstract
![]()
Recently, chemoselective
methods for the hydrogenation of fluorinated,
silylated, and borylated arenes have been developed providing direct
access to previously unattainable, valuable products. Herein, a comprehensive
study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC)
catalyst precursor is disclosed. Mechanistic experiments, kinetic
studies, and surface-spectroscopic methods revealed supported rhodium(0)
nanoparticles (NP) as the active catalytic species. Further studies
suggest that CAAC-derived modifiers play a key role in determining
the chemoselectivity of the hydrogenation of fluorinated arenes, thus
offering an avenue for further tuning of the catalytic properties.
Collapse
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Mario P. Wiesenfeldt
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Robert Knitsch
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Jacob Schneidewind
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | | | - Alexander Timmer
- nanoAnalytics GmbH, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
- Research Center for Materials Science (RCMS) and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| | - Michael Ryan Hansen
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
19
|
Zhong H, Shevlin M, Chirik PJ. Cobalt-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carboxylic Acids by Homolytic H2 Cleavage. J Am Chem Soc 2020; 142:5272-5281. [DOI: 10.1021/jacs.9b13876] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael Shevlin
- Department of Process Research & Development, Merck & Company, Limited, Rahway, New Jersey 07065, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Bigler R, Mack KA, Shen J, Tosatti P, Han C, Bachmann S, Zhang H, Scalone M, Pfaltz A, Denmark SE, Hildbrand S, Gosselin F. Asymmetric Hydrogenation of Unfunctionalized Tetrasubstituted Acyclic Olefins. Angew Chem Int Ed Engl 2020; 59:2844-2849. [PMID: 31794118 DOI: 10.1002/anie.201912640] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Indexed: 12/31/2022]
Abstract
Asymmetric hydrogenation has evolved as one of the most powerful tools to construct stereocenters. However, the asymmetric hydrogenation of unfunctionalized tetrasubstituted acyclic olefins remains the pinnacle of asymmetric synthesis and an unsolved challenge. We report herein the discovery of an iridium catalyst for the first, generally applicable, highly enantio- and diastereoselective hydrogenation of such olefins and the mechanistic insights of the reaction. The power of this chemistry is demonstrated by the successful hydrogenation of a wide variety of electronically and sterically diverse olefins in excellent yield and high enantio- and diastereoselectivity.
Collapse
Affiliation(s)
- Raphael Bigler
- Pharmaceutical Division, Small Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Kyle A Mack
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jeff Shen
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Paolo Tosatti
- Pharmaceutical Division, Small Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Chong Han
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Stephan Bachmann
- Pharmaceutical Division, Small Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michelangelo Scalone
- Pharmaceutical Division, Small Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Andreas Pfaltz
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Stefan Hildbrand
- Pharmaceutical Division, Small Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
21
|
Bigler R, Mack KA, Shen J, Tosatti P, Han C, Bachmann S, Zhang H, Scalone M, Pfaltz A, Denmark SE, Hildbrand S, Gosselin F. Asymmetric Hydrogenation of Unfunctionalized Tetrasubstituted Acyclic Olefins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raphael Bigler
- Pharmaceutical DivisionSmall Molecules Technical DevelopmentDepartment of Process Chemistry and CatalysisF. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - Kyle A. Mack
- Department of Small Molecule Process ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Jeff Shen
- Department of Small Molecule Process ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Paolo Tosatti
- Pharmaceutical DivisionSmall Molecules Technical DevelopmentDepartment of Process Chemistry and CatalysisF. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - Chong Han
- Department of Small Molecule Process ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Stephan Bachmann
- Pharmaceutical DivisionSmall Molecules Technical DevelopmentDepartment of Process Chemistry and CatalysisF. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - Haiming Zhang
- Department of Small Molecule Process ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Michelangelo Scalone
- Pharmaceutical DivisionSmall Molecules Technical DevelopmentDepartment of Process Chemistry and CatalysisF. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - Andreas Pfaltz
- Department of ChemistryUniversity of Basel 4056 Basel Switzerland
| | - Scott E. Denmark
- Roger Adams LaboratoryDepartment of ChemistryUniversity of Illinois Urbana IL 61801 USA
| | - Stefan Hildbrand
- Pharmaceutical DivisionSmall Molecules Technical DevelopmentDepartment of Process Chemistry and CatalysisF. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - Francis Gosselin
- Department of Small Molecule Process ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
22
|
Iridium-Catalyzed Asymmetric Hydrogenation. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Biosca M, Pàmies O, Diéguez M. Ir–Biaryl phosphite–oxazoline catalyst libraries: a breakthrough in the asymmetric hydrogenation of challenging olefins. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02501d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work describes our progress in the successful development of phosphite/phosphinite–oxazoline ligands for the Ir-catalyzed asymmetric hydrogenation of challenging olefins.
