1
|
Mothahalli Raju NK, Paul B, Tn L, Bodduna S, Kandukuri NK. Sulfur-Controlled Modulation of Peptoid Atropisomeric Foldamers. J Org Chem 2025; 90:4796-4807. [PMID: 40177955 DOI: 10.1021/acs.joc.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We incorporated the hetero atoms (O/S) at the ortho-position to investigate the steric influence on controlling the rotational barrier around the C-N chiral axis and to elucidate the chiral attributes of sulfur-containing N-aryl peptoids. This study reports the simultaneous installation of a C-N chiral axis and the integration of sulfur-containing stereogenic elements in peptoid atropisomeric foldamers. By leveraging multiple chiral elements in peptoids, we demonstrated subtle structural variations, particularly by varying the sulfur oxidation states, that can lead to significant differences in the rotational energy barrier, as determined by dynamic HPLC. Additionally, we employed single-crystal X-ray crystallography to elucidate local conformational ordering and computational studies to identify noncovalent interactions in this class of atropisomers. Through these combined approaches, we explored sulfur-controlled modulation of N-aryl peptoid atropisomeric foldamers.
Collapse
Affiliation(s)
| | - Bishwajit Paul
- Department of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore 560056, India
| | - Lohith Tn
- The National Institute of Engineering, Mysuru 570008 Karnataka, India
| | - Sandeep Bodduna
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| | - Nagesh Kumar Kandukuri
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| |
Collapse
|
2
|
Bordas Z, Faure S, Roy O, Taillefumier C. Solid-Phase Synthesis of Peptoid Oligomers Containing Crowded tert-Butyl Side Chains. J Org Chem 2025; 90:4291-4301. [PMID: 40059653 DOI: 10.1021/acs.joc.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
N-tert-butyl-glycine (NtBu) is a known peptoid structure-inducing monomer. The hindered tert-butyl group exerts a major effect on the cis/trans isomerization of the NX-NtBu peptoid-amide bond, which adopts exclusively the cis-geometry. Incorporating this monomer into peptoid oligomers is therefore an excellent way of promoting specific secondary structures such as turns and polyproline type-I helices. However, the steric hindrance of the tert-butyl group has so far prevented the solid-phase synthesis of peptoid oligomers incorporating NtBu monomers. We report here for the first time solid-phase syntheses of NtBu-containing peptoids using a modified submonomer protocol. We have found that the success of the critical DIC-mediated acylation step depends on the addition of a base and/or basic pretreatment of the resin prior to the reaction. The use of chloroacetic acid instead of bromoacetic acid also improved the efficacy of the syntheses, as did a halogenoacetic acid preactivation stage. To demonstrate the effectiveness of the modified submonomer protocol, we synthesized homooligomers at sequence lengths of up to 12-mer and also applied it to the synthesis of various peptoids with highly congested NCα-gem-dimethyl side chains.
Collapse
Affiliation(s)
- Zacharie Bordas
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Berlaga A, Torkelson K, Seal A, Pfaendtner J, Ferguson AL. A modular and extensible CHARMM-compatible model for all-atom simulation of polypeptoids. J Chem Phys 2024; 161:244901. [PMID: 39714012 DOI: 10.1063/5.0238570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics. Extension of this force field to new peptoid side chains has historically required reparameterization of side chain bonded interactions against ab initio data. This fitting protocol improves the accuracy of the force field but is also burdensome and precludes modular extensibility of the model to arbitrary peptoid sequences. In this work, we develop and demonstrate a Modular Side Chain CGenFF-NTOID (MoSiC-CGenFF-NTOID) as an extension of CGenFF-NTOID employing a modular decomposition of the peptoid backbone and side chain parameterizations, wherein arbitrary side chains within the large family of substituted methyl groups (i.e., -CH3, -CH2R, -CHRR', and -CRR'R″) are directly ported from CGenFF. We validate this approach against ab initio calculations and experimental data to develop a MoSiC-CGenFF-NTOID model for all 20 natural amino acid side chains along with 13 commonly used synthetic side chains and present an extensible paradigm to efficiently determine whether a novel side chain can be directly incorporated into the model or whether refitting of the CGenFF parameters is warranted. We make the model freely available to the community along with a tool to perform automated initial structure generation.
