1
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
2
|
Kavakli S, Grammbitter GL, Bode HB. Biosynthesis of the multifunctional isopropylstilbene in Photorhabdus laumondii involves cross-talk between specialized and primary metabolism. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Bouthillette LM, Aniebok V, Colosimo DA, Brumley D, MacMillan JB. Nonenzymatic Reactions in Natural Product Formation. Chem Rev 2022; 122:14815-14841. [PMID: 36006409 DOI: 10.1021/acs.chemrev.2c00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.
Collapse
Affiliation(s)
- Leah M Bouthillette
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Victor Aniebok
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Dominic A Colosimo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - David Brumley
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - John B MacMillan
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| |
Collapse
|
4
|
Won TH, Bok JW, Nadig N, Venkatesh N, Nickles G, Greco C, Lim FY, González JB, Turgeon BG, Keller NP, Schroeder FC. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat Commun 2022; 13:4828. [PMID: 35973982 PMCID: PMC9381783 DOI: 10.1038/s41467-022-32394-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 01/26/2023] Open
Abstract
The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.
Collapse
Affiliation(s)
- Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nischala Nadig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grant Nickles
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jennifer B González
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- 104 Peckham Hall, Nazareth College, 4245 East Avenue, Rochester, NY, USA
| | - B Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Na M, Jeong SY, Ko YJ, Kang DM, Pang C, Ahn MJ, Kim KH. Chemical Investigation of Tetradium ruticarpum Fruits and Their Antibacterial Activity against Helicobacter pylori. ACS OMEGA 2022; 7:23736-23743. [PMID: 35847243 PMCID: PMC9280968 DOI: 10.1021/acsomega.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruit of Tetradium ruticarpum, known as Evodiae Fructus, is a traditional herbal medicine used to treat gastric and duodenal ulcers, vomiting, and diarrhea. The traditional usage can be potentially associated with the antibacterial activity of T. ruticarpum fruits against Helicobacter pylori. However, so far, the antibacterial activity of T. ruticarpum fruits and antibacterial components against H. pylori has not been investigated despite the traditional folk use. The current study was conducted to investigate the bioactive chemical components of T. ruticarpum fruits and evaluate their antibacterial activity against H. pylori. Phytochemical investigation of the EtOH extract of T. ruticarpum fruits led to the isolation and identification of nine compounds (1-9), including phellolactone (1), the absolute configuration of which has not yet been determined. The chemical structures of the isolated compounds were elucidated by analyzing the spectroscopic data from one-dimensional (1D) and two-dimensional (2D) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESIMS) experiments. Specifically, the absolute configuration of compound 1 was established by the application of computational methods, including electronic circular dichroism (ECD) calculation and the NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. In the anti-H. pylori activity test, compound 3 showed the most potent antibacterial activity against H. pylori strain 51, with 94.4% inhibition (MIC50 and MIC90 values of 22 and 50 μM, respectively), comparable to that of metronidazole (97.0% inhibition, and MIC50 and MIC90 values of 17 and 46 μM, respectively). Moreover, compound 5 exhibited moderate antibacterial activity against H. pylori strain 51, with 58.6% inhibition (MIC50 value of 99 μM), which was higher than that of quercetin (34.4% inhibition) as a positive control. Based on the bioactivity results, we also analyzed the structure-activity relationship of the anti-H. pylori activity. Conclusion: These findings demonstrated that T. ruticarpum fruits had antibacterial activity against H. pylori and could be used in the treatment of gastric and duodenal ulcers. Meanwhile, the active compound, 1-methyl-2-(8E)-8-tridecenyl-4(1H)-quinolinone (3), identified herein also indicated the potential application in the development of novel antibiotics against H. pylori.
Collapse
Affiliation(s)
- Myung
Woo Na
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory
of Nuclear Magnetic Resonance, National Center for Inter-University
Research Facilities (NCIRF), Seoul National
University, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Dong-Min Kang
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhyun Pang
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Jeong Ahn
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hyun Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Del Rio Flores A, Barber CC, Narayanamoorthy M, Gu D, Shen Y, Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu Rev Chem Biomol Eng 2022; 13:1-24. [PMID: 35236086 PMCID: PMC9811556 DOI: 10.1146/annurev-chembioeng-092120-025140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
| | - Colin C Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA;
| | | | - Di Gu
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
7
|
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat Chem 2022; 14:701-712. [PMID: 35469007 PMCID: PMC9177418 DOI: 10.1038/s41557-022-00923-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria–nematode–insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship. ![]()
Entomopathogenic nematodes carrying Xenorhabdus and Photorhabdus bacteria prey on insect larvae in the soil. Now, a comprehensive analysis of the bacterial genome has revealed ubiquitous and unique families of biosynthetic gene clusters. Evaluation of the bioactivity of the natural products expressed by the most prevalent cluster families explains the functional basis of bacterial natural products involved in bacteria–nematode–insect interactions.
