1
|
Bourdon L, Afrose SP, Agarwal S, Das D, Singh R, Di Cicco A, Lévy D, Yamada A, Baigl D, Franco E. Nanotubes Growth by Self-Assembly of DNA Strands at Room Temperature. ACS NANO 2025. [PMID: 40340345 DOI: 10.1021/acsnano.4c17516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Artificial biomolecular nanotubes are a promising approach to building materials mimicking the capacity of the cellular cytoskeleton to grow and self-organize dynamically. Nucleic acid nanotechnology has demonstrated a variety of self-assembling nanotubes with programmable, robust features and morphological similarities to actual cytoskeleton components. However, their production typically requires thermal annealing, which not only poses a general constraint on their potential applications but is also incompatible with physiological conditions. Here, we demonstrate that DNA nanotubes can self-assemble from a simple mixture of five short DNA strands at constant room temperature, growing for extended periods of time in bulk conditions as well as under confinement. Assembly is achieved using a monovalent salt buffer, which ensures a faithful nanoscale arrangement and avoids nanotube aggregation. We observe the formation of individual nanotubes up to 20 days with a diameter of 22 ± 4 nm and length of several tens of micrometers. We finally encapsulate the strands in microsized compartments, such as water-in-oil microdroplets and giant unilamellar vesicles serving as simple cell models. Notably, nanotubes not only isothermally self-assemble directly inside the microcompartments but also self-organize into dynamic higher-order structures resembling rings and dynamic networks. Our study provides an advantageous method for in situ assembly of programmable biomolecular scaffolds and materials using synthetic DNA strands without requirements of thermal treatment.
Collapse
Affiliation(s)
- Laura Bourdon
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Syed Pavel Afrose
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| | - Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| | - Debajyoti Das
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
| | - Rajat Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles 90095, Los Angeles, California, United States
- Comprehensive Liver Research Center at University of California, Los Angeles 90095, Los Angeles, California, United States
| | - Aurélie Di Cicco
- Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Institut Curie, Paris 75005, France
| | - Daniel Lévy
- Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Institut Curie, Paris 75005, France
| | - Ayako Yamada
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles 90095, California, United States
| |
Collapse
|
2
|
Zhao QH, Qi JY, Deng NN. DNA photofluids show life-like motion. NATURE MATERIALS 2025:10.1038/s41563-025-02202-0. [PMID: 40204968 DOI: 10.1038/s41563-025-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
As active matter, cells exhibit non-equilibrium structures and behaviours such as reconfiguration, motility and division. These capabilities arise from the collective action of biomolecular machines continuously converting photoenergy or chemical energy into mechanical energy. Constructing similar dynamic processes in vitro presents opportunities for developing life-like intelligent soft materials. Here we report an active fluid formed from the liquid-liquid phase separation of photoresponsive DNA nanomachines. The photofluids can orchestrate and amplify nanoscale mechanical movements by orders of magnitude to produce macroscopic cell-like behaviours including elongation, division and rotation. We identify two dissipative processes in the DNA droplets, photoalignment and photofibrillation, which are crucial for harnessing stochastic molecular motions cooperatively. Our results demonstrate an active liquid molecular system that consumes photoenergy to create ordered out-of-equilibrium structures and behaviours. This system may help elucidate the physical principles underlying cooperative motion in active matter and pave the way for developing programmable interactive materials.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Ying Qi
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan-Nan Deng
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China.