Collapse
Affiliation(s)
- Alex Berlaga
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Kaylyn Torkelson
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Aniruddha Seal
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Andrew L Ferguson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Li M, Zeng W, Abdukader A, Wu S, Zhou L. Base-Mediated Regioselective [3 + 3] Annulation of Alkylidene Malononitriles with Trifluoromethyl Alkenes via Dual C-F Bond Cleavage. Org Lett 2024; 26:7452-7456. [PMID: 39186457 DOI: 10.1021/acs.orglett.4c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A base-mediated regioselective [3 + 3] annulation of alkylidene malononitriles with trifluoromethyl alkenes was described. The reaction proceeds through sequential intermolecular SN2' and intramolecular SNV-type cyclization by cleaving dual C-F bonds in a trifluoromethyl group, which discriminate multiple carbon-nucleophilic sites using a single base. Various bicycles bearing a monofluorocyclohexene motif were assembled from readily available starting materials under mild conditions via a one-pot cascade approach.
Collapse
Affiliation(s)
- Mingqiang Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Weidi Zeng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Shaofeng Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Lei Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, SunYat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
An S, Ji H, Park J, Choi Y, Choe JK. Influence of chemical structures on reduction rates and defluorination of fluoroarenes during catalytic reduction using a rhodium-based catalyst. CHEMOSPHERE 2024; 362:142755. [PMID: 38969226 DOI: 10.1016/j.chemosphere.2024.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C-F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002-0.396 min-1 and defluorination yields of 0%-100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C-F bond dissociation energy.
Collapse
Affiliation(s)
- Seonyoung An
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Yu B, Chang BS, Loo WS, Dhuey S, O’Reilly P, Ashby PD, Connolly MD, Tikhomirov G, Zuckermann RN, Ruiz R. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS NANO 2024; 18:7411-7423. [PMID: 38412617 PMCID: PMC10938923 DOI: 10.1021/acsnano.3c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Beihang Yu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Boyce S. Chang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Prizker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Scott Dhuey
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Paul D. Ashby
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ricardo Ruiz
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Ling J, Zhou L. Picking Two out of Three: Defluorinative Annulation of Trifluoromethyl Alkenes for the Synthesis of Monofluorinated Carbo- and Heterocycles. CHEM REC 2024; 24:e202300332. [PMID: 38251926 DOI: 10.1002/tcr.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Indexed: 01/23/2024]
Abstract
The increasing demand of organofluorine compounds in medicine, agriculture, and materials sciences makes sophisticated methods for their synthesis ever more necessary. Nowadays, not only the C-F bond formation but also the selective C-F bond cleavage of readily available poly- or perfluorine-containing compounds have become powerful tools for the effective synthesis of organofluorine compounds. The defluorinative cross-coupling of trifluoromethyl alkenes with various nucleophiles or radical precursors in an SN 2' manner is a convergent route to access gem-difluoroalkenes, which in turn react with nucleophiles or radical precursors via an SN V-type reaction. If the SN V reactions occur intramolecularly, the dual C-F bond cleavage of trifluoromethyl alkenes allows facile assembly of monofluorinated cyclic skeletons with structural complexity and diversity. In this personal account, we summarized the advances in this field on the basis of coupling and cyclization partners, including binucleophiles, alkynes, diradical precursors and radical precursors bearing a nucleophilic site. Accordingly, the annulation reactions can be achieved by base-mediated sequential SN 2'/SN V reactions, transition metal catalyzed or mediated reactions, photoredox catalysis, and the combination of photocatalytic reactions with SN V reaction. In the context of seminal works of others in this field, a concise summary of the contributions of the authors is also offered.
