1
|
Fricke SN, Balcom BJ, Kaseman DC, Augustine MP. The matrix pencil as a tunable filter. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107780. [PMID: 39340941 DOI: 10.1016/j.jmr.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Despite inherent sensitivity constraints, nuclear magnetic resonance (NMR) plays an indispensable role in probing molecular structures and dynamics across scientific disciplines. Remarkably, while extensive efforts have targeted instrumental and experimental sensitivity improvements, comparatively little focus has been dedicated to sensitivity enhancement through signal analysis. Amidst this present gap, the matrix pencil method (MPM) has emerged as a versatile algorithm that offers tunable filtering and phasing capabilities. Extensive prior research has established the MPM as an adept fitting tool in signal analysis. Here, the efficacy of the MPM is investigated by precisely modeling noisy data to separate information-bearing signals from noise, thereby expanding its utility in various magnetic resonance applications. Simulated data is used to confirm the ability of the MPM to discern and separate signals from noise. Comparative analyses against standard Fourier-based filtering methods highlight the superior performance of the matrix pencil filter (MPF) in preserving signal fidelity without introducing aliasing artifacts. A variety of experimental data is then explored to demonstrate the proficiency of the MPF in characterizing signal components and correcting phase distortions. Collectively, these case studies underscore the filtering capacity of the MPM, portending its use for analytical sensitivity improvements in a wide range of NMR applications.
Collapse
Affiliation(s)
- S N Fricke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - B J Balcom
- MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - D C Kaseman
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; UC Davis NMR Facility, University of California, Davis, Davis, CA 95616, USA
| | - M P Augustine
- Department of Chemistry, 69 Chemistry Building, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Peters JP, Assaf C, Mohamad FH, Beitz E, Tiwari S, Aden K, Hövener JB, Pravdivtsev AN. Yeast Solutions and Hyperpolarization Enable Real-Time Observation of Metabolized Substrates Even at Natural Abundance. Anal Chem 2024; 96:17135-17144. [PMID: 39405516 PMCID: PMC11525923 DOI: 10.1021/acs.analchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Metabolic changes in an organism often occur much earlier than macroscopic manifestations of disease, such as invasive tumors. Therefore, noninvasive tools to monitor metabolism are fundamental as they provide insights into in vivo biochemistry. NMR represents one of the gold standards for such insights by observing metabolites. Using nuclear spin hyperpolarization greatly increases the NMR sensitivity, enabling μmol/L sensitivity with a time resolution of about one second. However, a metabolic phantom with reproducible, rapid, and human-like metabolism is needed to progress research in this area. Using baker's yeast as a convenient metabolic factory, we demonstrated in a single study that yeast cells provide a robust and rapidly metabolizing phantom for pyruvate and fumarate, including substrates with a natural abundance of 13C: we observed the production of ethanol, carbon dioxide, bicarbonate, lactate, alanine from pyruvate, malate, and oxaloacetate from fumarate. For observation, we hyperpolarized pyruvate and fumarate via the dissolution dynamic nuclear polarization (dDNP) technique to about 30% 13C polarization that is equivalent to 360,000 signal enhancement at 1 T and 310 K. Major metabolic pathways were observed using tracers at a natural abundance of 13C, demonstrating that isotope labeling is not always essential in vitro. Enriched [1-13C]pyruvate revealed minor lactate production, presumably via the D-lactate dehydrogenase (DLD) enzyme pathway, demonstrating the sensitivity gain using a dense yeast solution. We foresee that yeast as a metabolic factory can find application as an abundant MRI phantom standard to calibrate and optimize molecular MRI protocols. Our study highlights the potential of using hyperpolarization to probe the metabolism of yeast and other microorganisms even with naturally abundant substrates, offering valuable insights into their response to various stimuli such as drugs, treatment, nourishment, and genetic modification, thereby advancing drug development and our understanding of biochemical processes.
