1
|
Lei X, Zhang Z, Zhou H, Chen L, Deng X, Liu W, Zhuang X, Wang M, Gu Y. Close atomic surface on aluminum alloy achieved by a near-neutral novel green chemical mechanical polishing method with high material removal rate. NANOSCALE 2025; 17:12684-12694. [PMID: 40279095 DOI: 10.1039/d5nr00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Scratches, embedding of abrasives, and corrosion pits easily occur on the surface of aluminum (Al) alloy during traditional mechanical and chemical mechanical polishing (CMP). To achieve a close atomic surface on Al alloy, the material removal rate (MRR) is generally extremely low. To address these challenges, a near-neutral, novel green CMP slurry with a pH value of 6 was developed for Al alloy, consisting of silica, praseodymia, hydrogen peroxide, triethanolamine, and niacin. After CMP, a close atomic surface was achieved, with a surface roughness (Sa) of 0.231 nm in a scanning area of 50 × 50 μm2, and the MRR was 12.56 μm h-1. To the best of our knowledge, this MRR is the highest reported for such a close atomic surface on Al alloys. Transmission electron microscopy confirmed that the thickness of the damage layer was 6.9 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy demonstrated that the Al alloy was oxidized by hydrogen peroxide, forming alumina and aluminum hydroxide, which dissolved into Al3+ ions and were chelated by niacin and triethanolamine. Consequently, chelating formulas were proposed. Our developed near-neutral green CMP provides a new approach to achieving a close atomic surface for soft and plastic Al alloys with a high MRR.
Collapse
Affiliation(s)
- Xiaofei Lei
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
| | - Zhenyu Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
- Institute of Atomic Level Manufacturing, Soochow University, Suzhou 215222, China
| | - Hongxiu Zhou
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Leilei Chen
- a Yangtze Power Co., Ltd, Chin, Yichang 443002, China.
| | - Xingqiao Deng
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Weiting Liu
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Shaoxing 312500, China
| | - Xuye Zhuang
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Mengyi Wang
- Zhejiang Chengben Bearing Roller Co., Ltd., Shaoxing 312500, China
| | - Yang Gu
- Department of Security, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Qi X. Opportunities and challenges in modelling ligand adsorption on semiconductor nanocrystals. Commun Chem 2025; 8:79. [PMID: 40082659 PMCID: PMC11906833 DOI: 10.1038/s42004-025-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Semiconductor nanocrystals, including their superstructures and hybridized systems, have opened up a new realm to design next-generation functional materials creatively. Their great success and unlimited potential should be largely attributed to surface-adsorbed ligands. However, due to a lack of means to probe and understand their roles in experiments, only a handful of effective ligands have been identified through trial-and-error processes. Alternatively, computational and theoretical methods are ideal for providing physical insights and further guidance. Still, their applications in ligand-coated semiconductor nanocrystals are relatively scarce compared to those of other systems, such as biological chemistry. In this perspective, we first highlight the success of ab initio methods in modeling ligand adsorption. Then, we discuss the opportunities of molecular dynamics and theory in accommodating complex colloidal nature, where we unfold the challenges therein. Finally, we emphasize the need for high-quality force fields to resolve these challenges and look forward to simulation-guided inverse design.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College, 41 College St., Hanover, 03755, NH, USA.
| |
Collapse
|
3
|
Briseño-Gómez JL, López-Tercero A, Castellanos-Reyes JÁ, Reyes-Coronado A. Angular momentum transfer from swift electrons to non-spherical nanoparticles within the dipolar approximation. Ultramicroscopy 2024; 264:114005. [PMID: 38901071 DOI: 10.1016/j.ultramic.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
In this work, we study the angular momentum transfer from a single swift electron to non-spherical metallic nanoparticles, specifically investigating spheroidal and polyhedral (Platonic Solids) shapes. While previous research has predominantly focused on spherical nanoparticles, our work expands the knowledge by exploring various geometries. Employing classical electrodynamics and the small particle limit, we calculate the angular momentum transfer by integrating the spectral density, ensuring causality through Fourier-transform analysis. Our findings demonstrate that prolate spheroidal nanoparticles exhibit a single blueshifted plasmonic resonance, compared to spherical nanoparticles of equivalent volume, resulting in lower angular momentum transfer. Conversely, oblate nanoparticles display two resonances - one blueshifted and one redshifted - resulting in a higher angular momentum transfer than their spherical counterparts. Additionally, Platonic Solids with fewer faces exhibit significant redshifts in plasmonic resonances, leading to higher angular momentum transfer due to edge effects. We also observe resonances and angular momentum transfers with similar characteristics in specific pairs of Platonic Solids, known as duals. These results highlight promising applications, particularly in electron tweezers technology.