Collapse
Affiliation(s)
- Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Swanson HA, Lau KHA, Tuttle T. Minimal Peptoid Dynamics Inform Self-Assembly Propensity. J Phys Chem B 2023; 127:10601-10614. [PMID: 38038956 PMCID: PMC10726364 DOI: 10.1021/acs.jpcb.3c03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Peptoids are structural isomers of natural peptides, with side chain attachment at the amide nitrogen, conferring this class of compounds with the ability to access both cis and trans ω torsions as well as an increased diversity of ψ/φ states with respect to peptides. Sampling within these dimensions is controlled through side chain selection, and an expansive set of viable peptoid residues exists. It has been shown recently that "minimal" di- and tripeptoids with aromatic side chains can self-assemble into highly ordered structures, with size and morphological definition varying as a function of sequence pattern (e.g., XFF and FXF, where X = a nonaromatic peptoid monomer). Aromatic groups, such as phenylalanine, are regularly used in the design of minimal peptide assemblers. In recognition of this, and to draw parallels between these compounds classes, we have developed a series of descriptors for intramolecular dynamics of aromatic side chains to discern whether these dynamics, in a preassembly condition, can be related to experimentally observed nanoscale assemblies. To do this, we have built on the atomistic peptoid force field reported by Weiser and Santiso (CGenFF-WS) through the rigorous fitting of partial charges and the collation of Charmm General Force Field (CGenFF) parameters relevant to these systems. Our study finds that the intramolecular dynamics of side chains, for a given sequence, is dependent on the specific combination of backbone ω torsions and that homogeneity of sampling across these states correlates well with the experimentally observed ability to assemble into nanomorphologies with long-range order. Sequence patterning is also shown to affect sampling, in a manner consistent for both tripeptoids and tripeptides. Additionally, sampling similarities between the nanofiber forming tripeptoid, Nf-Nke-Nf in the cc state, and the nanotube forming dipeptide FF, highlight a structural motif which may be relevant to the emergence of extended linear assemblies. To assess these properties, a variety of computational approaches have been employed.
Collapse
Affiliation(s)
- Hamish
W. A. Swanson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
9
|
Bonvin E, Personne H, Paschoud T, Reusser J, Gan BH, Luscher A, Köhler T, van Delden C, Reymond JL. Antimicrobial Peptide-Peptoid Hybrids with and without Membrane Disruption. ACS Infect Dis 2023; 9:2593-2606. [PMID: 38062792 PMCID: PMC10714400 DOI: 10.1021/acsinfecdis.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Among synthetic analogues of antimicrobial peptides (AMPs) under investigation to address antimicrobial resistance, peptoids (N-alkylated oligoglycines) have been reported to act both by membrane disruption and on intracellular targets. Here we gradually introduced peptoid units into the membrane-disruptive undecapeptide KKLLKLLKLLL to test a possible transition toward intracellular targeting. We found that selected hybrids containing up to five peptoid units retained the parent AMP's α-helical folding, membrane disruption, and antimicrobial effects against Gram-negative bacteria including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa and Klebsiella pneumoniae while showing reduced hemolysis and cell toxicities. Furthermore, some hybrids containing as few as three peptoid units as well as the full peptoid lost folding, membrane disruption, hemolysis, and cytotoxicity but displayed strong antibacterial activity under dilute medium conditions typical for proline-rich antimicrobial peptides (PrAMPs), pointing to intracellular targeting. These findings parallel previous reports that partially helical amphiphilic peptoids are privileged oligomers for antibiotic development.
Collapse
Affiliation(s)
- Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alexandre Luscher
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
10
|
Harris BS, Bejagam KK, Baer MD. Development of a Systematic and Extensible Force Field for Peptoids (STEPs). J Phys Chem B 2023; 127:6573-6584. [PMID: 37462325 DOI: 10.1021/acs.jpcb.3c01424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Peptoids (N-substituted glycines) are a class of biomimetic polymers that have attracted significant attention due to their accessible synthesis and enzymatic and thermal stability relative to their naturally occurring counterparts (polypeptides). While these polymers provide the promise of more robust functional materials via hierarchical approaches, they present a new challenge for computational structure prediction for material design. The reliability of calculations hinges on the accuracy of interactions represented in the force field used to model peptoids. For proteins, structure prediction based on sequence and de novo design has made dramatic progress in recent years; however, these models are not readily transferable for peptoids. Current efforts to develop and implement peptoid-specific force fields are spread out, leading to replicated efforts and a fragmented collection of parameterized sidechains. Here, we developed a peptoid-specific force field containing 70 different side chains, using GAFF2 as starting point. The new model is validated based on the generation of Ramachandran-like plots from DFT optimization compared against force field reproduced potential energy and free energy surfaces as well as the reproduction of equilibrium cis/trans values for some residues experimentally known to form helical structures. Equilibrium cis/trans distributions (Kct) are estimated for all parameterized residues to identify which residues have an intrinsic propensity for cis or trans states in the monomeric state.
