1
|
Wang XL, Tan LL, Liu Y, Liu JX, Li XA, Liang ZZ, Huang JF, Liu JM. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells. CHEMSUSCHEM 2025; 18:e202402395. [PMID: 39569639 DOI: 10.1002/cssc.202402395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Metal-free photosensitizers for the construction of low-cost and eco-friendly dye-sensitized photoelectrochemical cells (DSPECs) have recently been greatly improved, but the optimization of water oxidation catalysts (WOCs) used in DSPECs based on metal-free dyes has received little attention. Herein, a series of polymer networks (RuTPA, RuCz, RuPr and RuTz) assembled by ruthenium WOCs (RuCHO) with various organic donors are constructed and combined with calixarene dyes to prepare DSPEC devices. The FTO|TiO2|C4BTP+RuTPA photoanode shows the best performance with 85 % Faraday efficiency for oxygen production and 477 μA cm-2 photocurrent density after 200 s chopping irradiation at 0 V vs. Ag/AgCl, one of the highest records among other reported dye-sensitized photoanodes. Compared to monomeric RuCHO, Ru-based polymers with lower Ru content have higher activity and stability due to their rapid electron transfer and anti-aggregation ability. Meanwhile, RuTPA loaded electrodes show better performance due to the lower overpotential of the water oxidation reaction caused by the higher electron donating ability of its donor. This pioneering work incorporates Ru polymer networks as WOCs into the calixarene-sensitized DSPEC system, which has significant potential as a highly efficient and stable photoelectrochemical water splitting device.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Li-Lin Tan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yang Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Jia-Xin Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Xin-Ao Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Zi-Zhan Liang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Jian-Feng Huang
- School of Materials and New Energy, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jun-Min Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
De Kreijger S, Ripak A, Elias B, Troian-Gautier L. Investigation of the Excited-State Electron Transfer and Cage Escape Yields Between Halides and a Fe(III) Photosensitizer. J Am Chem Soc 2024; 146:10286-10292. [PMID: 38569088 DOI: 10.1021/jacs.4c02808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Excited-state quenching and reduction of [Fe(phtmeimb)2]+, where phtmeimb is phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate, with iodide, bromide, and chloride were studied in dichloromethane, acetonitrile, and acetonitrile/water 1:1 mixture by means of steady-state and time-resolved spectroscopic techniques. Quenching rate constants were almost diffusion-limited in dichloromethane and acetonitrile and followed the expected periodic trend, i.e., I- > Br- > Cl-. Confirmation of excited-state reductive electron transfer was only unambiguously obtained when iodide was used as a quencher. The cage escape yields, i.e., the separation of the geminate radical pair formed upon bimolecular excited-state electron transfer, were determined. These yields were larger in dichloromethane (0.079) than in acetonitrile (0.017), and no photoproduct could be observed in acetonitrile/water 1:1. This study further emphasizes that solvents with low dielectric constant are more suited for productive excited-state electron transfer using Fe(III) photosensitizers with 2LMCT excited state.
Collapse
Affiliation(s)
- Simon De Kreijger
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Alexia Ripak
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Benjamin Elias
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Yu J, Hao X, Mu L, Shi W, She G. Photoelectrocatalytic Utilization of CO 2 : A Big Show of Si-based Photoelectrodes. Chemistry 2024; 30:e202303552. [PMID: 38158581 DOI: 10.1002/chem.202303552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xue Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
5
|
Zhu K, Mul G, Huijser A. CuBO 2 : A Potential Alternative for NiO as a Hole Acceptor Layer. CHEMSUSCHEM 2024; 17:e202300800. [PMID: 37706622 DOI: 10.1002/cssc.202300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
P-type metal oxides, and in particular NiO, are typically used as hole accepting layers in dye-sensitized photocathodes. Delafossites (CuMO2 ) with M=B, Al, Cr or Ga have recently been proposed as attractive substitutes for NiO, with theoretically a higher hole mobility than NiO, therefore allowing a higher efficiency when the photocathode is applied in solar to fuel devices. We have experimentally validated the photoelectrochemical performance of photocathodes consisting of nanoporous CuBO2 (CBO) on Fluorine-doped Tin Oxide substrates, photosensitized with a light absorbing P1 dye. Femtosecond transient absorption and time-resolved photoluminescence studies show that light-induced hole injection occurs from the P1 dye into the CBO in a few ps, comparable to the time constant observed for NiO-based photocathodes. Importantly, the CBO-based photocathode shows significantly slower charge recombination than the NiO-based analogue. These results illustrate the promise of CBO as a p-type semiconductor in solar energy conversion devices.