Collapse
Affiliation(s)
- Jorge Luis Briseño-Gómez
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Ciudad de México 04510, Mexico.
| | - Atzin López-Tercero
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Ciudad de México 04510, Mexico
| | | | - Alejandro Reyes-Coronado
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Sen R, Millheim SL, Gordon TM, Millstone JE. Influence of Surface Chemistry on Metal Deposition Outcomes in Copper Selenide-Based Nanoheterostructure Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16473-16483. [PMID: 39067033 PMCID: PMC11308770 DOI: 10.1021/acs.langmuir.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The use of nanoparticle surface chemistry to direct metal deposition has been well-studied in the modification of metal nanoparticle substrates but is not yet well-established for metal chalcogenide particle substrates, although integration of these particles into nanoheterostructures is of high interest. In this report, we investigate the effect of Cu2-xSe surface chemistry on the morphology of metal deposition on these plasmonic semiconductor nanoparticles. Specifically, we functionalize Cu2-xSe nanoparticles with a suite of 12 different ligands and investigate how different aspects of the ligand structure do or do not impact the morphology and extent of subsequent metal deposition on the Cu2-xSe surface. Surprisingly, our results indicate that the morphology of the resulting metal deposits and the extent of metal deposition onto the existing Cu2-xSe particle substrate are indistinguishable for the majority of ligands tested. An exception to these findings is observed for particles functionalized by quaternary alkylammonium bromides, which exhibit statistically distinct metal deposition patterns compared to all other ligands tested. We hypothesize that this unique behavior is due to a cooperative binding mechanism of the quaternary alkylammonium bromides to the surface of copper selenide. Taken together, these results yield both new strategies for controlling postsynthetic modification of copper selenide nanoparticles and also reveal limitations of surface chemistry-based approaches for this system.
Collapse
Affiliation(s)
- Riti Sen
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shelby L. Millheim
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Tyler M. Gordon
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E. Millstone
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
5
|
Boukouvala C, West CA, Ten A, Hopper E, Ramasse QM, Biggins JS, Ringe E. Far-field, near-field and photothermal response of plasmonic twinned magnesium nanostructures. NANOSCALE 2024; 16:7480-7492. [PMID: 38344779 PMCID: PMC11025716 DOI: 10.1039/d3nr05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Magnesium nanoparticles offer an alternative plasmonic platform capable of resonances across the ultraviolet, visible and near-infrared. Crystalline magnesium nanoparticles display twinning on the (101̄1), (101̄2), (101̄3), and (112̄1) planes leading to concave folded shapes named tents, chairs, tacos, and kites, respectively. We use the Wulff-based Crystal Creator tool to expand the range of Mg crystal shapes with twinning over the known Mg twin planes, i.e., (101̄x), x = 1, 2, 3 and (112̄y), y = 1, 2, 3, 4, and study the effects of relative facet expression on the resulting shapes. These shapes include both concave and convex structures, some of which have been experimentally observed. The resonant modes, far-field, and near-field optical responses of these unusual plasmonic shapes as well as their photothermal behaviour are reported, revealing the effects of folding angle and in-filling of the concave region. Significant differences exist between shapes, in particular regarding the maximum and average electric field enhancement. A maximum field enhancement (|E|/|E0|) of 184, comparable to that calculated for Au and Ag nanoparticles, was found at the tips of the (112̄4) kite. The presence of a 5 nm MgO shell is found to decrease the near-field enhancement by 67% to 90% depending on the shape, while it can increase the plasmon-induced temperature rise by up to 42%. Tip rounding on the otherwise sharp nanoparticle corners also significantly affects the maximum field enhancement. These results provide guidance for the design of enhancing and photothermal substrates for a variety of plasmonic applications across a wide spectral range.
Collapse
Affiliation(s)
- Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Claire A West
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Andrey Ten
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Quentin M Ramasse
- School of Chemical and Process Engineering, University of Leeds, 211 Clarendon Road, Leeds, LS2 9JT, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse, Leeds, LS2 9JS, UK
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Warrington, WA4 4AD, UK
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
6
|
Varshney S, Oded M, Remennik S, Gutkin V, Banin U. Controlling the Surface of Aluminum Nanocrystals: From Aluminum Oxide to Aluminum Fluoride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304478. [PMID: 37420322 DOI: 10.1002/smll.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Aluminum nanocrystals are emerging as a promising alternative to silver and gold for various applications ranging from plasmonic functionalities to photocatalysis and as energetic materials. Such nanocrystals often exhibit an inherent surface oxidation layer, as aluminum is highly reactive. Its controlled removal is challenging but required, as it can hinder the properties of the encaged metal. Herein, two wet-chemical colloidal approaches toward the surface coating of Al nanocrystals, which afford control over the surface chemistry of the nanocrystals and the oxide thickness, are presented. The first approach utilizes oleic acid as a surface ligand by its addition toward the end of the Al nanocrystals synthesis, and the second approach is the post-synthesis treatment of Al nanocrystals with NOBF4 , in a "wet" colloidal-based approach, which is found to etch and fluorinate the surface oxides. As surface chemistry is an important handle for controlling materials' properties, this research paves a path for manipulating Al nanocrystals while promoting their utilization in diverse applications.
Collapse
Affiliation(s)
- Shalaka Varshney
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Meirav Oded
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Sergei Remennik
- The Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Vitaly Gutkin
- The Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Uri Banin
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
7
|
Peng F, Lu SY, Sun PQ, Zhang NN, Liu K. Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering. NANO LETTERS 2023. [PMID: 37410961 DOI: 10.1021/acs.nanolett.3c01605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to their unique and sustainable surface plasmonic properties, Al nanocrystals have attracted increasing attention for plasmonic-enhanced applications, including single-particle surface-enhanced Raman scattering (SERS). However, whether Al nanocrystals can achieve single-particle SERS is still unknown, mainly due to the synthetic difficulty of Al nanocrystals with internal gaps. Herein, we report a regrowth method for the synthesis of Al nanohexapods with tunable and uniform internal gaps for single-particle SERS with an enhancement factor of up to 1.79 × 108. The uniform branches of the Al nanohexapods can be systematically tuned regarding their dimensions, terminated facets, and internal gaps. The Al nanohexapods generate hot spots concentrated in the internal gaps due to the strong plasmonic coupling between the branches. A single-particle SERS measurement of Al nanohexapods shows strong Raman signals with maximum enhancement factors comparable to that of Au counterparts. The large enhancement factor indicates that Al nanohexapods are good candidates for single-particle SERS.