Collapse
Affiliation(s)
- Bradley S Harris
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Karteek K Bejagam
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Ma A, Yu X, Liao M, Liu W, Xuan S, Zhang Z. Research Progress in Polypeptoids Prepared by Controlled Ring-Opening Polymerizations. Macromol Rapid Commun 2023; 44:e2200301. [PMID: 35748135 DOI: 10.1002/marc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Indexed: 01/11/2023]
Abstract
Polypeptoids, structural mimics of polypeptides, have attracted considerable attention due to their biocompatibility, proteolytic stability, thermal processability, good solubility, synthetic accessibility, and structural diversity. Polypeptoids have emerged as an interesting material in both polymer science and biological field. This review primarily discusses the research progress of polypeptoids prepared by controlled ring-opening polymerizations in the past decade, including synthetic strategies of monomers, polymerizations by different initiators, postfunctionalization, fundamental properties, crystallization-driven self-assembly, and potential biological applications.
Collapse
Affiliation(s)
- Anyao Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinyan Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxiao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Pollastrini M, Pasquinelli L, Górecki M, Balzano F, Cupellini L, Lipparini F, Uccello Barretta G, Marchetti F, Pescitelli G, Angelici G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J Org Chem 2022; 87:13715-13725. [PMID: 36242553 PMCID: PMC9639007 DOI: 10.1021/acs.joc.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyproline I helical structures are often considered as the hidden face of their most famous geminal sibling, Polyproline II, as PPI is generally spotted only within a conformational equilibrium. We designed and synthesized a stable Polyproline I structure exploiting the striking tendency of (S)-indoline-2-carboxylic acid to drive the peptide bond conformation toward the cis amide isomer, when dissolved in polar solvents. The cooperative effect of only four amino acidic units is sufficient to form a preferential structure in solution. We shed light on this rare secondary structure with a thorough analysis of the spectroscopic and chiroptical properties of the tetramer, supported by X-ray crystallography and computational studies.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Pasquinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Marcin Górecki
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,Institute
of Organic Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, Warsaw 01-224, Poland
| | - Federica Balzano
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gloria Uccello Barretta
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| | - Gaetano Angelici
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| |
Collapse
|
13
|
Kim J, Kobayashi H, Yokomine M, Shiratori Y, Ueda T, Takeuchi K, Umezawa K, Kuroda D, Tsumoto K, Morimoto J, Sando S. Residue-based program of a β-peptoid twisted strand shape via a cyclopentane constraint. Org Biomol Chem 2022; 20:6994-7000. [PMID: 35993969 DOI: 10.1039/d2ob01300b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Substituted peptides, such as peptoids and β-peptoids, have been reported to have unique structures with diverse functions, like catalysis and manipulation of biomolecular functions. Recently, the preorganization of monomer shape by restricting bond rotations about all backbone dihedral angles has been demonstrated to be useful for de novo design of peptoid structures. Such design strategies are hitherto unexplored for β-peptoids; to date, no preorganized β-peptoid monomers have been reported. Here, we report the first design strategy for β-peptoids, in which all four backbone dihedral angles (ω, ϕ, θ, ψ) are rotationally restricted on a per-residue basis. The introduction of a cyclopentane constraint realized the preorganized monomer structure and led to a β-peptoid with a stable twisted strand shape.
Collapse
Affiliation(s)
- Jungyeon Kim
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Hiroka Kobayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Marin Yokomine
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yota Shiratori
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Umezawa
- Department of Biomedical Sciences, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Kalita D, Sahariah B, Mookerjee SP, Sarma BK. Strategies to Control the cis-trans Isomerization of Peptoid Amide Bonds. Chem Asian J 2022; 17:e202200149. [PMID: 35362652 DOI: 10.1002/asia.202200149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Peptoids are oligomers of N-substituted glycine units. They structurally resemble peptides but, unlike natural peptides, the side chains of peptoids are present on the amide nitrogen atoms instead of the α-carbons. The N-substitution improves cell-permeability of peptoids and enhance their proteolytic stability over natural peptides. Therefore, peptoids are ideal peptidomimetic candidates for drug discovery, especially for intracellular targets. Unfortunately, most peptoid ligands discovered so far possess moderate affinity towards their biological targets. The moderate affinity of peptoids for biomacromolecules is linked to their conformational flexibility, which causes substantial entropic loss during the peptoid-biomacromolecule binding process. The conformational flexibility of peptoids is caused by the lack of backbone chirality, absence of hydrogen bond donors (NH) in their backbone to form CO···HN hydrogen bonds and the facile cis-trans isomerization of their tertiary amide bonds. In recent years, many investigators have shown that the incorporation of specific side chains with unique steric and stereoelectronic features can favourably shift the cis-trans equilibria of peptoids towards one of the two isomeric forms. Such strategies are helpful to design homogenous peptoid oligomers having well defined secondary structures. Herein, we discuss the strategies developed over the years to control the cis-trans isomerization of peptoid amide bonds.