Collapse
Affiliation(s)
- Josh P. Peters
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| | - Charbel Assaf
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| | - Farhad Haj Mohamad
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| | - Eric Beitz
- Pharmaceutical
Institute, CAU Kiel, Gutenbergstr. 76, Kiel 24118, Germany
| | - Sanjay Tiwari
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| | - Konrad Aden
- Institute
of Clinical Molecular Biology, Kiel University, Gut Rosalind-Franklin-Straße
12, Kiel 24105, Germany
- Department
of Internal Medicine I, University Medical
Center Kiel, Arnold-Heller-Straße
3, Kiel 24105, Germany
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| | - Andrey N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 18, Kiel 24118, Germany
| |
Collapse
|
3
|
Levien M, Yang L, van der Ham A, Reinhard M, John M, Purea A, Ganz J, Marquardsen T, Tkach I, Orlando T, Bennati M. Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions. Nat Commun 2024; 15:5904. [PMID: 39003303 PMCID: PMC11246421 DOI: 10.1038/s41467-024-50265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge. Here, we report an instrumental design for 9.4 Tesla liquid-state dynamic nuclear polarization that enabled enhanced high-resolution NMR spectra in one and two-dimensions for small molecules, including drugs and metabolites. Achieved enhancements of up to two orders of magnitude translate to signal acquisition gains up to a factor of 10,000. We show that hyperpolarization can be transferred between nuclei, allowing DNP-enhanced two-dimensional 13C-13C correlation experiments at 13C natural abundance. The enhanced sensitivity opens up perspectives for structural determination of natural products or characterization of drugs, available in small quantities. The results provide a starting point for a broader implementation of DNP in liquid-state NMR.
Collapse
Affiliation(s)
- Marcel Levien
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Luming Yang
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alex van der Ham
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Maik Reinhard
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
| | - Michael John
- Institute of Organic and Biomolecular Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 2, 37077, Göttingen, Germany
| | - Armin Purea
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Jürgen Ganz
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | | | - Igor Tkach
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tomas Orlando
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., 32310, Tallahassee, FL, USA
| | - Marina Bennati
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Singh K, Frydman L. Single-Scan Heteronuclear 13C- 15N J-Coupling NMR Observations Enhanced by Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:5659-5664. [PMID: 38767577 PMCID: PMC11145644 DOI: 10.1021/acs.jpclett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Epasto LM, Maimbourg T, Rosso A, Kurzbach D. Unified understanding of the breakdown of thermal mixing dynamic nuclear polarization: The role of temperature and radical concentration. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107670. [PMID: 38603922 DOI: 10.1016/j.jmr.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
We reveal an interplay between temperature and radical concentration necessary to establish thermal mixing (TM) as an efficient dynamic nuclear polarization (DNP) mechanism. We conducted DNP experiments by hyperpolarizing widely used DNP samples, i.e., sodium pyruvate-1-13C in water/glycerol mixtures at varying nitroxide radical (TEMPOL) concentrations and microwave irradiation frequencies, measuring proton and carbon-13 spin temperatures. Using a cryogen consumption-free prototype-DNP apparatus, we could probe cryogenic temperatures between 1.5 and 6.5 K, i.e., below and above the boiling point of liquid helium. We identify two mechanisms for the breakdown of TM: (i) Anderson type of quantum localization for low radical concentration, or (ii) quantum Zeno localization occurring at high temperature. This observation allowed us to reconcile the recent diverging observations regarding the relevance of TM as a DNP mechanism by proposing a unifying picture and, consequently, to find a trade-off between radical concentration and electron relaxation times, which offers a pathway to improve experimental DNP performance based on TM.
Collapse
Affiliation(s)
- Ludovica M Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Thibaud Maimbourg
- Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
| | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
7
|
Eichhorn TR, Parker AJ, Josten F, Müller C, Scheuer J, Steiner JM, Gierse M, Handwerker J, Keim M, Lucas S, Qureshi MU, Marshall A, Salhov A, Quan Y, Binder J, Jahnke KD, Neumann P, Knecht S, Blanchard JW, Plenio MB, Jelezko F, Emsley L, Vassiliou CC, Hautle P, Schwartz I. Hyperpolarized Solution-State NMR Spectroscopy with Optically Polarized Crystals. J Am Chem Soc 2022; 144:2511-2519. [PMID: 35113568 DOI: 10.1021/jacs.1c09119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.
Collapse
Affiliation(s)
| | - Anna J Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Jakob M Steiner
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel
| | - Yifan Quan
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Binder
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Kay D Jahnke
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Martin B Plenio
- Institute for Theoretical Physics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| |
Collapse
|
8
|
Dai D, Wang X, Liu Y, Yang XL, Glaubitz C, Denysenkov V, He X, Prisner T, Mao J. Room-temperature dynamic nuclear polarization enhanced NMR spectroscopy of small biological molecules in water. Nat Commun 2021; 12:6880. [PMID: 34824218 PMCID: PMC8616939 DOI: 10.1038/s41467-021-27067-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP 13C enhancement factor and paramagnetic 13C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.
Collapse
Affiliation(s)
- Danhua Dai
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xianwei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Liang Yang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jiafei Mao
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Kouřil K, Gramberg M, Jurkutat M, Kouřilová H, Meier B. A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:815-825. [PMID: 37905208 PMCID: PMC10539728 DOI: 10.5194/mr-2-815-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 11/01/2023]
Abstract
In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.