Collapse
Affiliation(s)
- Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shao-Yong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Pan-Qi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Li B, Gao H, Lu ZY. Janus polymer-grafted nanoparticles mimicking membrane repair proteins for the prevention of lipid membrane rupture. NANOSCALE 2023. [PMID: 37194398 DOI: 10.1039/d3nr00395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plasma membrane rupture often leads to cell damage, especially when there is a lack of membrane repair proteins near the wounds due to genetic mutations in organisms. To efficiently promote the repair of the injured lipid membrane, nanomedicines may act as a promising alternative to membrane repair proteins, but the related research is still in its infancy. Herein, using dissipative particle dynamics simulations, we designed a class of Janus polymer-grafted nanoparticles (PGNPs) that can mimic the function of membrane repair proteins. The Janus PGNPs comprise both hydrophobic and hydrophilic polymer chains grafted on nanoparticles (NPs). We track the dynamic process of the adsorption of Janus PGNPs at the damaged site in the lipid membrane and systematically assess the driving forces for this process. Our results reveal that tuning the length of the grafted polymer chains and the surface polarity of the NPs can efficiently enhance the adsorption of Janus PGNPs at the site of the damaged membrane to reduce membrane stress. After repair, the adsorbed Janus PGNPs can be successfully detached from the membrane, leaving the membrane untouched. These results provide valuable guidelines for designing advanced nanomaterials for the repair of damaged lipid membranes.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
9
|
Dhindsa P, Solti D, Jacobson CR, Kuriakose A, Naidu GN, Bayles A, Yuan Y, Nordlander P, Halas NJ. Facet Tunability of Aluminum Nanocrystals. NANO LETTERS 2022; 22:10088-10094. [PMID: 36525692 DOI: 10.1021/acs.nanolett.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aluminum nanocrystals (Al NCs) with a well-defined size and shape combine unique plasmonic properties with high earth abundance, potentially ideal for applications where sustainability and cost are important factors. It has recently been shown that single-crystal Al {100} nanocubes can be synthesized by the decomposition of AlH3 with Tebbe's reagent, a titanium(IV) catalyst with two cyclopentadienyl ligands. By systematically modifying the catalyst molecular structure, control of the NC growth morphology is observed spectroscopically, as the catalyst stabilizes the {100} NC facets. By varying the catalyst concentration, Al NC faceted growth is tunable from {100} faceted nanocubes to {111} faceted octahedra. This study provides direct insight into the role of catalyst molecular structure in controlling Al NC morphology.
Collapse
Affiliation(s)
- Parmeet Dhindsa
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David Solti
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christian R Jacobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anvy Kuriakose
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Aaron Bayles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yigao Yuan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Muhammed MM, Alrebdi TA, Chamkha AJ, Mokkath JH. Coupled plasmons in aluminum nanoparticle superclusters. Phys Chem Chem Phys 2022; 24:29528-29538. [PMID: 36448566 DOI: 10.1039/d2cp04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metallic nanoparticles can self-assemble into highly ordered superclusters for potential applications in optics and catalysis. Here, using first-principles quantum mechanical calculations, we investigate plasmon coupling in superclusters made of aluminum nanoparticles. More specifically, we study/compare the plasmon coupling in close-pack FCC (face-centered-cubic) and non-close-pack BCC (body-centered-cubic) superclusters. We demonstrate that the optical properties of these clusters can be fine-tuned with respect to the packing arrangement. As a key result of this work, plasmon coupling is found to be enhanced (diminished) in FCC (BCC) superclusters due to constructive (destructive) plasmon coupling. Our quantum calculations would help in the design of Al-based superclusters beneficial for plasmonics applications.
Collapse
Affiliation(s)
| | - Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali J Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
11
|
Chang YL, Su CJ, Lu LC, Wan D. Aluminum Plasmonic Nanoclusters for Paper-Based Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:16319-16327. [DOI: 10.1021/acs.analchem.2c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yu-Ling Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Chiao-Jung Su
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
12
|
Kang J, Wang Y, Peng F, Zhang N, Xue Y, Yang Y, Kumacheva E, Liu K. Oxidative Elimination and Reductive Addition of Thiol‐Terminated Polymer Ligands to Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202202405. [DOI: 10.1002/anie.202202405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yu‐Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Ning‐Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
13
|
Jacobson CR, Wu G, Alemany LB, Naidu GN, Lou M, Yuan Y, Bayles A, Clark BD, Cheng Y, Ali A, Tsai AL, Tonks IA, Nordlander P, Halas NJ. A Dual Catalyst Strategy for Controlling Aluminum Nanocrystal Growth. NANO LETTERS 2022; 22:5570-5574. [PMID: 35737851 DOI: 10.1021/acs.nanolett.2c01854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The synthesis of Al nanocrystals (Al NCs) is a rapidly expanding field, but there are few strategies for size and morphology control. Here we introduce a dual catalyst approach for the synthesis of Al NCs to control both NC size and shape. By using one catalyst that nucleates growth more rapidly than a second catalyst whose ligands affect NC morphology during growth, one can obtain both size and shape control of the resulting Al NCs. The combination of the two catalysts (1) titanium isopropoxide (TIP), for rapid nucleation, and (2) Tebbe's reagent, for specific facet-promoting growth, yields {100}-faceted Al NCs with tunable diameters between 35 and 65 nm. This dual-catalyst strategy could dramatically expand the possible outcomes for Al NC growth, opening the door to new controlled morphologies and a deeper understanding of earth-abundant plasmonic nanocrystal synthesis.