Collapse
Affiliation(s)
- Debajit Kalita
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | - Biswajit Sahariah
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | | | - Bani Kanta Sarma
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Rachenahalli Lake Road, Jakkur, 560064, India, 560064, Bangalore, INDIA
| |
Collapse
|
15
|
Purushotham M, Paul B, Gajula SNR, Sahariah B, Sonti R. Deciphering C–H⋯O/X weak hydrogen bonding and halogen bonding interactions in aromatic peptoids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We deciphered weak interactions in aromatic peptoids, such as C–H⋯O/X, and simultaneously identified strong interactions, including N–H⋯N and N–H⋯O, in this class of foldamer.
Collapse
Affiliation(s)
- Manasa Purushotham
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Bishwajit Paul
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
16
|
Shyam R, Forestier C, Charbonnel N, Roy O, Taillefumier C, Faure S. Solution‐Phase Synthesis of Backbone‐Constrained Cationic Peptoid Hexamers with Antibacterial and Anti‐Biofilm Activities. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Radhe Shyam
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | | | | | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| |
Collapse
|
17
|
Vik EC, Li P, Madukwe DO, Karki I, Tibbetts GS, Shimizu KD. Analysis of the Orbital and Electrostatic Contributions to the Lone Pair-Aromatic Interaction Using Molecular Rotors. Org Lett 2021; 23:8179-8182. [PMID: 34670094 DOI: 10.1021/acs.orglett.1c02878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attractive interaction between carbonyl oxygens and the π-face of aromatic surfaces was studied using N-phenylimide molecular rotors. The C═O···Ar interactions could stabilize the transition states but were half the strength of comparable C═O···C═O interactions. The C═O···Ar interaction had a significant electrostatic component but only a small orbital delocalization component.
Collapse
Affiliation(s)
- Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ping Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabriel S Tibbetts
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
19
|
Fukuda Y, Yokomine M, Kuroda D, Tsumoto K, Morimoto J, Sando S. Peptoid-based reprogrammable template for cell-permeable inhibitors of protein-protein interactions. Chem Sci 2021; 12:13292-13300. [PMID: 34777747 PMCID: PMC8528041 DOI: 10.1039/d1sc01560e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
The development of inhibitors of intracellular protein–protein interactions (PPIs) is of great significance for drug discovery, but the generation of a cell-permeable molecule with high affinity to protein is challenging. Oligo(N-substituted glycines) (oligo-NSGs), referred to as peptoids, are attractive as potential intracellular PPI inhibitors owing to their high membrane permeability. However, their intrinsically flexible backbones make the rational design of inhibitors difficult. Here, we propose a peptoid-based rational approach to develop cell-permeable PPI inhibitors using oligo(N-substituted alanines) (oligo-NSAs). The rigid structures of oligo-NSAs enable independent optimization of each N-substituent to improve binding affinity and membrane permeability, while preserving the backbone shape. A molecule with optimized N-substituents inhibited a target PPI in cells, which demonstrated the utility of oligo-NSA as a reprogrammable template to develop intracellular PPI inhibitors. A peptoid-based modular approach using oligo(N-substituted alanine) as a reprogrammable template enables independent optimization of N-substituents and facile development of cell-permeable inhibitors of protein–protein interactions.![]()
Collapse
Affiliation(s)
- Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Marin Yokomine
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,Institute of Medical Science, The University of Tokyo 4-6-1, Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
20
|
Rajale T, Miner JC, Michalczyk R, Phipps ML, Schmidt JG, Gilbertson RD, Williams RF, Strauss CEM, Martinez JS. Conformational control via sequence for a heteropeptoid in water: coupled NMR and Rosetta modelling. Chem Commun (Camb) 2021; 57:9922-9925. [PMID: 34498621 DOI: 10.1039/d1cc01992a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a critical advance in the generation and characterization of peptoid hetero-oligomers. A library of sub-monomers with amine and carboxylate side-chains are combined in different sequences using microwave-assisted synthesis. Their sequence-structure propensity is confirmed by circular dichroism, and conformer subtypes are enumerated by NMR. Biasing the ψ-angle backbone to trans (180°) in Monte Carlo modelling favors i to i + 3 naphthyl-naphthyl stacking, and matches experimental ensemble distributions. Taken together, high-yield synthesis of heterooligomers and NMR with structure prediction enables rapid determination of sequences that induce secondary structural propensities for predictive design of hydrophilic peptidomimetic foldamers and their future libraries.