Collapse
Affiliation(s)
- Karel Kouřil
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michel Gramberg
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jurkutat
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hana Kouřilová
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benno Meier
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
10
|
Elliott SJ, Stern Q, Ceillier M, El Daraï T, Cousin SF, Cala O, Jannin S. Practical dissolution dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:59-100. [PMID: 34852925 DOI: 10.1016/j.pnmrs.2021.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Morgan Ceillier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Théo El Daraï
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Samuel F Cousin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Olivier Cala
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
11
|
Kupče Ē, Frydman L, Webb AG, Yong JRJ, Claridge TDW. Parallel nuclear magnetic resonance spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Zhan H, Huang Y, Wang X, Shih TM, Chen Z. Highly Efficient Determination of Complex NMR Multiplet Structures in Inhomogeneous Magnetic Fields. Anal Chem 2021; 93:2419-2423. [PMID: 33395270 DOI: 10.1021/acs.analchem.0c04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proton-proton scalar (J) coupling plays an important role in disentangling molecular structures and spatial conformations. But it is challenging to extract J coupling networks from congested 1H NMR spectra, especially in inhomogeneous magnetic fields. Herein, we propose a general liquid NMR protocol, named HR-G-SERF, to implement highly efficient determination of individual J couplings and corresponding coupling networks via simultaneously suppressing effects of spectral congestions and magnetic field inhomogeneity. This method records full-resolved 2D absorption-mode spectra to deliver great convenience for multipet analyses on complex samples. More meaningfully, it is capable of disentangling multiplet structures of biological samples, that is, grape sarcocarp, despite of its heterogeneous semisolid state and extensive compositions. In addition, a modification, named AH-G-SERF, is developed to compress experimental acquisition and subsequently improve unit-time SNR, while maintaining satisfactory spectral performance. This accelerated variant may further boost the applicability for rapid NMR detections and afford the possibility of adopting hyperpolarized substances to enhance the overall sensitivity. Therefore, this study provides a promising tool for molecular structure elucidations and composition analyses in chemistry, biochemistry, and metabonomics among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Xinchang Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Tien-Mo Shih
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| |
Collapse
|
13
|
Ismail FMD, Nahar L, Sarker SD. Application of INADEQUATE NMR techniques for directly tracing out the carbon skeleton of a natural product. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:7-23. [PMID: 32671944 DOI: 10.1002/pca.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR) measurement of 1 JCC coupling by two-dimensional (2D) INADEQUATE (incredible natural abundance double quantum transfer experiment), which is a special case of double-quantum (DQ) spectroscopy that offers unambiguous determination of 13 C-13 C spin-spin connectivities through the DQ transitions of the spin system, is especially suited to solving structures rich in quaternary carbons and poor in hydrogen content (Crews rule). OBJECTIVE To review published literature on the application of NMR methods to determine structure in the liquid-state, which specifically considers the interaction of a pair of carbon-13 (13 C) nuclei adjacent to one another, to allow direct tracing out of contiguous carbon connectivity using 2D INADEQUATE. METHODOLOGY A comprehensive literature search was implemented with various databases: Web of Knowledge, PubMed and SciFinder, and other relevant published materials including published monographs. The keywords used, in various combinations, with INADEQUATE being present in all combinations, in the search were 2D NMR, 1 JCC coupling, natural product, structure elucidation, 13 C-13 C connectivity, cryoprobe and CASE (computer-assisted structure elucidation)/PANACEA (protons and nitrogen and carbon et alia). RESULTS The 2D INADEQUATE continues to solve "intractable" problems in natural product chemistry, and using milligram quantities with cryoprobe techniques combined with CASE/PANACEA experiments can increase machine time efficiency. The 13 C-13 C-based structural elucidation by dissolution single-scan dynamic nuclear polarisation NMR can overcome disadvantages of 13 C insensitivity at natural abundance. Selected examples have demonstrated the trajectory of INADEQUATE spectroscopy from structural determination to clarification of metabolomics analysis and use of DFT (density functional theory) and coupling constants to clarify the connectivity, hybridisation and stereochemistry within natural products. CONCLUSIONS Somewhat neglected over the years because of perceived lack of sensitivity, the 2D INADEQUATE NMR technique has re-emerged as a useful tool for solving natural products structures, which are rich in quaternary carbons and poor in hydrogen content.
Collapse
Affiliation(s)
- Fyaz M D Ismail
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
| |
Collapse
|
14
|
Wu K, Luo J, Zeng Q, Dong X, Chen J, Zhan C, Chen Z, Lin Y. Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet. Anal Chem 2020; 93:1377-1382. [DOI: 10.1021/acs.analchem.0c03087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Wu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jie Luo
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xi Dong
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chaoqun Zhan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|