1
|
Liu Y, Han D, Liu L. Temporary Structural Supports for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2025:e202504405. [PMID: 40248862 DOI: 10.1002/anie.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The range of functional proteins that can be prepared by chemical protein synthesis includes those bearing complex modifications and incorporating d-amino acids, and exceeds what can be accessed by biological means, but the technique is still limited by the unfavorable solution behavior of many synthetic protein intermediates in buffer, leading to inefficient ligation, purification, and in vitro folding. One approach to address this limitation is the use of temporary structural supports-chemical modifications, usually solubilizing functionalities such as polyamines or carbohydrates-that are installed on either the backbone or side chains of the synthetic protein intermediates and removed at a later stage of chemical protein synthesis. The basic processes for introducing and removing such temporary structural supports are reminiscent of the canonical protecting groups ubiquitous in organic chemistry. However, unlike the synthesis of small organic molecules, where solubility is rarely an issue, the purpose of temporary structural supports is to modulate the solution behavior of the synthetic protein intermediates to prevent them from aggregation, precipitation, or retention in unfavorable solvation-phase conformations. In this review, we summarize recent advances in the development of temporary structural supports for chemical protein synthesis and organize them into three categories: 1) Temporary structural supports to improve solubility; 2) Temporary structural supports to assist chemical ligation; and 3) Temporary structural supports to promote in vitro folding.
Collapse
Affiliation(s)
- Yanbo Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Rahm M, Keppel P, Šlachtová V, Dzijak R, Dračínský M, Bellová S, Reyes-Gutiérrez PE, Štěpánová S, Raffler J, Tloušťová E, Mertlíková-Kaiserová H, Mikula H, Vrabel M. Sulfonated Hydroxyaryl-Tetrazines with Increased pK a for Accelerated Bioorthogonal Click-to-Release Reactions in Cells. Angew Chem Int Ed Engl 2025; 64:e202411713. [PMID: 39298292 DOI: 10.1002/anie.202411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pKa). This unique property leads to accelerated elimination and complete release of the caged molecules within minutes. Moreover, the inclusion of sulfonate groups provides a valuable synthetic handle, enabling further derivatization into sulfonamides, modified with diverse substituents. Significantly, we demonstrate the utility of sulfo-tetrazines in efficiently activating fluorogenic compounds and prodrugs in living cells, offering exciting prospects for their application in bioorthogonal chemistry.
Collapse
Affiliation(s)
- Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, 166 28, Prague 6, Czech Republic
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jakob Raffler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| |
Collapse
|
4
|
Spaltenstein P, Giesler RJ, Scherer SR, Erickson PW, Kay MS. Selective Activation of Peptide-Thioester Precursors for Templated Native Chemical Ligations. Angew Chem Int Ed Engl 2025; 64:e202413644. [PMID: 39198217 PMCID: PMC11913120 DOI: 10.1002/anie.202413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of the full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E. coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.
Collapse
Affiliation(s)
- Paul Spaltenstein
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Samuel R Scherer
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
- Current affiliation: Aizen Therapeutics 1927 Pasco Rancho, Castilla, Los Angeles, CA, 90032, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| |
Collapse
|
5
|
Sakref Y, Rivoire O. Design principles, growth laws, and competition of minimal autocatalysts. Commun Chem 2024; 7:239. [PMID: 39433950 PMCID: PMC11494078 DOI: 10.1038/s42004-024-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/23/2024] [Indexed: 10/23/2024] Open
Abstract
The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of evolution by natural selection in chemical and physical systems. Here, we systematically analyze these difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential growth autonomously. We also show, however, that it is possible to design as simple sub-exponential autocatalysts that have an advantage over exponential autocatalysts when competing for a common resource. We reach these conclusions by developing a theoretical framework based on kinetic barrier diagrams. Besides challenging commonly accepted assumptions in the field of the origin of life, our results provide a blueprint for the experimental realization of elementary autocatalysts exhibiting a form of natural selection, whether on a molecular or colloidal scale.