Collapse
Affiliation(s)
- Trideep Rajale
- Center for Integrated Nanotechnologies, (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jacob C Miner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ryszard Michalczyk
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - M Lisa Phipps
- Center for Integrated Nanotechnologies, (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jurgen G Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert D Gilbertson
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert F Williams
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Charlie E M Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jennifer S Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona 86011, USA. .,Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
21
|
Toole J, Bolt HL, Marley JJ, Patrick S, Cobb SL, Lundy FT. Peptoids with Antibiofilm Activity against the Gram Negative Obligate Anaerobe, Fusobacterium nucleatum. Molecules 2021; 26:4741. [PMID: 34443332 PMCID: PMC8398059 DOI: 10.3390/molecules26164741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.
Collapse
Affiliation(s)
- Jamie Toole
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Hannah L. Bolt
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - John J. Marley
- Department of Oral Surgery, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, UK;
| | - Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Steven L. Cobb
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| |
Collapse
|
22
|
Hurley MFD, Northrup JD, Ge Y, Schafmeister CE, Voelz VA. Metal Cation-Binding Mechanisms of Q-Proline Peptoid Macrocycles in Solution. J Chem Inf Model 2021; 61:2818-2828. [PMID: 34125519 DOI: 10.1021/acs.jcim.1c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rational design of foldable and functionalizable peptidomimetic scaffolds requires the concerted application of both computational and experimental methods. Recently, a new class of designed peptoid macrocycle incorporating spiroligomer proline mimics (Q-prolines) has been found to preorganize when bound by monovalent metal cations. To determine the solution-state structure of these cation-bound macrocycles, we employ a Bayesian inference method (BICePs) to reconcile enhanced-sampling molecular simulations with sparse ROESY correlations from experimental NMR studies to predict and design conformational and binding properties of macrocycles as functional scaffolds for peptidomimetics. Conformations predicted to be most populated in solution were then simulated in the presence of explicit cations to yield trajectories with observed binding events, revealing a highly preorganized all-trans amide conformation, whose formation is likely limited by the slow rate of cis/trans isomerization. Interestingly, this conformation differs from a racemic crystal structure solved in the absence of cation. Free energies of cation binding computed from distance-dependent potentials of mean force suggest Na+ has a higher affinity to the macrocycle than K+, with both cations binding much more strongly in acetonitrile than water. The simulated affinities are able to correctly rank the extent to which different macrocycle sequences exhibit preorganization in the presence of different metal cations and solvents, suggesting our approach is suitable for solution-state computational design.
Collapse
Affiliation(s)
- Matthew F D Hurley
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Justin D Northrup
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yunhui Ge
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | | | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
23
|
Voelz VA, Ge Y, Raddi RM. Reconciling Simulations and Experiments With BICePs: A Review. Front Mol Biosci 2021; 8:661520. [PMID: 34046431 PMCID: PMC8144449 DOI: 10.3389/fmolb.2021.661520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to reconcile simulated ensembles with sparse experimental measurements. The Bayesian framework of BICePs enables population reweighting as a post-simulation processing step, with several advantages over existing methods, including the proper use of reference potentials, and the estimation of a Bayes factor-like quantity called the BICePs score for model selection. Here, we summarize the theory underlying this method in context with related algorithms, review the history of BICePs applications to date, and discuss current shortcomings along with future plans for improvement.
Collapse
Affiliation(s)
- Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Robert M. Raddi
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Davern CM, Lowe BD, Rosfi A, Ison EA, Proulx C. Submonomer synthesis of peptoids containing trans-inducing N-imino- and N-alkylamino-glycines. Chem Sci 2021; 12:8401-8410. [PMID: 34221321 PMCID: PMC8221195 DOI: 10.1039/d1sc00717c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022] Open
Abstract
The use of hydrazones as a new type of submonomer in peptoid synthesis is described, giving access to peptoid monomers that are structure-inducing. A wide range of hydrazones were found to readily react with α-bromoamides in routine solid phase peptoid submonomer synthesis. Conditions to promote a one-pot cleavage of the peptoid from the resin and reduction to the corresponding N-alkylamino side chains were also identified, and both the N-imino- and N-alkylamino glycine residues were found to favor the trans-amide bond geometry by NMR, X-ray crystallography, and computational analyses.
