1
|
Huang D, Zhu Z, Cao D, Huang H. Aza-Michael Addition-Fragmentation Ring-Opening Polymerization. J Am Chem Soc 2025. [PMID: 40391954 DOI: 10.1021/jacs.5c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Cleaving the C(sp3)-N bonds in unstrained cyclic monomers for ring-opening polymerization remains a formidable challenge in polymer chemistry. Here, we report a novel strategy that integrates the cascade aza-Michael/retro-aza Michael reaction with a chain growth polymerization mechanism. For the first time, this approach cleaves the C(sp3)-N bond in less-strained cyclic monomers under ambient conditions, yielding cinnamate-containing polyamines with controlled molecular weight, narrow dispersity, and unexpected cis-stereoselectivity. A linear relationship between the number-average molecular weight and the conversion, high chain-end fidelity, and efficient chain extension proved excellent control over the polymerization process. In addition, density functional theory calculations were conducted to clarify the origin of the observed stereoselectivity. The versatility of this polymerization was further demonstrated through the copolymerization with aziridine monomers and the synthesis of sequence-controlled polymers. This protocol provides a new C-N cleavage pattern for ring-opening polymerization and would lead to a more useful synthetic pathway to polymers with main-chain functionalities.
Collapse
Affiliation(s)
- Dan Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhen Zhu
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Derong Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
An B, Sun L, Sun T, Li Y. Radical Homopolymerization of Arylsulfonylated α-Olefins to Synthesize Polysulfones - a "SO 2-free" Approach. Angew Chem Int Ed Engl 2025; 64:e202421906. [PMID: 39875324 DOI: 10.1002/anie.202421906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Traditionally, α-olefins have been regarded as non-homopolymerizable substrates in textbook examples. However, they have the ability to copolymerize with sulfur dioxide, leading to the creation of alternating copolymers. These commodity poly(olefin sulfone)s exhibit a wide array of applications. Nevertheless, the synthesis process involving sulfur dioxide pose considerable hazards and practical difficulties. In this study, we report on the "SO2-free" radical homopolymerization of sulfonyl α-olefin monomers, resulting in the production of ABC sequence-controlled poly(vinylbenzothiazole-olefin-sulfone)s. This unique radical polymerization process is enhanced by 1,4/1,5-aryl migration, facilitated by the sulfonyl radicals involved in propagation. This demonstrated aryl group migration radical polymerization opens up new possibilities for synthesizing polysulfones with unprecedented main chain sequences and structures, which hold great promise as candidates for innovative polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lixing Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tingting Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
4
|
Do PT, Sbordone F, Kalmer H, Sokolova A, Zhang C, Thai LD, Golberg DV, Chapman R, Poad BLJ, Frisch H. Main chain selective polymer degradation: controlled by the wavelength and assembly. Chem Sci 2024; 15:12410-12419. [PMID: 39118612 PMCID: PMC11304539 DOI: 10.1039/d4sc02172j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
The advent of reversible deactivation radical polymerization (RDRP) revolutionized polymer chemistry and paved the way for accessing synthetic polymers with controlled sequences based on vinylic monomers. An inherent limitation of vinylic polymers stems from their all-carbon backbone, which limits both function and degradability. Herein, we report a synthetic strategy utilizing radical ring-opening polymerization (rROP) of complementary photoreactive cyclic monomers in combination with RDRP to embed photoresponsive functionality into desired blocks of polyvinyl polymers. Exploiting different absorbances of photoreactive cyclic monomers, it becomes possible to degrade blocks selectively by irradiation with either UVB or UVA light. Translating such primary structures of polymer sequences into higher order assemblies, the hydrophobicity of the photodegradable monomers allowed for the formation of micelles in water. Upon exposure to light, the nondegradable blocks detached yielding a significant reduction in the micelle hydrodynamic diameter. As a result of the self-assembled micellar environment, telechelic oligomers with photoreactive termini (e.g., coumarin or styrylpyrene) resulting from the photodegradation of polymers in water underwent intermolecular photocycloaddition to photopolymerize, which usually only occurs efficiently at longer wavelengths and a much higher concentration of photoresponsive groups. The reported main chain polymer degradation is thus controlled by the irradiation wavelength and the assembly of the polymers.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Henrik Kalmer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road, Lucas Heights NSW 2234 Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney Kensington NSW 2052 Australia
- School of Environmental and Life Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
5
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Wang Y, Du J, Huang H. Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization. Angew Chem Int Ed Engl 2024; 63:e202318898. [PMID: 38284482 DOI: 10.1002/anie.202318898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Developing reversible-deactivation radical polymerization (RDRP) methods that could directly control the thiyl radical propagation is highly desirable yet remains challenging in modern polymer chemistry. Here, we reported the first reversible thiyl radical addition-fragmentation chain transfer (SRAFT) polymerization strategy, which utilizes allyl sulfides as chain transfer agents for reversibly deactivating the propagating thiyl radicals, thus allowing us to directly control a challenging thiyl radical chain polymerization to afford polymers with well-defined architectures. A linear dependence of molecular weight on conversion, high chain-end fidelity, and efficient chain extension proved good controllability of the polymerization. In addition, density functional theory calculations provided insight into the reversible deactivation ability of allyl sulfides. The SRAFT strategy developed in this work represents a promising platform for discovering new controlled polymerizations based on thiyl radical chemistry.