Collapse
Affiliation(s)
| | - Gang Wu
- Division of Hematology-Oncology, Department of Internal Medicine, The University of Texas McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, United States
| | | | | | | | | | | | | | - Yukun Cheng
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | - Ah-Lim Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, The University of Texas McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
14
|
Kang J, Wang Y, Peng F, Zhang NN, Xue Y, Yang Y, Kumacheva E, Liu K. Oxidative Elimination and Reductive Addition of Thiol‐Terminated Polymer Ligands to Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Kang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | - Yuxi Wang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | - Fei Peng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | - Ning-Ning Zhang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | - Yao Xue
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | - Yang Yang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| | | | - Kun Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry CHINA
| |
Collapse
|
15
|
Abstract
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, P.R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
16
|
Bae G, Aikens CM. Time‐dependent density functional theory study of the optical properties of tetrahedral aluminum nanoparticles. J Comput Chem 2022; 43:1033-1041. [DOI: 10.1002/jcc.26868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gyun‐Tack Bae
- Department of Chemistry Education Chungbuk National University Cheongju South Korea
| | | |
Collapse
|
17
|
Ma J, Zhang X, Gao S. Tunable electron and hole injection channels at plasmonic Al-TiO 2 interfaces. NANOSCALE 2021; 13:14073-14080. [PMID: 34477688 DOI: 10.1039/d1nr03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures can strongly absorb light through their plasmon excitations, whose nonradiative decay generates hot electron-hole pairs. When the metallic nanostructure is interfaced with a semiconductor, the spatial separation of hot carriers plays the central and decisive roles in photovoltaic and photocatalytic applications. In recent years, free-electron metals like Al have attracted tremendous attentions due to the much higher plasmon frequencies that could extend to the ultraviolet regime. Here, the plasmon excitations and charge separations at the Al-TiO2 interfaces have been investigated using quantum-mechanical calculations, where the atomic structures and electronic dynamics are all treated from first-principles. It is found that the high-frequency plasmon of Al produces abundant and broad-band hot-carrier distributions, where the electron-hole symmetry is broken by the presence of the semiconductor band gap. Such an asymmetric hot-carrier distribution provides two competing channels, which can be controlled either by tuning the laser frequency, or by harnessing the plasmon frequency through the geometry and shape of the metallic nanostructure. Our study suggests that the Al plasmon offers a versatile and tunable pathway for the charge transfer and separation, and has general implications in plasmon-assisted photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | | | | |
Collapse
|
18
|
Wang ZY, Zhang NN, Li JC, Lu J, Zhao L, Fang XD, Liu K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. SOFT MATTER 2021; 17:6298-6304. [PMID: 34160542 DOI: 10.1039/d1sm00784j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine serum albumin (PSA) can guide the chiral assembly of gold nanorods (GNRs) with left-handed chiroptical responses opposite to those by a series of other homologous animal serum albumins (SAs) due to the difference of their surface charge distributions. Under physiological pH conditions, the assembly of HSA or PSA with GNRs yielded left-handed twisted aggregates, while bovine serum albumin (BSA), sheep serum albumin, and equine serum albumin behaved on the contrary. The driving force for the chiral assembly is mainly attributed to electrostatic interaction. The opposite chiroptical signals acquired are correlated with the chiral surface charge distributions of the tertiary structures of SAs. Moreover, the chirality of the assembly induced by both HSA and BSA can be enhanced or reversed by adjusting the pH values. This work provides new insights into the modulation of protein-induced chiral assemblies and promotes their applications.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Jin-Cheng Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China. and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Li Zhao
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xue-Dong Fang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
19
|
Wang YX, Li Y, Qiao SH, Kang J, Shen ZL, Zhang NN, An Z, Wang X, Liu K. Polymers via Reversible Addition-Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. J Phys Chem Lett 2021; 12:4713-4721. [PMID: 33982560 DOI: 10.1021/acs.jpclett.1c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
End-group fidelity is the most important property for end-functional polymers. Compared to other controlled living polymerization methods, reversible addition-fragmentation chain transfer (RAFT) polymerization often yields polymers with a lower end-group fidelity, which greatly affects their applications. Herein, we report a staged-thermal-initiation RAFT polymerization for the synthesis of polymers with high thiol end-group fidelity and their high efficiencies for grafting to various gold nanoparticles (GNPs). We experimentally prove that the decrease of end-group fidelity with their molecular weight is caused by the gradual decomposition of the initiator rather than the degradation of chain-transfer agents. We show that the staged-thermal-initiation RAFT polymerization is more effective for synthesis of polymers with high thiol end-group fidelity. The grafting-to assays for various GNPs illustrate the positive correlation between the end-group fidelity of polymers and grafting-to efficiency. This work highlights the prospects for synthesis of high end-group fidelity polymers and their application in the preparation of nanoparticles-polymer hybrid materials.