Collapse
Affiliation(s)
- Carolynn M Davern
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Brandon D Lowe
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Adam Rosfi
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Elon A Ison
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| |
Collapse
|
25
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
26
|
Wellhöfer I, Beck J, Frydenvang K, Bräse S, Olsen CA. Increasing the Functional Group Diversity in Helical β-Peptoids: Achievement of Solvent- and pH-Dependent Folding. J Org Chem 2020; 85:10466-10478. [PMID: 32806085 DOI: 10.1021/acs.joc.0c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis of a series of bis-functionalized β-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed β-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.
Collapse
Affiliation(s)
- Isabelle Wellhöfer
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Janina Beck
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen D-76344, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
27
|
Fuller AA, Jimenez CJ, Martinetto EK, Moreno JL, Calkins AL, Dowell KM, Huber J, McComas KN, Ortega A. Sequence Changes Modulate Peptoid Self-Association in Water. Front Chem 2020; 8:260. [PMID: 32391314 PMCID: PMC7191062 DOI: 10.3389/fchem.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Peptoids, N-substituted glycine oligomers, are a class of diverse and sequence-specific peptidomimetics with wide-ranging applications. Advancing the functional repertoire of peptoids to emulate native peptide and protein functions requires engineering peptoids that adopt regular secondary and tertiary structures. An understanding of how changes to peptoid sequence change structural features, particularly in water-soluble systems, is underdeveloped. To address this knowledge gap, five 15-residue water-soluble peptoids that include naphthalene-functionalized side chains were designed, prepared, and subjected to a structural study using a palette of techniques. Peptoid sequence designs were based on a putative amphiphilic helix peptoid bearing structure-promoting (S)-N-(1-naphthylethyl)glycine residues whose self-association in water has been studied previously. New peptoid variants reported here include sequence changes that influenced peptoid conformational flexibility, functional group patterning (amphiphilicity), and hydrophobicity. Peptoid structures were evaluated and compared using circular dichroism spectroscopy, fluorescence spectroscopy, and size exclusion chromatography. Spectral data confirmed that sequence changes alter peptoids' degree of assembly and the organization of self-assembled structures in aqueous solutions. Insights gained in these studies will inform the design of new water-soluble peptoids with regular structural features, including desirable higher-order (tertiary and quaternary) structural features.
Collapse
Affiliation(s)
- Amelia A Fuller
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Christian J Jimenez
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Ella K Martinetto
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Jose L Moreno
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Anna L Calkins
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kalli M Dowell
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Jonathan Huber
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Kyra N McComas
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Alberto Ortega
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
28
|
Affiliation(s)
- Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”; University of Salerno; Via Giovani Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
29
|
Yang W, Jo J, Oh H, Lee H, Chung WJ, Seo J. Peptoid Helix Displaying Flavone and Porphyrin: Synthesis and Intramolecular Energy Transfer. J Org Chem 2020; 85:1392-1400. [PMID: 31657570 DOI: 10.1021/acs.joc.9b02358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural light-harvesting complexes (LHCs) absorb a broad spectrum of sunlight using a collection of photosynthetic pigments whose spatial arrangement is controlled by a protein matrix and exhibit efficient energy transfer. We constructed a novel light-harvesting protein mimic, which absorbs light in the UV to visible region (280-700 nm) by displaying flavone and porphyrin on a peptoid helix. First, an efficient synthesis of 4'-derivatized 7-methoxyflavone (7-MF, 3 and 4) was developed. The flavone-porphyrin-peptoid conjugate (FPPC) was then prepared via Miyaura borylation on a resin-bound peptoid followed by Suzuki coupling between the peptoid and pigment. Circular dichroism spectroscopy indicated that the FPPC underwent helix-to-loop conversion of the peptoid scaffold upon changing the solvent conditions. A distinct intramolecular energy transfer was observed from 7-MF to porphyrin with greater efficiency in the helix than that in the loop conformation of the peptoid, whereas no clear evidence of energy transfer was obtained for unstructured FPPC. We thus demonstrate the value of the helical peptoid, which provided a controlled orientation for 7-MF and porphyrin and modulated the energy transfer efficiency via conformational switching. Our work provides a way to construct a sophisticated LHC mimic with enhanced coverage of the solar spectrum and controllable energy transfer efficiency.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| | - Junhyuk Jo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| | - Hyeongyeol Oh
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| | - Hohjai Lee
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| | - Won-Jin Chung
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , South Korea
| |
Collapse
|
30
|
Bicker KL, Cobb SL. Recent advances in the development of anti-infective peptoids. Chem Commun (Camb) 2020; 56:11158-11168. [DOI: 10.1039/d0cc04704j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article highlights the progress that has been made towards the development of novel anti-infective peptoids and the key areas for future development within this field.