Collapse
Affiliation(s)
- Kaijian Zhu
- PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (The, Netherlands
| | - Guido Mul
- PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (The, Netherlands
| | - Annemarie Huijser
- PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (The, Netherlands
| |
Collapse
|
6
|
Liu J, Perez OM, Lavergne D, Rasu L, Murphy E, Galvez-Rodriguez A, Bergens SH. One-Step Electropolymerization of a Dicyanobenzene-Carbazole-Imidazole Dye to Prepare Photoactive Redox Polymer Films. Polymers (Basel) 2023; 15:3340. [PMID: 37631397 PMCID: PMC10457835 DOI: 10.3390/polym15163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To the best of our knowledge, this study reports the first direct electropolymerization of a dicyanobenzene-carbazole dye functionalized with an imidazole group to prepare redox- and photoactive porous organic polymer (POP) films in controlled amounts. The POP films were grown on indium-doped tin oxide (ITO) and carbon surfaces using a new monomer, 1-imidazole-2,4,6-tri(carbazol-9-yl)-3,5-dicyanobenzene (1, 3CzImIPN), through a simple one-step process. The structure and activities of the POP films were investigated as photoelectrodes for electrooxidations, as heterogeneous photocatalysts for photosynthetic olefin isomerizations, and for solid-state photoluminescence behavior tunable by lithium-ion concentrations in solution. The results demonstrate that the photoredox-POPs can be used as efficient photocatalysts, and they have potential applications in sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
7
|
Ray U, Sarkar S, Banerjee D. Silicon Nanowires as an Efficient Material for Hydrogen Evolution through Catalysis: A Review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Gupta D, Lakraychi AE, Boruah BD, De Kreijger S, Troian‐Gautier L, Elias B, De Volder M, Vlad A. Visible‐Light Augmented Lithium Storage Capacity in a Ruthenium(II) Photosensitizer Conjugated with a Dione‐Catechol Redox Couple. Chemistry 2022; 28:e202201220. [DOI: 10.1002/chem.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Deepak Gupta
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alae E. Lakraychi
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Buddha D. Boruah
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
- Institute for Materials Discovery University College London London WC1E 7JE United Kingdom
| | - Simon De Kreijger
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Michael De Volder
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
| | - Alexandru Vlad
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
9
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
10
|
Niu F, Wang D, Williams LJ, Nayak A, Li F, Chen X, Troian-Gautier L, Huang Q, Liu Y, Brennaman MK, Papanikolas JM, Guo L, Shen S, Meyer TJ. A Semiconductor-Mediator-Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation. Chemistry 2022; 28:e202102630. [PMID: 35113460 DOI: 10.1002/chem.202102630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/09/2022]
Abstract
In fabricating an artificial photosynthesis (AP) electrode for water oxidation, we have devised a semiconductor-mediator-catalyst structure that mimics photosystem II (PSII). It is based on a surface layer of vertically grown nanorods of Fe2 O3 on fluorine doped tin oxide (FTO) electrodes with a carbazole mediator base and a Ru(II) carbene complex on a nanolayer of TiO2 as a water oxidation co-catalyst. The resulting hybrid assembly, FTO|Fe2 O3 |-carbazole|TiO2 |-Ru(carbene), demonstrates an enhanced photoelectrochemical (PEC) water oxidation performance compared to an electrode without the added carbaozle base with an increase in photocurrent density of 2.2-fold at 0.95 V vs. NHE and a negatively shifted onset potential of 500 mV. The enhanced PEC performance is attributable to carbazole mediator accelerated interfacial hole transfer from Fe2 O3 to the Ru(II) carbene co-catalyst, with an improved effective surface area for the water oxidation reaction and reduced charge transfer resistance.