Collapse
Affiliation(s)
- Yu-Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shi-Hui Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zhi-Li Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
20
|
Li S, Miao P, Zhang Y, Wu J, Zhang B, Du Y, Han X, Sun J, Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000086. [PMID: 32201994 DOI: 10.1002/adma.202000086] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Collapse
Affiliation(s)
- Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peng Miao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
21
|
Huh JH, Kim K, Im E, Lee J, Cho Y, Lee S. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001806. [PMID: 33079414 DOI: 10.1002/adma.202001806] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Indexed: 05/28/2023]
Abstract
The scaling down of meta-atoms or metamolecules (collectively denoted as metaunits) is a long-lasting issue from the time when the concept of metamaterials was first suggested. According to the effective medium theory, which is the foundational concept of metamaterials, the structural sizes of meta-units should be much smaller than the working wavelengths (e.g., << 1/5 wavelength). At relatively low frequency regimes (e.g., microwave and terahertz), the conventional monolithic lithography can readily address the materialization of metamaterials. However, it is still challenging to fabricate optical metamaterials (metamaterials working at optical frequencies such as the visible and near-infrared regimes) through the lithographic approaches. This serves as the rationale for using colloidal self-assembly as a strategy for the realization of optical metamaterials. Colloidal self-assembly can address various critical issues associated with the materialization of optical metamaterials, such as achieving nanogaps over a large area, increasing true 3D structural complexities, and cost-effective processing, which all are difficult to attain through monolithic lithography. Nevertheless, colloidal self-assembly is still a toolset underutilized by optical engineers. Here, the design principle of the colloidally self-assembled optical metamaterials exhibiting unnatural refractions, the practical challenge of relevant experiments, and the future opportunities are critically reviewed.
Collapse
Affiliation(s)
- Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangjin Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunji Im
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering (IEE) and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
22
|
Spataro G, Champouret Y, Coppel Y, Kahn ML. Prominence of the Instability of a Stabilizing Agent in the Changes in Physical State of a Hybrid Nanomaterial. Chemphyschem 2020; 21:2454-2459. [PMID: 32893945 DOI: 10.1002/cphc.202000584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Shaping ability of hybrid nanomaterials is a key point for their further use in devices. It is therefore crucial to control it. To this end, it is necessary that the macroscopic properties of the material remain constant over time. Here, we evidence by multinuclear Magic-Angle Spinning Nuclear Magnetic Resonance spectroscopic study including 17 O isotope exchange that for a ZnO-alkylamine hybrid material, the partial carbonation of amine into ammonium carbamate molecules is behind the conversion from highly viscous liquid to a powdery solid when exposed to air. This carbonation induces modification and reorganization of the organic shell around the nanocrystals and affects significantly the macroscopic properties of the material such as it physical state, its solubility and colloidal stability. This study, straightforwardly extendable, highlights that the nature of the functional chemical group allowing connecting the stabilizing agent (SA) to the surface of the nanoparticles is of tremendous importance especially if the SA is reactive with molecules present in the environment.
Collapse
Affiliation(s)
- Grégory Spataro
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yohan Champouret
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| |
Collapse
|
23
|
Jacobson CR, Solti D, Renard D, Yuan L, Lou M, Halas NJ. Shining Light on Aluminum Nanoparticle Synthesis. Acc Chem Res 2020; 53:2020-2030. [PMID: 32865962 DOI: 10.1021/acs.accounts.0c00419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ConspectusAluminum in its nanostructured form is generating increasing interest because of its light-harvesting properties, achieved by excitation of its localized surface plasmon resonance. Compared to traditional plasmonic materials, the coinage metals Au and Ag, Al is far more earth-abundant and, therefore, more suitable for large-area applications or where cost may be an important factor. Its optical properties are far more flexible than either Au or Ag, supporting plasmon resonances that range from UV wavelengths, through the visible regime, and into the infrared region of the spectrum. However, the chemical synthesis of Al nanocrystals (NCs) of controlled size and shape has historically lagged far behind that of Au and Ag. This is partially due to the high reactivity of Al precursors, which react readily with O2, H2O, and many reagents used in traditional NC syntheses. The first chemical synthesis of Al NCs was demonstrated by Haber and Buhro in 1998, decomposing AlH3 using titanium isopropoxide (TIP), with a number of subsequent reports refining this protocol. The role of a catalyst in Al NC synthesis is, we believe, unique to this synthetic approach. In 2015, the first synthesis of size controlled Al NCs was published by our group. Since then, we have significantly advanced Al NC synthesis, postsynthetic modifications, and applications of Al nanoparticles (NPs)-NCs with additional surface modifications-in chemical sensing and photocatalysis. Colloidal Al synthesis has its unique challenges, differing markedly from the far more familiar Au and Ag syntheses, which currently appears to present a de facto barrier to broader research activity in this field.The goal of this Account is to highlight developments in controlled synthesis of Al NCs and applications of Al NPs over the last five years. We outline techniques for successful Al NC synthesis and address some of the problems that may be encountered in this synthesis. A mechanistic understanding of AlH3 decomposition using TIP has been developed, while new directions have been discovered for synthetic control. Facet-binding ligands, alternate Al precursors, new titanium-based reduction catalysts, even solvent composition have all been shown to control reaction products while also opening doors to future developments. A variety of postsynthetic modifications to the Al NC native oxide surface, including polymer, MOF, and transition metal island coatings have been demonstrated for applications in molecular sensing and photocatalysis. In this Account, we hope to convey that Al synthesis is more accessible than generally perceived and to encourage new synthetic development based on underlying mechanisms controlling size and shape. High selectivity in particle faceting and twinning, implementation of seeded growth principles for monodisperse samples, and the demonstration of new, practical applications of Al nanoparticles remain primary challenges in the field. As Al nanoparticle synthesis is refined and new applications emerge, colloidal Al will become an accessible and low-cost plasmonic nanomaterial complementary to Au and Ag.