Collapse
Affiliation(s)
- Yann Sakref
- Gulliver, CNRS, ESPCI, Université PSL, Paris, France
| | | |
Collapse
|
6
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Novacek A, Ugaz B, Stephanopoulos N. Templating Peptide Chemistry with Nucleic Acids: Toward Artificial Ribosomes, Cell-Specific Therapeutics, and Novel Protein-Mimetic Architectures. Biomacromolecules 2024; 25:3865-3876. [PMID: 38860980 DOI: 10.1021/acs.biomac.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.
Collapse
Affiliation(s)
- Alexandra Novacek
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Bryan Ugaz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| |
Collapse
|
8
|
Chen J, Brea RJ, Fracassi A, Cho CJ, Wong AM, Salvador-Castell M, Sinha SK, Budin I, Devaraj NK. Rapid Formation of Non-canonical Phospholipid Membranes by Chemoselective Amide-Forming Ligations with Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202311635. [PMID: 37919232 PMCID: PMC11179435 DOI: 10.1002/anie.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.
Collapse
Affiliation(s)
- Jiyue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Adrian M Wong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Marta Salvador-Castell
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Zhang B, Zheng Y, Chu G, Deng X, Wang T, Shi W, Zhou Y, Tang S, Zheng JS, Liu L. Backbone-Installed Split Intein-Assisted Ligation for the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2023; 62:e202306270. [PMID: 37357888 DOI: 10.1002/anie.202306270] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Membrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e. L-CfaN and L-CfaC ) are separately installed onto the two D-peptide segments to be ligated via a removable backbone modification. The ligation proceeds smoothly at micromolar (μM) concentrations under strongly chaotropic conditions (8.0 M urea), and the subsequent removal of the backbone modification groups affords the desired D-proteins without leaving any "ligation scar" on the products. The effectiveness and practicality of the BISIAL method are exemplified by the synthesis of the D-enantiomers of the extracellular domains of T cell immunoglobulin and ITIM domain (TIGIT) and tropomyosin receptor kinase C (TrkC). The BISIAL method further expands the chemical protein synthesis ligation toolkit and provides practical access to challenging D-protein targets.
Collapse
Affiliation(s)
- Baochang Zhang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guochao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tongyue Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongkang Zhou
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shan Tang
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Juritz J, Poulton JM, Ouldridge TE. Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions. J Chem Phys 2022; 156:074103. [DOI: 10.1063/5.0077865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M. Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | - Thomas E. Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Erickson PW, Fulcher JM, Spaltenstein P, Kay MS. Traceless Click-Assisted Native Chemical Ligation Enabled by Protecting Dibenzocyclooctyne from Acid-Mediated Rearrangement with Copper(I). Bioconjug Chem 2021; 32:2233-2244. [PMID: 34619957 PMCID: PMC9769386 DOI: 10.1021/acs.bioconjchem.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.
Collapse
Affiliation(s)
- Patrick W. Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M. Fulcher
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Holownia A, Apte CN, Yudin AK. Acyl metalloids: conformity and deviation from carbonyl reactivity. Chem Sci 2021; 12:5346-5360. [PMID: 34163766 PMCID: PMC8179550 DOI: 10.1039/d1sc00077b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Once considered as mere curiosities, acyl metalloids are now recognized for their utility in enabling chemical synthesis. This perspective considers the reactivity displayed by acylboron, -silicon, -germanium, and tellurium species. By highlighting the role of these species in various transformations, we demonstrate how differences between the comprising elements result in varied reaction outcomes. While acylboron compounds are primarily used in polar transformations, germanium and tellurium species have found utility as radical precursors. Applications of acylsilanes are comparatively more diverse, owing to the possibility to access both radical and polar chemistry.