Collapse
Affiliation(s)
- Maria Biosca
- Universitat Rovira i Virgili
- Departament de Química Física i Inorgànica
- 1. 43007 Tarragona
- Spain
| | - Oscar Pàmies
- Universitat Rovira i Virgili
- Departament de Química Física i Inorgànica
- 1. 43007 Tarragona
- Spain
| | - Montserrat Diéguez
- Universitat Rovira i Virgili
- Departament de Química Física i Inorgànica
- 1. 43007 Tarragona
- Spain
| |
Collapse
|
24
|
Li C, Wan F, Chen Y, Peng H, Tang W, Yu S, McWilliams JC, Mustakis J, Samp L, Maguire RJ. Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium-Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (R)-Tofacitinib. Angew Chem Int Ed Engl 2019; 58:13573-13583. [PMID: 31343811 DOI: 10.1002/anie.201908089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Indexed: 11/07/2022]
Abstract
We herein report the development of a conformationally defined, electron-rich, C2 -symmetric, P-chiral bisphosphorus ligand, ArcPhos, by taking advantage of stereoelectronic effects in ligand design. With the Rh-ArcPhos catalyst, excellent enantioselectivities and unprecedentedly high turnovers (TON up to 10 000) were achieved in the asymmetric hydrogenation of aliphatic carbocyclic and heterocyclic tetrasubstituted enamides, to generate a series of chiral cis-2-alkyl-substituted carbocyclic and heterocyclic amine derivatives in excellent enantiomeric ratios. This method also enabled an efficient and practical synthesis of the Janus kinase inhibitor (R)-tofacitinib.
Collapse
Affiliation(s)
- Chengxi Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Feng Wan
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Yuan Chen
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Henian Peng
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Shu Yu
- Chemical Research and Development, Pfizer Global R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - J Christopher McWilliams
- Chemical Research and Development, Pfizer Global R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Jason Mustakis
- Chemical Research and Development, Pfizer Global R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Lacey Samp
- Chemical Research and Development, Pfizer Global R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Robert J Maguire
- Chemical Research and Applied Synthetic Technologies, Pfizer Global R&D, Eastern Point Road, Groton, CT, 06340, USA
| |
Collapse
|
25
|
Li C, Wan F, Chen Y, Peng H, Tang W, Yu S, McWilliams JC, Mustakis J, Samp L, Maguire RJ. Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium‐Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (
R
)‐Tofacitinib. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chengxi Li
- State Key Laboratory of Bio-Organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences 345 Ling Ling Road Shanghai 200032 China
| | - Feng Wan
- State Key Laboratory of Bio-Organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences 345 Ling Ling Road Shanghai 200032 China
| | - Yuan Chen
- State Key Laboratory of Bio-Organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences 345 Ling Ling Road Shanghai 200032 China
| | - Henian Peng
- State Key Laboratory of Bio-Organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences 345 Ling Ling Road Shanghai 200032 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences 345 Ling Ling Road Shanghai 200032 China
| | - Shu Yu
- Chemical Research and DevelopmentPfizer Global R&D Eastern Point Road Groton CT 06340 USA
| | | | - Jason Mustakis
- Chemical Research and DevelopmentPfizer Global R&D Eastern Point Road Groton CT 06340 USA
| | - Lacey Samp
- Chemical Research and DevelopmentPfizer Global R&D Eastern Point Road Groton CT 06340 USA
| | - Robert J. Maguire
- Chemical Research and Applied Synthetic TechnologiesPfizer Global R&D Eastern Point Road Groton CT 06340 USA
| |
Collapse
|
26
|
Kerdphon S, Ponra S, Yang J, Wu H, Eriksson L, Andersson PG. Diastereo- and Enantioselective Synthesis of Structurally Diverse Succinate, Butyrolactone, and Trifluoromethyl Derivatives by Iridium-Catalyzed Hydrogenation of Tetrasubstituted Olefins. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sutthichat Kerdphon
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, Stockholm 10691, Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, Stockholm 10691, Sweden
| | - Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, Stockholm 10691, Sweden
| | - Haibo Wu
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, Stockholm 10691, Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg16C, Stockholm SE-10691, Sweden
| | - Pher G. Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, Stockholm 10691, Sweden
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
27
|
Ponra S, Yang J, Kerdphon S, Andersson PG. Asymmetric Synthesis of Alkyl Fluorides: Hydrogenation of Fluorinated Olefins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sudipta Ponra