Collapse
|
24
|
Clark BD, Lou M, Nordlander P, Halas NJ. Aluminum Nanocrystals Grow into Distinct Branched Aluminum Nanowire Morphologies. NANO LETTERS 2020; 20:6644-6650. [PMID: 32787155 DOI: 10.1021/acs.nanolett.0c02466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plasmonic nanowires (NWs) have generated great interest in their applications in nanophotonics and nanotechnology. Here we report the synthesis of Al nanocrystals (NCs) with controlled morphologies that range from nanospheres to branched NW and NW bundles. This is accomplished by catalyzing the pyrolysis of triisobutyl aluminum (TIBA) with Tebbe's reagent, a titanium(III) catalyst with two cyclopentadienyl ligands. The ratio of TIBA to Tebbe's reagent is critical in determining the morphology of the resulting Al NC. The branched Al NWs grow in their ⟨100⟩ directions and are formed by oriented attachment of isotropic Al NCs on their {100} facets. Branched NWs are strongly absorptive from the UV to the mid-IR, with longitudinal dipolar, higher-order, and transverse plasmons, all contributing to their broadband response. This rapid Al NW synthesis enables the expanded use of Al for plasmonic and nanophotonic applications in the ultraviolet, visible, and infrared regions of the spectrum.
Collapse
|
25
|
Yu H, Zhang P, Lu S, Yang S, Peng F, Chang WS, Liu K. Synthesis and Multipole Plasmon Resonances of Spherical Aluminum Nanoparticles. J Phys Chem Lett 2020; 11:5836-5843. [PMID: 32610015 DOI: 10.1021/acs.jpclett.0c01754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In comparison to Au and Ag, the high plasma frequency of Al allows multipole plasmon resonances from the ultraviolet to visible (UV-vis) range to be achieved by its nanoparticles with much smaller sizes and even a spherical shape. Herein, we report the high-supersaturation growth of monodisperse spherical Al nanoparticles (Al NPs) from 84 to 200 nm and their distinctive size-dependent multipole plasmon resonance properties in the UV-vis range. Linear relationships between the particle diameter and resonance peak positions of the dipole, quadrupole, and octupole were observed experimentally and confirmed by finite-difference time-domain (FDTD) calculations. FDTD calculations further reveal the high scattering-to-extinction ratio of multipole modes for the particle diameters >100 nm. The extinction coefficients of spherical Al NPs with different diameters were also determined. The excellent matching between the experimental and simulated results in the present work not only offers a standard for the synthesis and characterization of high-quality Al NPs but also provides new insight into the multipole plasmonic properties of Al NPs for advanced optical and sensing applications.
Collapse
Affiliation(s)
- Hua Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shaoyong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Jiang Y, Cheng Z, Xu C, Chu X, Zhao P, Zhang L, Yin J, Zhao W, Dai B, Zhong H, Xu J. Facile Fabrication of Highly Efficient Hollow Ni/Al Bimetal Fuel with Enhanced Thermal Oxidation Behavior. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Jiang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Zhipeng Cheng
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Chenxiao Xu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Lili Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jingzhou Yin
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Wei Zhao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Benlin Dai
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Hui Zhong
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
27
|
Ostovar B, Su MN, Renard D, Clark BD, Dongare PD, Dutta C, Gross N, Sader JE, Landes CF, Chang WS, Halas NJ, Link S. Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle Transient Extinction Spectroscopy. J Phys Chem A 2020; 124:3924-3934. [PMID: 32286064 DOI: 10.1021/acs.jpca.0c01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acoustic vibrations in plasmonic nanoparticles, monitored by an all-optical means, have attracted significant increasing interest because they provide unique insight into the mechanical properties of these metallic nanostructures. Al nanostructures are a recently emerging alternative to noble metal nanoparticles, because their broad wavelength tunability and high natural abundance make them ideal for many potential applications. Here, we investigate the acoustic vibrations of individual Al nanocrystals using a combination of electron microscopy and single-particle transient extinction spectroscopy, made possible with a low-pulse energy, high sensitivity, and probe-wavelength-tunable, single-particle transient extinction microscope. For chemically synthesized, faceted Al nanocrystals, the observed vibration frequency scales with the inverse particle diameter. In contrast, triangularly shaped Al nanocrystals support two distinct frequencies, corresponding to their in- and out-of-plane breathing modes. Unlike ensemble measurements, which measure average properties, measuring the damping time of the acoustic vibrations for individual particles enables us to investigate variations of the quality factor on the particle-to-particle level. Surprisingly, we find a large variation in quality factors even for nanocrystals of similar size and shape. This observed heterogeneity appears to result from substantially varying degrees of nanoparticle crystallinity even for chemically synthesized nanocrystals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John E Sader
- ARC Centre of Excellence in Exciton Science, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts 02747, United States
| | | | | |
Collapse
|
28
|
Yu H, Lu S, Gao H, Lu Z, Liu K. General criteria for evaluating suitable polymer ligands for the synthesis of aluminum nanocrystals. Chem Commun (Camb) 2020; 56:217-220. [DOI: 10.1039/c9cc08476b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work proposes general criteria for evaluating suitable polymer ligands for shape- and size-controlled synthesis of Al nanocrystals.