Collapse
Affiliation(s)
- Yongjin Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiaman Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Sbordone F, Micallef A, Frisch H. pH-Controlled Reversible Folding of Copolymers via Formation of β-sheet Secondary Structures. Angew Chem Int Ed Engl 2024; 63:e202319839. [PMID: 38205669 DOI: 10.1002/anie.202319839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Protein functions are enabled by their perfectly arranged 3D structure, which is the result of a hierarchical intramolecular folding process. Sequence-defined polypeptide chains form locally ordered secondary structures (i.e., α-helix and β-sheet) through hydrogen bonding between the backbone amides, shaping the overall tertiary structure. To generate similarly complex macromolecular architectures based on synthetic materials, a plethora of strategies have been developed to induce and control the folding of synthetic polymers. However, the degree of complexity of the structure-driving ensemble of interactions demonstrated by natural polymers is unreached, as synthesizing long sequence-defined polymers with functional backbones remains a challenge. Herein, we report the synthesis of hybrid peptide-N,N-Dimethylacrylamide copolymers via radical Ring-Opening Polymerization (rROP) of peptide containing macrocycles. The resulting synthetic polymers contain sequence-defined regions of β-sheet encoding amino acid sequences. Exploiting the pH responsiveness of the embedded sequences, protonation or deprotonation in water induces self-assembly of the peptide strands at an intramacromolecular level, driving polymer chain folding via formation of β-sheet secondary structures. We demonstrate that the folding behavior is sequence dependent and reversible.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Aaron Micallef
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Jiang NC, Zhou Z, Niu J. Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals. J Am Chem Soc 2024; 146:5056-5062. [PMID: 38345300 DOI: 10.1021/jacs.3c14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.
Collapse
Affiliation(s)
- Na-Chuan Jiang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Yu YC, Sung YC, Fu JH, Peng WS, Yu YC, Li J, Chan YT, Tsai FY. Nickel-Catalyzed Suzuki-Miyaura Coupling in Water for the Synthesis of 2-Aryl Allyl Phosphonates and Sulfones. J Org Chem 2024; 89:2448-2458. [PMID: 38275288 PMCID: PMC10877605 DOI: 10.1021/acs.joc.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
An operationally simple and green protocol using a NiSO4·6H2O/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.
Collapse
Affiliation(s)
- Yu-Chen Yu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Yun-Chiao Sung
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Jun-Hao Fu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Sheng Peng
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Yu-Chia Yu
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Juyun Li
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Yi-Tsu Chan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Fu-Yu Tsai
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
10
|
Ivanchenko O, Destarac M. 1,1'- Thiocarbonyldiimidazole Radical Copolymerization for the Preparation of Degradable Vinyl Polymers. ACS Macro Lett 2024; 13:47-51. [PMID: 38118079 DOI: 10.1021/acsmacrolett.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
1,1'-Thiocarbonyldiimidazole (TCDI) readily undergoes radical copolymerization with tert-butyl acrylate (tBA), N,N-dimethylacrylamide, and styrene. 1H NMR monitoring of the comonomer reactivity revealed a notable compatibility between TCDI and comonomers, resulting in similar consumption rates when TCDI was introduced at a 10% feed ratio. Furthermore, trithiocarbonate-mediated RAFT copolymerization of TCDI with tBA gave polymers that exhibited a linear increase of molar mass (Mnth = 2-10 kg mol-1) with conversion with relatively low dispersities (1.2-1.4). Importantly, this process enabled a successful chain extension of the produced P(TCDI-co-tBA) copolymer with styrene to form a diblock copolymer. The copolymers generated through this method contain TCDI-derived diimidazolyl thioether moieties, as established through 1H NMR spectroscopy. Additionally, degradation experiments using isopropylamine, benzoyl peroxide, sodium methoxide, and bleach have provided further confirmation of the presence of degradable TCDI moieties in the vinyl copolymer backbone.