Collapse
Affiliation(s)
- Fujun Niu
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Degao Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States.,Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Lenzi J Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Fei Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Xiangyan Chen
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yanming Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - M Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - John M Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
11
|
Li X, Liu Y, Sun Q, Huang WH, Wang Z, Chueh CC, Chen CL, Zhu Z. Surface engineered CoP/Co 3O 4 heterojunction for high-performance bi-functional water splitting electro-catalysis. NANOSCALE 2021; 13:20281-20288. [PMID: 34817488 DOI: 10.1039/d1nr06044a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the electrochemical water splitting process, integrating hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in the same electrolyte with the same catalyst is highly beneficial for increasing the energy efficiency and reducing the fabrication cost. However, most OER catalysts are unstable in the acidic solution, while HER shows poor kinetics in the alkaline solution, which hinders the scale-up application of electro-catalytic water splitting. In this work, a CoP/Co3O4 heterostructure is firstly fabricated and then O and P defects are introduced via surface engineering (s-CoP/Co3O4). The as-prepared material was employed as the catalyst towards electrochemical water splitting in an alkaline environment. In alkaline HER, a current density of -10 mA cm-2 can be achieved at an overpotential of 106 mV vs. RHE. In the OER process, the overpotential of s-CoP/Co3O4 electrode is only 211 mV vs. RHE at 10 mA cm-2 in 1 M KOH, and the corresponding Tafel slope is only 58.4 mV dec-1 so that the s-CoP/Co3O4 electrode could be used as the bifunctional catalyst for alkaline water splitting. This work provides a simple and low-cost approach to fabricate a Co-based heterojunction electrode with unsaturated metal sites to improve the electro-catalytic activities towards water splitting.
Collapse
Affiliation(s)
- Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Qidi Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Wei-Hsiang Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan, Republic of China
| | - Zilong Wang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Centre of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan, Republic of China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| |
Collapse
|
12
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Nhon L, Shan B, Taggart AD, Wolfe RMW, Li TT, Klug CM, Nayak A, Bullock RM, Cahoon JF, Meyer TJ, Schanze KS, Reynolds JR. Influence of Surface and Structural Variations in Donor-Acceptor-Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47499-47510. [PMID: 34590823 DOI: 10.1021/acsami.1c11879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugated organic chromophores composed of linked donor (D) and acceptor (A) moieties have attracted considerable attention for photoelectrochemical applications. In this work, we compare the optoelectronic properties and photoelectrochemical performance of two D-A-D structural isomers with thiophene-X-carboxylic acid (X denotes 3 and 2 positions) derivatives and 2,1,3-benzothiadiazole as the D and A moieties, respectively. 5,5'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-3-carboxylic acid), BTD1, and 5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-2-carboxylic acid), BTD2, were employed in the study to understand how structural isomers affect surface attachments within chromophore-catalyst assemblies and their influence on charge-transfer dynamics. Crystal structures revealed that varying the position of the -COOH anchoring group causes the molecules to either contort out of a plane (BTD1) or adopt a near-perfect planar conformation (BTD2). BTD1 and BTD2 were co-loaded with either a water oxidation catalyst, [Ru(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)-(4,4'-((HO)2OPCH2)2-2,2'-bipyridine)(OH2)]2, RuCt2+, or proton reduction catalyst [Ni(P2PhN2C6H4CH2PO3H2)2]2+, NiCt2+, on oxide electrodes to facilitate photodriven water splitting reactions. Emission quenching measurements indicate that both BTD1 and BTD2 inject electrons into n-type SnO2|TiO2 electrodes and holes into p-type NiO semiconductors from their respective excited states at high efficiencies >60%. Photocurrent densities of chromophore-catalyst assemblies obtained using linear sweep voltammetry (LSV) show that BTD2-sensitized photoanodes generate significantly more photocurrent than BTD1-sensitized electrodes; however, both exhibit similar performances at the photocathode. Photoelectrocatyltic measurements demonstrate that both BTD1 and BTD2 performed similarly, generating Faradaic efficiencies of 39 and 38% at the anode or 61 and 79% at the cathode. Transient absorption measurements suggest that the differences between the LSV and photoelectrocatalytic measurements result from the differences in quantum yields of the photogenerated redox equivalents, which is also a reflection of the varying metal oxide surface conformation. Our findings suggest that BTD2 should be investigated further in photocathodic studies since it has the structural advantage of being incorporated into diverse types of chromophore-catalyst assemblies.