Collapse
Affiliation(s)
- Hua Yu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shaoyong Lu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huimin Gao
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
29
|
Asselin J, Boukouvala C, Wu Y, Hopper ER, Collins SM, Biggins JS, Ringe E. Decoration of plasmonic Mg nanoparticles by partial galvanic replacement. J Chem Phys 2019; 151:244708. [PMID: 31893891 DOI: 10.1063/1.5131703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasmonic structures have attracted much interest in science and engineering disciplines, exploring a myriad of potential applications owing to their strong light-matter interactions. Recently, the plasmonic concentration of energy in subwavelength volumes has been used to initiate chemical reactions, for instance by combining plasmonic materials with catalytic metals. In this work, we demonstrate that plasmonic nanoparticles of earth-abundant Mg can undergo galvanic replacement in a nonaqueous solvent to produce decorated structures. This method yields bimetallic architectures where partially oxidized 200-300 nm Mg nanoplates and nanorods support many smaller Au, Ag, Pd, or Fe nanoparticles, with potential for a stepwise process introducing multiple decoration compositions on a single Mg particle. We investigated this mechanism by electron-beam imaging and local composition mapping with energy-dispersive X-ray spectroscopy as well as, at the ensemble level, by inductively coupled plasma mass spectrometry. High-resolution scanning transmission electron microscopy further supported the bimetallic nature of the particles and provided details of the interface geometry, which includes a Mg oxide separation layer between Mg and the other metal. Depending on the composition of the metallic decorations, strong plasmonic optical signals characteristic of plasmon resonances were observed in the bulk with ultraviolet-visible spectrometry and at the single particle level with darkfield scattering. These novel bimetallic and multimetallic designs open up an exciting array of applications where one or multiple plasmonic structures could interact in the near-field of earth-abundant Mg and couple with catalytic nanoparticles for applications in sensing and plasmon-assisted catalysis.
Collapse
Affiliation(s)
- Jérémie Asselin
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Yuchen Wu
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Elizabeth R Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
30
|
Jiang B, Song H, Kang Y, Wang S, Wang Q, Zhou X, Kani K, Guo Y, Ye J, Li H, Sakka Y, Henzie J, Yusuke Y. A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem Sci 2019; 11:791-796. [PMID: 34123054 PMCID: PMC8145993 DOI: 10.1039/c9sc04498a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generating high surface area mesoporous transition metal boride is interesting because the incorporation of boron atoms generates lattice distortions that lead to the formation of amorphous metal boride with unique properties in catalysis. Here we report the first synthesis of mesoporous cobalt boron amorphous alloy colloidal particles using a soft template-directed assembly approach. Dual reducing agents are used to precisely control the chemical reduction process of mesoporous cobalt boron nanospheres. The Earth-abundance of cobalt boride combined with the high surface area and mesoporous nanoarchitecture enables solar-energy efficient photothermal conversion of CO2 into CO compared to non-porous cobalt boron alloys and commercial cobalt catalysts.
Collapse
Affiliation(s)
- Bo Jiang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan .,Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Hui Song
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yunqing Kang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan .,The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Shengyao Wang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Qi Wang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Xin Zhou
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kenya Kani
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| | - Yanna Guo
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jinhua Ye
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yoshio Sakka
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Joel Henzie
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yamauchi Yusuke
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia .,Department of Plant and Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|
31
|
Boukouvala C, Ringe E. Wulff-Based Approach to Modeling the Plasmonic Response of Single Crystal, Twinned, and Core-Shell Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:25501-25508. [PMID: 31681455 PMCID: PMC6822593 DOI: 10.1021/acs.jpcc.9b07584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Indexed: 05/25/2023]
Abstract
The growing interest in plasmonic nanoparticles and their increasingly diverse applications is fuelled by the ability to tune properties via shape control, promoting intense experimental and theoretical research. Such shapes are dominated by geometries that can be described by the kinetic Wulff construction such as octahedra, thin triangular platelets, bipyramids, and decahedra, to name a few. Shape is critical in dictating the optical properties of these nanoparticles, in particular their localized surface plasmon resonance behavior, which can be modeled numerically. One challenge of the various available computational techniques is the representation of the nanoparticle shape. Specifically, in the discrete dipole approximation, a particle is represented by discretizing space via an array of uniformly distributed points-dipoles; this can be difficult to construct for complex shapes including those with multiple crystallographic facets, twins, and core-shell particles. Here, we describe a standalone user-friendly graphical user interface (GUI) that uses both kinetic and thermodynamic Wulff constructions to generate a dipole array for complex shapes, as well as the necessary input files for DDSCAT-based numerical approaches. Examples of the use of this GUI are described through three case studies spanning different shapes, compositions, and shell thicknesses. Key advances offered by this approach, in addition to simplicity, are the ability to create crystallographically correct structures and the addition of a conformal shell on complex shapes.