Collapse
Affiliation(s)
- Oleksandr Ivanchenko
- Laboratoire SOFTMAT, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, Toulouse 31062, France
| | - Mathias Destarac
- Laboratoire SOFTMAT, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, Toulouse 31062, France
| |
Collapse
|
11
|
Chen W, Guo C, Ding H, Yang X, Zhang K. Controlled Ring-Opening Polymerization of Macrocyclic Monomers Based on Ring-Opening/Ring-Closing Cascade Reaction. J Am Chem Soc 2023. [PMID: 37931244 DOI: 10.1021/jacs.3c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a controlled ring-opening polymerization (ROP) method for synthesizing backbone-functionalized and sequence-controlled polymers with well-defined architectures from macrocyclic monomers is highly desirable in polymer chemistry. Herein, we developed a novel general controlled ROP of macrocycles for producing backbone functional and sequence-controlled polyurethanes and polyamides with controlled molecular weights and narrow dispersities (Đ < 1.1). The key to this method is the introduction of a trimethyl lock unit, an efficient cyclization-based self-immolative spacer, into the macrocyclic monomer ring as a "ring-opening trigger." ROP is initiated by the attack of a primary amine nucleophile on the ring-activated carbonate/ester group, leading to the ring opening of the macrocyclic monomer. Subsequently, spontaneous 6-exo-trig cyclization of the trimethyl lock unit occurs, detaching this ring-opening trigger and regenerating the primary amine end group. The regenerated primary amine group can then be used to propagate the polymer chain by iterating the ring-opening-ring-closing cascade reaction. The versatile ROP method can be applied in the synthesis of water-soluble polyurethanes, backbone-degradable polyurethanes and poly(ester amide)s, and sequence-controlled poly(amino acid)s with well-defined macromolecular architectures.
Collapse
Affiliation(s)
- Wensen Chen
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjuan Guo
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhang S, Wang Y, Huang H, Cao D. A Strategy for Controlling the Polymerizations of Thiyl Radical Propagation by RAFT Agents. Angew Chem Int Ed Engl 2023; 62:e202308524. [PMID: 37478164 DOI: 10.1002/anie.202308524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The ability to extend the polymerizations of thiyl radical propagation to be regulated by existing controlled methods would be highly desirable, yet remained very challenging to achieve because the thiyl radicals still cannot be reversibly controlled by these methods. In this article, we reported a novel strategy that could enable the radical ring-opening polymerization of macrocyclic allylic sulfides, wherein propagating specie is thiyl radical, to be controlled by reversible addition-fragmentation chain transfer (RAFT) agents. The key to the success of this strategy is the propagating thiyl radical can undergo desulfurization with isocyanide and generate a stabilized alkyl radical for reversible control. Systematic optimization of the reaction conditions allowed good control over the polymerization, leading to the formation of polymers with well-defined architectures, exemplified by the radical block copolymerization of macrocyclic allylic sulfides and vinyl monomers and the incorporation of sequence-defined segments into the polymer backbone. This work represents a significant step toward directly enabling the polymerizations of heteroatom-centered radical propagation to be regulated by existing reversible-deactivation radical polymerization techniques.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongjin Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
13
|
Kariyawasam LS, Highmoore JF, Yang Y. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202303039. [PMID: 36988027 DOI: 10.1002/anie.202303039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
In a sustainable circular economy, polymers capable of chemical recycling to monomers are highly desirable. We report an efficient monomer-polymer recycling of polydithioacetal (PDTA). Pristine PDTAs were readily synthesized from 3,4,5-trimethoxybenzaldehyde and alkyl dithiols. They then exhibited depolymerizability via ring-closing depolymerization into macrocycles, followed by entropy-driven ring-opening polymerization (ED-ROP) to reform the virgin polymers. High conversions were obtained for both the forward and reverse reactions. Once crosslinked, the network exhibited thermal reprocessability enabled by acid-catalyzed dithioacetal exchange. The network retained the recyclability into macrocyclic monomers in solvent which can repolymerize to regenerate the crosslinked network. These results demonstrated PDTA as a new molecular platform for the design of recyclable polymers and the advantages of ED-ROP for which polymerization is favored at higher temperatures.