Collapse
Affiliation(s)
- Linda Nhon
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Aaron D Taggart
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rylan M W Wolfe
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting-Ting Li
- Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo 315211, China
| | - Christina M Klug
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Laurans M, Wells JAL, Ott S. Immobilising molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO 2 reduction. Dalton Trans 2021; 50:10482-10492. [PMID: 34259300 DOI: 10.1039/d1dt01331a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoelectrochemical CO2 reduction is a promising approach for renewable fuel generation and to reduce greenhouse gas emissions. Owing to their synthetic tunability, molecular catalysts for the CO2 reduction reaction can give rise to high product selectivity. In this context, a RuII complex [Ru(HO-tpy)(6-mbpy)(NCCH3)]2+ (HO-tpy = 4'-hydroxy-2,2':6',2''-terpyridine; 6-mbpy = 6-methyl-2,2'-bipyridine) was immobilised on a thin SiOx layer of a p-Si electrode that was decorated with a bromide-terminated molecular layer. Following the characterisation of the assembled photocathodes by X-ray photoelectron spectroscopy and ellipsometry, PEC experiments demonstrate electron transfer from the p-Si to the Ru complex through the native oxide layer under illumination and a cathodic bias. A state-of-the-art photovoltage of 570 mV was determined by comparison with an analogous n-type Si assembly. While the photovoltage of the modified photocathode is promising for future photoelectrochemical CO2 reduction and the p-Si/SiOx junction seems to be unchanged during the PEC experiments, a fast desorption of the molecular Ru complex was observed. An in-depth investigation of the cathode degradation by comparison with reference materials highlights the role of the hydroxyl functionality of the Ru complex to ensure its grafting on the substrate. In contrast, no essential role for the bromide function on the Si substrate designed to engage with the hydroxyl group of the Ru complex in an SN2-type reaction could be established.
Collapse
Affiliation(s)
- Maxime Laurans
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Jordann A L Wells
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
15
|
Rasu L, Amiri M, Bergens SH. Carbazole-Cyanobenzene Dyes Electrografted to Carbon or Indium-Doped Tin Oxide Supports for Visible Light-Driven Photoanodes and Olefin Isomerizations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17745-17752. [PMID: 33826282 DOI: 10.1021/acsami.1c05064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The organic carbazole-cyanobenzene push-pull dye 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene was derivatized and attached to carbon or indium-doped tin oxide (ITO) electrodes by simple diazonium electrografting. The surface-bound dye is active and stable for the visible light photosynthetic isomerization of a wide range of functionalized stilbene and cinnamic acid derivatives. Up to 87,000 net turnovers were obtained for the isomerization of trans-stilbene. The isomerizations can be carried out in air with a 33% reduction in the rate. The ITO photoelectrodes are also active and stable toward photo-oxidations under basic and acidic conditions.