Collapse
|
8
|
Lee S, Jeong SY, Nguyen DL, So JE, Kim KH, Kim JH, Han SJ, Suh SS, Lee JH, Youn UJ. Stereocalpin B, a New Cyclic Depsipeptide from the Antarctic Lichen Ramalina terebrata. Metabolites 2022; 12:metabo12020141. [PMID: 35208215 PMCID: PMC8880677 DOI: 10.3390/metabo12020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Stereocalpin B, a new cyclic depsipeptide (1), and a new dibenzofuran derivative (3), were isolated from the Antarctic lichen, Ramalina terebrata (Ramalinaceae), along with a known cyclic depsipeptide (2). The structures of new compounds were characterized by comprehensive spectrometric analyses; high-resolution fast atom bombardment mass spectrometry (HR-FABMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Stereocalpin B (1) existed in a rotameric equilibrium, which was confirmed using nuclear Overhauser effect spectroscopy (NOESY)/exchange spectroscopy (EXSY) spectrum. Absolute configurations of the amino acid units in 1 were assigned using the advanced Marfey’s method and subsequent NOESY analysis of the 5-hydroxy-2,4-dimethyl-3-oxo-decanoic acid residue confirmed the complete stereochemistry of 1. Compounds 1-3 exhibited moderate antimicrobial activities against E. coli, with the IC50 values ranging from 18–30 μg/mL. Compound 2 exhibited cell growth inhibition against HCT116 cell lines, with the IC50 value of 20 ± 1.20 μM, and compounds 1 and 2 also showed potent anti-inflammatory activities against lipopolysaccharide (LPS)-induced RAW264.7 macrophages with the IC50 values ranging from 5–7 μM.
Collapse
Affiliation(s)
- Seulah Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.Y.J.); (K.H.K.)
| | - Dieu Linh Nguyen
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea;
| | - Jae Eun So
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.Y.J.); (K.H.K.)
| | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
| | - Se Jong Han
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea;
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Mokpo 58554, Korea;
| | - Jun Hyuck Lee
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea;
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
| | - Ui Joung Youn
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.L.N.); (J.E.S.); (J.H.K.); (S.J.H.)
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea;
- Correspondence: ; Tel.: +82-32-760-5562
| |
Collapse
|
9
|
Lee S, Kim CS, Yu JS, Kang H, Yoo MJ, Youn UJ, Ryoo R, Bae HY, Kim KH. Ergopyrone, a Styrylpyrone-Fused Steroid with a Hexacyclic 6/5/6/6/6/5 Skeleton from a Mushroom Gymnopilus orientispectabilis. Org Lett 2021; 23:3315-3319. [PMID: 33826851 DOI: 10.1021/acs.orglett.1c00790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A styrylpyrone-fused ergosterol derivative, ergopyrone (1), was isolated and structurally characterized from a mushroom, Gymnopilus orientispectabilis, along with five biosynthetically related metabolites (2-6). Compound 1 features an unprecedented hexacyclic 6/5/6/6/6/5 skeleton that would be formed from ergosterol and styrylpyrone precursors via [3 + 2] cycloaddition. The chemical structure of 1 was elucidated by conventional spectroscopic and spectrometric data analysis coupled with computational methods including DP4+ probability and ECD simulation and an NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. Plausible biosynthetic pathways of 1-6 are proposed, and compound 6 significantly regulated lipid metabolism in adipocytes through the upregulation of the mRNA expression of Adipsin, Fabp4, SREBP1, and ATGL.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, South Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Jeong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ui Joung Youn
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, South Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Yang K, Zhang F, Fang T, Li C, Li W, Song Q. Passerini-type reaction of boronic acids enables α-hydroxyketones synthesis. Nat Commun 2021; 12:441. [PMID: 33469014 PMCID: PMC7815879 DOI: 10.1038/s41467-020-20727-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Multicomponent reactions (MCRs) facilitate the rapid and diverse construction of molecular scaffolds with modularity and step economy. In this work, engagement of boronic acids as carbon nucleophiles culminates in a Passerini-type three-component coupling reaction towards the synthesis of an expanded inventory of α-hydroxyketones with skeletal diversity. In addition to the appealing features of MCRs, this protocol portrays good functional group tolerance, broad substrate scope under mild conditions and operational simplicity. The utility of this chemistry is further demonstrated by amenable modifications of bioactive products and pharmaceuticals as well as in the functionalization of products to useful compounds. Multicomponent reactions enable the rapid construction of diverse molecular scaffolds with modularity and step economy. In this work, the authors report the use of boronic acids as carbon nucleophiles in a Passerini-type three-component coupling reaction towards an expanded inventory of α-hydroxyketones.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Feng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Tongchang Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chaokun Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
11
|
Affiliation(s)
- Xinming Zhang
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Laurent Evanno
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Erwan Poupon
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|