Collapse
Affiliation(s)
| | | | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
14
|
Sbordone F, Veskova J, Richardson B, Do PT, Micallef A, Frisch H. Embedding Peptides into Synthetic Polymers: Radical Ring-Opening Copolymerization of Cyclic Peptides. J Am Chem Soc 2023; 145:6221-6229. [PMID: 36898136 DOI: 10.1021/jacs.2c12517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Biopolymers such as proteins and nucleic acids are the key building blocks of life. Synthetic polymers have nevertheless revolutionized our everyday life through their robust synthetic accessibility. Combining the unmatched functionality of biopolymers with the robustness of tailorable synthetic polymers holds the promise to create materials that can be designed ad hoc for a wide array of applications. Radical polymerization is the most widely applied polymerization technique in both fundamental science and industrial polymer production. While this polymerization technique is robust and well controlled, it generally yields unfunctional all-carbon backbones. Combinations of natural polymers such as peptides, with synthetic polymers, are thus limited to tethering peptides onto the side chains or chain ends of the latter. This synthetic limitation is a critical restraint, considering that the function of biopolymers is programmed into the sequence of their main chain (i.e., primary structure). Here, we report the radical copolymerization of peptides and synthetic comonomers yielding synthetic polymers with defined peptide sequences embedded into their main chain. Key was the development of a solid-phase peptide synthesis (SPPS) approach to generate synthetic access to peptide conjugates containing allylic sulfides. Following cyclization, the obtained peptide monomers can be readily copolymerized with N,N-dimethylacrylamide (DMA)─controlled by reversible addition-fragmentation chain transfer (RAFT). Importantly, the developed synthetic strategy is compatible with all 20 standard amino acids and uses exclusively standard SPPS chemicals or chemicals accessible in one-step synthesis─prerequisite for widespread and universal application.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Juliet Veskova
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Bailey Richardson
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Phuong Thi Do
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Aaron Micallef
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
15
|
Chen YJ, Wu LT, Xiao H, Sun XL, Wan WM. Recent Advances and Challenges in Barbier Polymerization. Chempluschem 2023; 88:e202200388. [PMID: 36581503 DOI: 10.1002/cplu.202200388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Barbier reaction, a classical name reaction for carbon-carbon bond formation, has played important roles in organic chemistry for over 120 years. The introduction of the Barbier reaction into polymer chemistry for the development of a novel Barbier polymerization, expands the methodology, monomer, chemical structure and property libraries of polymerization, aggregation-induced emission (AIE) and non-traditional intrinsic luminescence (NTIL). This mini review focuses on Barbier polymerization, including the brief introduction of the history and importance of polymerization methods design and the achievements of Barbier polymerization from molecular design strategies, functionalities and properties. An outlook of Barbier polymerization is also proposed. This mini review on Barbier polymerization therefore may cause inspirations to scientists in different fields.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Liang-Tao Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
16
|
Zhang S, Cao C, Jiang S, Huang H. A General Strategy for Radical Ring-Opening Polymerization of Macrocyclic Allylic Sulfides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuai Zhang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chi Cao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Rizzo A, Jung E, Song H, Cho Y, Peterson GI, Choi TL. Controlled Living Cascade Polymerization of Polycyclic Enyne Monomers: Leveraging Complete Degradability for a Stereochemical and Structural Investigation. J Am Chem Soc 2022; 144:15643-15652. [PMID: 35960252 DOI: 10.1021/jacs.2c05721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascade polymerizations recently gained significant attention due to their use of unique transformations, involving multiple bond making and/or breaking steps, when converting monomers to repeat units. However, designing complex cascade polymerizations which proceed in a controlled manner is very challenging. Various side reactions can hamper polymerization performance and the efficiency of the cascade. In this work, we explore a metathesis-based cascade polymerization of unique polycyclic enyne monomers, which contain a terminal alkyne and two cyclic alkenes. By modifying the monomer's stereochemistry, linkers, and ring types, we were able to modulate the polymerization performance and the extent to which a complete cascade reaction occurs. Upon subjecting the resulting polymers to mild acidic conditions and analyzing the degradation products, we were able to calculate the percentage of repeat units derived from a complete cascade reaction (termed the cascade efficiency). In addition to identifying how various structural parameters in the monomer influence the success of a cascade polymerization, we were able to achieve controlled living cascade polymerizations of multiple monomers with >99% cascade efficiency and produce various block copolymers.