Collapse
Affiliation(s)
- Loorthuraja Rasu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Mona Amiri
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Steven H Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
16
|
Bold S, Massin J, Giannoudis E, Koepf M, Artero V, Dietzek B, Chavarot-Kerlidou M. Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Bold
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Julien Massin
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Emmanouil Giannoudis
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Matthieu Koepf
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
17
|
Banin U, Waiskopf N, Hammarström L, Boschloo G, Freitag M, Johansson EMJ, Sá J, Tian H, Johnston MB, Herz LM, Milot RL, Kanatzidis MG, Ke W, Spanopoulos I, Kohlstedt KL, Schatz GC, Lewis N, Meyer T, Nozik AJ, Beard MC, Armstrong F, Megarity CF, Schmuttenmaer CA, Batista VS, Brudvig GW. Nanotechnology for catalysis and solar energy conversion. NANOTECHNOLOGY 2021; 32:042003. [PMID: 33155576 DOI: 10.1088/1361-6528/abbce8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.
Collapse
Affiliation(s)
- U Banin
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - N Waiskopf
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - L Hammarström
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - G Boschloo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M Freitag
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - E M J Johansson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - J Sá
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - H Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M B Johnston
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - M G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - W Ke
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - I Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - K L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - G C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - N Lewis
- Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America
| | - T Meyer
- University of North Carolina at Chapel Hill, Department of Chemistry, United States of America
| | - A J Nozik
- National Renewable Energy Laboratory, United States of America
- University of Colorado, Boulder, CO, Department of Chemistry, 80309, United States of America
| | - M C Beard
- National Renewable Energy Laboratory, United States of America
| | - F Armstrong
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C F Megarity
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C A Schmuttenmaer
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - V S Batista
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - G W Brudvig
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| |
Collapse
|
18
|
Decavoli C, Boldrini CL, Manfredi N, Abbotto A. Molecular Organic Sensitizers for Photoelectrochemical Water Splitting. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Decavoli
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
19
|
de Palo A, La Ganga G, Nastasi F, Guelfi M, Bortoluzzi M, Pampaloni G, Puntoriero F, Campagna S, Marchetti F. Ru(ii) water oxidation catalysts with 2,3-bis(2-pyridyl)pyrazine and tris(pyrazolyl)methane ligands: assembly of photo-active and catalytically active subunits in a dinuclear structure. Dalton Trans 2020; 49:3341-3352. [PMID: 32103210 DOI: 10.1039/c9dt04815d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Ru(ii) complexes, i.e. [RuCl(κ3N-terpy)(κ2N-dpp)]PF6 ([1]PF6; terpy = 2,2':6',2''-terpyridine; dpp = 2,3-bis(2'-pyridyl-pyrazine) and [RuCl(κ3N-tpm)(κ2N-dpp)]Cl ([2]Cl; tpm = tris(1-pyrazolyl)methane), and one dinuclear complex, i.e. [Ru2Cl(κ3N-tpm)(μ-κ2N:κ2N-dpp)Ru(κ2N-bpy)2][PF6]3 ([3][PF6]3; bpy = 2,2'-bipyridine), have been synthesized and their water oxidation catalytic properties have been investigated. A combined DFT and experimental (35Cl NMR and conductivity measurements) study aimed to elucidate the nature of [1]+ and [2]+ in aqueous solution has also been performed, indicating that one water molecule is allowed to enter the first coordination sphere of [2]+ in the ground state, replacing one tpm nitrogen. Conversely, in the case of [1]+, water coordination, assumed to be needed for the water oxidation process, presumably occurs following the oxidation of the metal. For all complexes, a catalytic wave has been detected in acetonitrile/water 1 : 1 (v/v) solution in the range 1.4-1.7 V vs. SCE. In all cases, water oxidation (investigated at pH < 8) takes place initially via a proton-coupled two-electron, two-proton process with the formation of an Ru(iv)[double bond, length as m-dash]O moiety, followed by one electron oxidation and water nucleophilic attack. The TON and TOF values (within the range of 16-33 and 1.3-2.2 h-1, respectively) of the complexes are higher than those of the benchmark [Ru(LLL)(LL)(OH2)]2+-type species (LLL and LL are tridentate and bidentate polypyridine ligands, respectively), which is [Ru(terpy)(bpm)(OH2)]2+.
Collapse
Affiliation(s)
- Alice de Palo
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Photoelectrochemical study of electrochemically synthesized CdTe thin films from acetate-anion based ionic liquid bath. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113727] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|