| |
Collapse
|
3
|
Zhang L, Jeong S, Lee J, Kim J, Lee JS, Park J, Hong J, Eom JH, Kim H, Rhee YM, Lee H, Lee HS. Red Fluorescence from Organic Microdots: Leveraging Foldamer-Linked Azobenzene for Enhanced Stability and Intensity in Bioimaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401480. [PMID: 38949050 DOI: 10.1002/smll.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Azobenzene, while relevant, has faced constraints in biological system applications due to its suboptimal quantum yield and short-wavelength emission. This study presents a pioneering strategy for fabricating organic microdots by coupling foldamer-linked azobenzene, resulting in robust fluorescence intensity and stability, especially in aggregated states, thereby showing promise for bioimaging applications. Comprehensive experimental and computational examinations elucidate the mechanisms underpinning enhanced photostability and fluorescence efficacy. In vitro and in vivo evaluations disclose that the external layer of cis-azo-foldamer microdots performs a self-sacrificial function during photo-bleaching. Consequently, these red-fluorescent microdots demonstrate extraordinary structural and photochemical stabilities over extended periods. The conjugation of a β-peptide foldamer to the azobenzene chromophore through a glycine linker instigates a blue-shifted and amplified π*-n transition. Molecular dynamics simulations reveal that the aggregated state of cis-azo-foldamers fortifies the stability of cis isomers, thereby augmenting fluorescence efficiency. This investigation furnishes crucial insights into conceptualizing novel, biologically inspired materials, promising stable and enduring imaging applications, and carries implications for diverse arenas such as medical diagnostics, drug delivery, and sensing technologies.
Collapse
Affiliation(s)
- Lianjin Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoneun Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeehee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Hoon Eom
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
He Y, Zhu X, Wang L, Zhang Y, Bai C, Wu D. Multi-Responsive Peptide-Based Ultrathin Nanosheets Prepared by a Horizontal Monolayer Assembly. Angew Chem Int Ed Engl 2024; 63:e202405765. [PMID: 38721653 DOI: 10.1002/anie.202405765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 06/19/2024]
Abstract
In this study, peptide-based self-assembled nanosheets with a thickness of approximately 1 nm were prepared using a hierarchical covalent physical fabrication strategy. The covalent alternating polymerization of helical peptide E3 with an azobenzene (AZO) structure yielded copolymers CoP(E3-AZO), which physically self-assembled into ultrathin nanosheets in an unanticipated two-dimensional horizontal monolayer arrangement. This special monolayer arrangement enabled the thickness of the nanosheets to be equal to the cross-sectional diameter of a single linear copolymer, which is a rare phenomenon. Molecular dynamics simulations suggested that the synergistic effect of multiple molecular interactions drives the self-assembly of CoP(E3-AZO) into nanosheets and that various methods, including phototreatment, pH adjustment, the addition of additives, and introduction of cosolvents, can alter the molecular interactions and modulate the self-assembly of CoP(E3-AZO), yielding diverse nanostructures. Remarkably, the ultrathin nanosheets selectively inhibited cancer cells at certain concentrations.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong Shenzhen Shenzhen, 518172, Guangdong, China
| | - Lei Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong Shenzhen Shenzhen, 518172, Guangdong, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong Shenzhen Shenzhen, 518172, Guangdong, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Abodja O, Touati N, Morel M, Rudiuk S, Baigl D. ATP/azobenzene-guanidinium self-assembly into fluorescent and multi-stimuli-responsive supramolecular aggregates. Commun Chem 2024; 7:142. [PMID: 38918507 PMCID: PMC11199595 DOI: 10.1038/s42004-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Building stimuli-responsive supramolecular systems is a way for chemists to achieve spatio-temporal control over complex systems as well as a promising strategy for applications ranging from sensing to drug-delivery. For its large spectrum of biological and biomedical implications, adenosine 5'-triphosphate (ATP) is a particularly interesting target for such a purpose but photoresponsive ATP-based systems have mainly been relying on covalent modification of ATP. Here, we show that simply mixing ATP with AzoDiGua, an azobenzene-guanidium compound with photodependent nucleotide binding affinity, results in the spontaneous self-assembly of the two non-fluorescent compounds into photoreversible, micrometer-sized and fluorescent aggregates. Obtained in water at room temperature and physiological pH, these supramolecular structures are dynamic and respond to several chemical, physical and biological stimuli. The presence of azobenzene allows a fast and photoreversible control of their assembly. ATP chelating properties to metal dications enable ion-triggered disassembly and fluorescence control with valence-selectivity. Finally, the supramolecular aggregates are disassembled by alkaline phosphatase in a few minutes at room temperature, resulting in enzymatic control of fluorescence. These results highlight the interest of using a photoswitchable nucleotide binding partner as a self-assembly brick to build highly responsive supramolecular entities involving biological targets without the need to covalently modify them.