Collapse
Affiliation(s)
- Antonio Rizzo
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Eunsong Jung
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Hojoon Song
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Yunhyeong Cho
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Incheon National University, Incheon22012, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
18
|
Affiliation(s)
- Juliet Veskova
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Federica Sbordone
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hendrik Frisch
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
19
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Zefeng Zhou
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Xuanting Tang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Stephanie Moran
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jing Jin
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jia Niu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
20
|
Yu Z, Wang M, Chen X, Huang S, Yang H. Ring‐Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Shuai Huang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| |
Collapse
|
21
|
Purohit VB, Pięta M, Pietrasik J, Plummer CM. Recent advances in the ring-opening polymerization of sulfur-containing monomers. Polym Chem 2022. [DOI: 10.1039/d2py00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the broad range of applications for sulfur-containing polymers, this article presents an overview regarding various ROP technologies (ROP/rROP/ROMP) which cement the importance of sulfur-containing monomers in modern polymer chemistry.
Collapse
Affiliation(s)
- Vishal B. Purohit
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marlena Pięta
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Christopher M. Plummer
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
22
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
Affiliation(s)
- Wenqi Wang
- Boston College, Chemistry, UNITED STATES
| | | | - Devavrat Sathe
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | | | | | - Jing Jin
- Boston College, Chemistry, UNITED STATES
| | | | - Junpeng Wang
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | - Jia Niu
- Boston College, Department of Chemistry, 2609 Beacon St., Merkert Chemistry Center 214B, 02467, Chestnut Hill, UNITED STATES
| |
Collapse
|
23
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Yu Z, Wang M, Chen XM, Huang S, Yang H. Ring-Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2021; 61:e202112526. [PMID: 34693603 DOI: 10.1002/anie.202112526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,β'-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
25
|
Su M, Li T, Shi QX, Xiao H, Bao H, Wan WM. Barbier-Type Nitro/Nitroso Addition Polymerization as a Versatile Approach for Molecular Design of Polyarylamines through C–N Bond Formation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
He Y, Wu Y, Zhang M, Zhang Y, Ding H, Zhang K. Controlled Ring-Opening Polymerization of Macrocyclic Monomers Based on the Quinone Methide Elimination Cascade Reaction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuxiang He
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wu
- Institute of Polymer Chemistry and Physics, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Minghui Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- Institute of Polymer Chemistry and Physics, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuanxing Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Chen L, Guo Y, Fu T, Zhao HB, Wang XL, Wang YZ. Targeted Copolymerization in Amorphous Regions for Constructing Crystallizable Functionalized Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Wang Y, Sahu SP, Clay AJ, Gildersleeve AJ. Concurrent atom transfer radical polymerization and nitroxide radical coupling relay polymerization. Chem Commun (Camb) 2021; 57:3331-3334. [PMID: 33659969 DOI: 10.1039/d1cc00682g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous atom transfer radical polymerization (ATRP) and nitroxide radical coupling (NRC) seems impossible because the presence of nitroxide radicals would quench the radical polymerization immediately. However, by combining a nitroxide radical and an ATRP active halogen, a halogen group that can initiate one polymer chain by ATRP, into one functional reagent and adding this functional reagent to an ATRP system, concurrent ATRP-NRC relay polymerization was carried out successfully under proper reaction conditions. The key to success was the conjugate radical trapping and re-initiation took place repeatedly, resulting in polymers with inserted alkoxyamine linkages. This novel relay polymerization method provides numerous possibilities for macromolecular architecture/functionality tailoring by using of different functional reagents.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | | | | | | |
Collapse
|
29
|
Wang Y, Xiong G, Zhang C, Chen Y. Controllable Activation of β-Alkyl Nitroalkenes: Regioselective Synthesis of Allyl and Vinyl Sulfones. J Org Chem 2021; 86:4018-4026. [DOI: 10.1021/acs.joc.0c02869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ye Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Guowei Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chuanxin Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
30
|
Chen G, Xia L, Wang F, Zhang Z, You YZ. Recent progress in the construction of polymers with advanced chain structures via hybrid, switchable, and cascade chain-growth polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00274k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent progress of hybrid, switchable, and cascade chain-growth polymerizations for the preparation of polymers with advanced chain structures with diverse compositions has been summarized.