Collapse
Affiliation(s)
- Christina Boukouvala
- Department of Materials Science and Metallurgy,
University of Cambridge, 27 Charles Babbage Road, Cambridge
CB3 0FS, U.K.
| | - Emilie Ringe
- Department of Materials Science and Metallurgy,
University of Cambridge, 27 Charles Babbage Road, Cambridge
CB3 0FS, U.K.
- Department of Earth Sciences, University
of Cambridge, Downing Street, Cambridge CB2 3EQ,
U.K.
| |
Collapse
|
32
|
Wang Z, Ai B, Wang Y, Guan Y, Möhwald H, Zhang G. Hierarchical Control of Plasmonic Nanochemistry in Microreactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35429-35437. [PMID: 31483594 DOI: 10.1021/acsami.9b10917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A microreactor that can confine chemical reactions exclusively in tiny vessels with the volume of ∼0.015 μm3 is introduced. Aluminum inversed hollow nanocone arrays (IHNAs) are fabricated by a simple and efficient colloidal lithography method. Ag and Au nanoparticles (NPs), as well as polypyrrole, grow exclusively in the conic cavities under light illumination. The photocatalytic effect arising from the plasmonic enhanced electric fields (E-fields) of IHNAs boosts the reactions and is in charge of the submicrometer site-selectivity. By partially inhibiting light to IHNAs, various hierarchical patterns at the macro-, micro-, and sub-microscale are obtained, inspiring a facile patterning technique by varying the light source. In addition, the Al IHNA films are transferred to flexible and curved substrates with unchanged performances, showing high flexibility for wide applications. Microreactors based on the IHNAs will contribute to the control of chemical reactions at different dimensions and offer great potentials in developing novel nanofabrication techniques.
Collapse
Affiliation(s)
- Zengyao Wang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Bin Ai
- Department of Aerospace Engineering , Texas A&M University , College Station , Texas 77843-3141 , United States
| | - Yu Wang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Yuduo Guan
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , Potsdam D-14424 , Germany
| | - Gang Zhang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| |
Collapse
|
33
|
Clark BD, Jacobson CR, Lou M, Renard D, Wu G, Bursi L, Ali AS, Swearer DF, Tsai AL, Nordlander P, Halas NJ. Aluminum Nanocubes Have Sharp Corners. ACS NANO 2019; 13:9682-9691. [PMID: 31397561 DOI: 10.1021/acsnano.9b05277] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Of the many plasmonic nanoparticle geometries that have been synthesized, nanocubes have been of particular interest for creating nanocavities, facilitating plasmon coupling, and enhancing phenomena dependent upon local electromagnetic fields. Here we report the straightforward colloidal synthesis of single-crystalline {100} terminated Al nanocubes by decomposing AlH3 with Tebbe's reagent in tetrahydrofuran. The size and shape of the Al nanocubes is controlled by the reaction time and the ratio of AlH3 to Tebbe's reagent, which, together with reaction temperature, establish kinetic control over Al nanocube growth. Al nanocubes possess strong localized field enhancements at their sharp corners and resonances highly amenable to coupling with metallic substrates. Their native oxide surface renders them extremely air stable. Chemically synthesized Al nanocubes provide an earth-abundant alternative to noble metal nanocubes for plasmonics and nanophotonics applications.
Collapse
Affiliation(s)
| | | | | | | | - Gang Wu
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin St , Houston , Texas 77030 , United States
| | | | | | | | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin St , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
34
|
Yang C, Marian C, Liu J, Di Q, Xu M, Zhang Y, Han W, Liu K. Polymer Grafted Aluminum Nanoparticles for Percolative Composite Films with Enhanced Compatibility. Polymers (Basel) 2019; 11:polym11040638. [PMID: 30965676 PMCID: PMC6523902 DOI: 10.3390/polym11040638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023] Open
Abstract
Aluminum nanoparticles hold promise for highly energetic materials and sustainable surface plasmonic materials. Most of the commercial Al nanoparticles are prepared via a high-throughput electrical explosion of wires method (up to 200 g h−1). However, the use of Al nanoparticles produced by an electrical explosion of wires is limited by their micrometer-sized aggregations and poor stability. Here, we use polystyrene with –COOH end-group to graft onto isolated Al nanoparticles and dramatically enhance their colloidal stability in various organic solvents. We further demonstrate that the polystyrene grafted Al nanoparticles can be doped into polystyrene films with high compatibility, leading to enhanced dielectric properties, such as higher dielectric constant, lower dielectric loss, and stronger breakdown strength. Moreover, the composite film can improve the moisture resistance of embedded Al nanoparticles.
Collapse
Affiliation(s)
- Chenggong Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Chufarov Marian
- Jilin Supercapacitor Engineering Laboratory, College of Physics, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Jie Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Mingze Xu
- International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun 130022, China.
| | - Yunhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Wei Han
- Jilin Supercapacitor Engineering Laboratory, College of Physics, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
35
|
Clark BD, DeSantis CJ, Wu G, Renard D, McClain MJ, Bursi L, Tsai AL, Nordlander P, Halas NJ. Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. J Am Chem Soc 2019; 141:1716-1724. [PMID: 30612425 DOI: 10.1021/jacs.8b12255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH3 in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti3+-AlH3 complexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti3+ catalysts. These Ti3+ species catalyze elimination of H2 from AlH3 inducing the polymerization of AlH3 into colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H2 to form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.
Collapse
Affiliation(s)
| | | | - Gang Wu
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | | | | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | |
Collapse
|