Collapse
Affiliation(s)
- Kevin L. Bicker
- Department of Chemistry
- Middle Tennessee State University
- Murfreesboro
- USA
| | - Steven L Cobb
- Deparment of Chemistry
- Biophysical Sciences Institute
- Durham University
- Durham
- UK
| |
Collapse
|
31
|
Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces cis-Peptoid Folding. J Am Chem Soc 2019; 141:19436-19447. [DOI: 10.1021/jacs.9b10497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew W. Wijaya
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Leah T. Roe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan K. Spencer
- Department of Chemistry, Department of Chemical Engineering & Material Science, University of California, Irvine, California 92697, United States
| | - Nan K. Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Gadais C, Van Holsbeeck K, Moors SLC, Buyst D, Fehér K, Van Hecke K, Tourwé D, Brigaud T, Martin C, De Proft F, Pytkowicz J, Martins JC, Chaume G, Ballet S. Trifluoromethylated Proline Surrogates as Part of "Pro-Pro" Turn-Inducing Templates. Chembiochem 2019; 20:2513-2518. [PMID: 31062451 DOI: 10.1002/cbic.201900294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/27/2022]
Abstract
Proline is often found as a turn inducer in peptide or protein domains. Exploitation of its restricted conformational freedom led to the development of the d-Pro-l-Pro (corresponding to (R)-Pro-(S)-Pro) segment as a "templating" unit, frequently used in the design of β-hairpin peptidomimetics, in which conformational stability is, however, inherently linked to the cis-trans isomerization of the prolyl amide bonds. In this context, the stereoelectronic properties of the CF3 group can aid in conformational control. Herein, the impact of α-trifluoromethylated proline analogues is examined for the design of enhanced β-turn inducers. A theoretical conformational study permitted the dipeptide (R)-Pro-(R)-TfmOxa (TfmOxa: 2-trifluoromethyloxazolidine-2-carboxylic acid) to be selected as a template with an increased trans-cis rotational energy barrier. NMR spectroscopic analysis of the Ac-(R)-Pro-(R)-TfmOxa-(S)-Val-OtBu β-turn model, obtained through an original synthetic pathway, validated the prevalence of a major trans-trans conformer and indicated the presence of an internal hydrogen bond. Altogether, it was shown that the (R)-Pro-(R)-TfmOxa template fulfilled all crucial β-turn-inducer criteria.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kevin Van Holsbeeck
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - Samuel L C Moors
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - Krisztina Fehér
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - Kristof Van Hecke
- XStruct Bio-Inorganic Group, Department of Chemistry, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise cedex, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Julien Pytkowicz
- Laboratoire de Chimie Biologique, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise cedex, France
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - Grégory Chaume
- Laboratoire de Chimie Biologique, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise cedex, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
33
|
Li P, Vik EC, Maier JM, Karki I, Strickland SMS, Umana JM, Smith MD, Pellechia PJ, Shimizu KD. Electrostatically Driven CO-π Aromatic Interactions. J Am Chem Soc 2019; 141:12513-12517. [PMID: 31348856 DOI: 10.1021/jacs.9b06363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of N-arylimide molecular balances were developed to study and measure carbonyl-aromatic (CO-π) interactions. Carbonyl oxygens were observed to form repulsive interactions with unsubstituted arenes and attractive interactions with electron-deficient arenes with multiple electron-withdrawing groups. The repulsive and attractive CO-π aromatic interactions were well-correlated to electrostatic parameters, which allowed accurate predictions of the interaction energies based on the electrostatic potentials of the carbonyl and arene surfaces. Due to the pronounced electrostatic polarization of the C═O bond, the CO-π aromatic interaction was stronger than the previously studied oxygen-π and halogen-π aromatic interactions.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Erik C Vik
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Josef M Maier
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Ishwor Karki
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Sharon M S Strickland
- Department of Biology, Chemistry, and Physics , Converse College , Spartanburg , South Carolina 29302 , United States
| | - Jessica M Umana
- Department of Biology, Chemistry, and Physics , Converse College , Spartanburg , South Carolina 29302 , United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|