Collapse
Affiliation(s)
- Aleksandra Holownia
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Chirag N Apte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrei K Yudin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
13
|
Deng X, Zhou G, Han X, Ullah K, Srinivasan R. Rapid Access to Diverse Potassium Acyltrifluoroborates (KATs) through Late-Stage Chemoselective Cross-Coupling Reactions. Org Lett 2021; 23:1886-1890. [PMID: 33591764 DOI: 10.1021/acs.orglett.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potassium acyltrifluoroborates (KATs) are opening up new avenues in chemical biology, materials science, and synthetic organic chemistry due to their intriguing reactivities. However, the synthesis of these compounds remains mostly complicated and time-consuming. Herein, we have developed chemoselective Pd-catalyzed approaches for the late-stage diversification of arenes bearing prefunctionalized KATs. These approaches feature chemoselective cross-coupling, rapid diversification, functional group tolerance, mild reaction conditions, simple operation, and high yields.
Collapse
Affiliation(s)
- Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xiao Han
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Khadim Ullah
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856
| |
Collapse
|
14
|
Cabello-Garcia J, Bae W, Stan GBV, Ouldridge TE. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions. ACS NANO 2021; 15:3272-3283. [PMID: 33470806 DOI: 10.1021/acsnano.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of templates is a well-established method for the production of sequence-controlled assemblies, particularly long polymers. Templating is canonically envisioned as akin to a self-assembly process, wherein sequence-specific recognition interactions between a template and a pool of monomers favor the assembly of a particular polymer sequence at equilibrium. However, during the biogenesis of sequence-controlled polymers, template recognition interactions are transient; RNA and proteins detach spontaneously from their templates to perform their biological functions and allow template reuse. Breaking template recognition interactions puts the product sequence distribution far from equilibrium, since specific product formation can no longer rely on an equilibrium dominated by selective copy-template bonds. The rewards of engineering artificial polymer systems capable of spontaneously exhibiting nonequilibrium templating are large, but fields like DNA nanotechnology lack the requisite tools; the specificity and drive of conventional DNA reactions rely on product stability at equilibrium, sequestering any recognition interaction in products. The proposed alternative is handhold-mediated strand displacement (HMSD), a DNA-based reaction mechanism suited to producing out-of-equilibrium products. HMSD decouples the drive and specificity of the reaction by introducing a transient recognition interaction, the handhold. We measure the kinetics of 98 different HMSD systems to prove that handholds can accelerate displacement by 4 orders of magnitude without being sequestered in the final product. We then use HMSD to template the selective assembly of any one product DNA duplex from an ensemble of equally stable alternatives, generating a far-from-equilibrium output. HMSD thus brings DNA nanotechnology closer to the complexity of out-of-equilibrium biological systems.
Collapse
Affiliation(s)
- Javier Cabello-Garcia
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Wooli Bae
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Guy-Bart V Stan
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| |
Collapse
|
15
|
Wu D, Taguchi J, Tanriver M, Bode JW. Synthesis of Acylboron Compounds. Angew Chem Int Ed Engl 2020; 59:16847-16858. [PMID: 32510826 DOI: 10.1002/anie.202005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
16
|
Enhancing native chemical ligation for challenging chemical protein syntheses. Curr Opin Chem Biol 2020; 58:37-44. [PMID: 32745915 DOI: 10.1016/j.cbpa.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023]
Abstract
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.
Collapse
|
17
|
Šterman A, Sosič I, Gobec S, Časar Z. Recent Advances in the Synthesis of Acylboranes and Their Widening Applicability. ACS OMEGA 2020; 5:17868-17875. [PMID: 32743157 PMCID: PMC7391254 DOI: 10.1021/acsomega.0c02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 05/27/2023]
Abstract
The most common types of acylboranes are acyltrifluoroborates, acyl MIDA-boronates, and monofluoroacylboronates. Because of the increasing importance of these compounds in the past decade, we highlight the recently reported synthetic strategies to access acylboranes. In addition, an expanding array of their applications has been discovered, based on either the ability of acylboranes to enter rapid amide-forming ligations or the retained ketone-like character of the carbonyl group. Therefore, we also describe ground-breaking achievements where acylboranes were successfully put to use, such as their utility in biochemical, material, and medicinal sciences.