Collapse
Affiliation(s)
- Olivier Abodja
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Nadia Touati
- Chimie ParisTech, Université PSL, CNRS, Institut de Recherche de Chimie-Paris, PCMTH, 75005, Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
6
|
Younis M, Ahmad S, Atiq A, Amjad Farooq M, Huang MH, Abbas M. Recent Progress in Azobenzene-Based Supramolecular Materials and Applications. CHEM REC 2023; 23:e202300126. [PMID: 37435961 DOI: 10.1002/tcr.202300126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Azobenzene-containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom-up synthesis approach, understandable mechanisms and structural features, and batch-to-batch reproducibility. Azobenzene is a light-responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano- and micro-materials formed from azobenzene-containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host-guest systems, co-assembled, and self-assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene-containing polymers-based supramolecular photoresponsive materials formed through the host-guest approach, polymerization-induced self-assembly, and post-polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene-based supramolecular materials for molecular assembly design, and applications are given.
Collapse
Affiliation(s)
- Muhammad Younis
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Sadia Ahmad
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, 54770, Lahore, Pakistan
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
7
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
8
|
Abumelha HM, Bayazeed A, Alaysuy O, Alsoliemy A, Alharbi A, Habeebullah TM, El-Metwaly NM. Synthesis, photophysical properties and DFT studies of 2-(3-cyano-4-((2-(4,6-dimethyl-5-nitro-1H-pyrazolo[3,4-b]pyridin-3-yl)hydrazono)methyl)-5,5-dimethylfuran-2(5H)-ylidene)malononitrile dye. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yamauchi M, Okaji M, Aratani N, Yamada H, Masuo S. Reversible Photoluminescence Control of Azobenzene Crystals by Light and Heat Stimulation. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mitsuaki Yamauchi
- Kwansei Gakuin University Applied Chemistry for Environment 2-1 Gakuen 669-1337 Sanda JAPAN
| | - Miho Okaji
- Kwansei Gakuin University: Kansei Gakuin Daigaku Applied Chemistry for Environment JAPAN
| | - Naoki Aratani
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroko Yamada
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Sadahiro Masuo
- Kwansei Gakuin University: Kansei Gakuin Daigaku Applied Chemistry for Environment JAPAN
| |
Collapse
|
10
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
11
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Fan Y, Xing Q, Zhang J, Wang Y, Liang Y, Qi W, Su R, He Z. Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10361-10370. [PMID: 32787008 DOI: 10.1021/acs.langmuir.0c01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biopolymers such as polysaccharides and proteins have been widely used for the chiral separation of various components due to the intrinsic chirality of the polymers. Amyloid-like short peptides can also self-assemble into diverse chiral supramolecular nanostructures or polymers with precisely tailored architectures driving by noncovalent interactions. However, the use of such supramolecular nanostructures for the resolution and separation of chiral components remains largely unexplored. Here, we report that the self-assembled peptide supramolecular nanostructures can be used for the highly efficient chiral separation of various enantiomers. By rationally designing the constituent amino acid sequence of the peptides and the self-assembling environment, we can fabricate supramolecular polymers with distinct surface charges and architectures, including nanohelices, nanoribbons, nanosheets, nanofibrils, and nanospheres. The various supramolecular nanostructures were then used to resolve the racemic mixtures of α-methylbenzylamine, 2-phenylpropionic acid, and 1-phenylethanol. The results indicated that the self-assembled peptide polymers showed excellent enantioselective separation efficiency for different chiral molecules. The enantioselective separation efficiency of the peptide nanostructures can be tailored by changing their surface charges, morphology, and the constituent amino acid sequences of the peptides.
Collapse
Affiliation(s)
- Yuqi Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Meeting report: Seventh International Meeting on Quadruplex Nucleic Acids (Changchun, P.R. China, September 6–9, 2019). Biochimie 2020; 168:100-109. [DOI: 10.1016/j.biochi.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
|