- Department of Organic ChemistryStockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Jianping Yang
- Department of Organic ChemistryStockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Sutthichat Kerdphon
- Department of Organic ChemistryStockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
| | - Pher G. Andersson
- Department of Organic ChemistryStockholm University Svante Arrhenius väg 16C SE-10691 Stockholm Sweden
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal Durban South Africa
| |
Collapse
|
28
|
Asymmetric Synthesis of Alkyl Fluorides: Hydrogenation of Fluorinated Olefins. Angew Chem Int Ed Engl 2019; 58:9282-9287. [DOI: 10.1002/anie.201903954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/11/2022]
|
29
|
Jayaraman A, Lee S. Silver-Mediated Decarboxylative Fluorodiiodination of Alkynoic Acids: Synthesis of Regio- and Stereoselective Fluoroalkenes. Org Lett 2019; 21:3485-3489. [PMID: 30977376 DOI: 10.1021/acs.orglett.9b00597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of arylalkynoic acids reacted with 1,3-diiodo-5,5-dimethylhydantoin and HF·pyridine in the presence of AgOAc to provide the corresponding 1-fluoro-2,2-diiodovinylarenes in good yields and high regioselectivity. In addition, Pd-catalyzed cross-coupling reaction of 1-fluoro-2,2-diiodovinylarenes afforded diaryl coupling products in the Suzuki reaction and monoaryl coupling products with high stereoselectivity in the Hiyama reaction. It was found that C-F-activated borylation of fluoroalkenes using Pd catalyst afforded the vinylboranes with good yields.
Collapse
Affiliation(s)
- Aravindan Jayaraman
- Department of Chemistry , Chonnam National University , Gwangju 61186 , Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry , Chonnam National University , Gwangju 61186 , Republic of Korea
| |
Collapse
|
30
|
Wang L, Jiang X, Chen J, Huang Y. Enantio‐ and Diastereoselective Hydrofluorination of Enals by N‐Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leming Wang
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsPeking UniversityShenzhen Graduate School Shenzhen 518055 China
| | - Xinhang Jiang
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsPeking UniversityShenzhen Graduate School Shenzhen 518055 China
| | - Jiean Chen
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsPeking UniversityShenzhen Graduate School Shenzhen 518055 China
| | - Yong Huang
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsPeking UniversityShenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
31
|
Wang L, Jiang X, Chen J, Huang Y. Enantio- and Diastereoselective Hydrofluorination of Enals by N-Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2019; 58:7410-7414. [PMID: 30942950 DOI: 10.1002/anie.201902989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Indexed: 12/16/2022]
Abstract
In contrast to well-established asymmetric hydrogenation reactions, enantioselective protonation is an orthogonal approach for creating highly valuable methine chiral centers under redox-neutral conditions. Reported here is the highly enantio- and diastereoselective hydrofluorination of enals by an asymmetric β-protonation/α-fluorination cascade catalyzed by N-heterocyclic carbenes (NHCs). The two nucleophilic sites of a homoenolate intermediate, generated from enals and an NHC, are sequentially protonated and fluorinated. The results show that controlling the relative rates of protonation, fluorination, and esterification is crucial for this transformation, and can be accomplished using a dual shuttling strategy. Structurally diverse carboxylic acid derivatives with two contiguous chiral centers are prepared in a single step with excellent d.r. and ee values.
Collapse
Affiliation(s)
- Leming Wang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xinhang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jiean Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yong Huang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
32
|
Biosca M, Salomó E, de la Cruz-Sánchez P, Riera A, Verdaguer X, Pàmies O, Diéguez M. Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine–Oxazoline Catalysts. Org Lett 2019; 21:807-811. [DOI: 10.1021/acs.orglett.8b04084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Biosca
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ernest Salomó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Pol de la Cruz-Sánchez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain
- Departament Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain
- Departament Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Oscar Pàmies
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Montserrat Diéguez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|