Collapse
Affiliation(s)
- Andrej Šterman
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Zdenko Časar
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
- Lek
Pharmaceuticals d.d., Sandoz Development Center Slovenia, Verovškova ulica 57, 1526 Ljubljana, Slovenia
| |
Collapse
|
18
|
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
19
|
Aegurla B, Mandle RD, Shinde PG, Parit RS, Kamble SP, Sudalai A, Senthilkumar B. Triethyl Phosphite/Benzoyl Peroxide Mediated Reductive Dealkylation of
O
‐Benzoylhydroxylamines: A Cascade Synthesis of Secondary Amides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Balakrishna Aegurla
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Ram D. Mandle
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Prasad G. Shinde
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Ratan S. Parit
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Sanjay P. Kamble
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Arumugam Sudalai
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Beeran Senthilkumar
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| |
Collapse
|
20
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
22
|
Roscales S, Csáky AG. How to make C–N bonds using boronic acids and their derivatives without transition metals. Chem Soc Rev 2020; 49:5159-5177. [DOI: 10.1039/c9cs00735k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
No need for transition-metal catalysis in amination, amidation, nitration or nitrosation reactions with boron derivatives as reagents.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
23
|
Protein Chemistry Looking Ahead: 8 th Chemical Protein Synthesis Meeting 16-19 June 2019, Berlin, Germany. Cell Chem Biol 2019; 26:1349-1354. [PMID: 31626782 DOI: 10.1016/j.chembiol.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
The 8th Chemical Protein Synthesis meeting took place in Berlin in June 2019, covering broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials. The meeting was also the culmination of the Priority Program SPP1623 on "Chemoselective Reactions for the Synthesis and Application of Functional Proteins" funded by the German Science Foundation (DFG) from 2012 to 2018. We present highlights from presentations at the forefront of the field, grouped into broad themes that illustrate how the field of protein chemistry is looking ahead to new discoveries and applications.
Collapse
|
24
|
Wu S, Zhou Y, Rebelein JG, Kuhn M, Mallin H, Zhao J, Igareta NV, Ward TR. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. J Am Chem Soc 2019; 141:15869-15878. [PMID: 31509711 PMCID: PMC6805045 DOI: 10.1021/jacs.9b06923] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The biotin–streptavidin technology
has been extensively
exploited to engineer artificial metalloenzymes (ArMs) that catalyze
a dozen different reactions. Despite its versatility, the homotetrameric
nature of streptavidin (Sav) and the noncooperative binding of biotinylated
cofactors impose two limitations on the genetic optimization of ArMs:
(i) point mutations are reflected in all four subunits of Sav, and
(ii) the noncooperative binding of biotinylated cofactors to Sav may
lead to an erosion in the catalytic performance, depending on the
cofactor:biotin-binding site ratio. To address these challenges, we
report on our efforts to engineer a (monovalent) single-chain dimeric
streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility
of scdSav as host protein is highlighted for the asymmetric transfer
hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning
of the biotin-binding vestibule, unrivaled levels of activity and
selectivity were achieved for the reduction of challenging prochiral
imines. Comparison of the saturation kinetic data and X-ray structures
of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally
related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav
highlights the advantages of the presence of a single biotinylated
cofactor precisely localized within the biotin-binding vestibule of
the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated
for the reduction of the salsolidine precursor (500 mM) to afford
(R)-salsolidine in 90% ee and >17 000 TONs.
Monovalent scdSav thus provides a versatile scaffold to evolve more
efficient ArMs for in vivo catalysis and large-scale applications.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Yi Zhou
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Miriam Kuhn
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Jingming Zhao
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Nico V Igareta
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| |
Collapse
|