Collapse
Affiliation(s)
- Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- Hefei
- China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| |
Collapse
|
31
|
Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020; 9:1812-1835. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical ring-opening polymerization (rROP) allows facile incorporation of labile groups (e.g., ester) into the main chain of vinyl polymers to obtain (bio)degradable materials. rROP has focused a lot of attention especially since the advent of reversible deactivation radical polymerization (RDRP) techniques and is still incredibly moving forward, as attested by the numerous achievements in terms of monomer synthesis, macromolecular engineering, and potential biomedical applications of the resulting degradable polymers. In the present Viewpoint, we will cover the latest progress made in rROP in the last ∼5 years, such as its recent directions, its remaining limitations, and the ongoing challenges. More specifically, this will be achieved through the three different classes of monomers that recently caught most of the attention: cyclic ketene acetals (CKA), thionolactones, and macrocyclic monomers.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
32
|
Geminal Dimethyl Substitution Enables Controlled Polymerization of Penicillamine-Derived β-Thiolactones and Reversed Depolymerization. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Affiliation(s)
- Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wenqi Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
34
|
Peterson GI, Choi TL. Cascade polymerizations: recent developments in the formation of polymer repeat units by cascade reactions. Chem Sci 2020; 11:4843-4854. [PMID: 34122940 PMCID: PMC8159232 DOI: 10.1039/d0sc01475c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Traditionally, most polymerizations rely on simple reactions such as alkene addition, ring-opening, and condensation because they are robust, highly efficient, and selective. These reactions, however, generally only yield a single new C-C or C-O bond during each propagation step. In recent years, novel macromolecules have been prepared with propagation steps that involve cascade reactions, enabling various combinations of bond making and breaking steps to form more complex repeat units. These polymerizations are often challenging, given the requirements for high conversion and selectivity in controlled polymerizations, yet they provide polymers with unique chemical structures and significantly broaden the scope of how polymers can be made. In this perspective, we summarize the recent developments in cascade polymerizations, primarily focusing on single-component cascades (rather than multi-component polymerizations). Polymerization performance, monomer scope, and mechanisms are discussed for polymerizations utilizing radical, ionic, and metathesis-based mechanisms.
Collapse
Affiliation(s)
- Gregory I Peterson
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
35
|
Li SS, Zhu N, Jing YN, Li Y, Bao H, Wan WM. Barbier Self-Condensing Ketyl Polymerization-Induced Emission: A Polarity Reversal Approach to Reversed Polymerizability. iScience 2020; 23:101031. [PMID: 32299054 PMCID: PMC7160573 DOI: 10.1016/j.isci.2020.101031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/22/2022] Open
Abstract
Carbon-carbon bond formation through polarity reversal ketyl radical anion coupling of carbonyls has inspired new reaction modes to this cornerstone carbonyl group and played significant roles in organic chemistry. The introduction of this resplendent polarity reversal ketyl strategy into polymer chemistry will inspire new polymerization mode with unpredicted discoveries. Here we show the successful introduction of polarity reversal ketyl approach to polymer chemistry to realize self-condensing ketyl polymerization with polymerization-induced emission. In this polarity reversal approach, it exhibits intriguing reversed polymerizability, where traditional excellent leaving groups are not suitable for polymerization but challenging polymerizations involving the cleavage of challenging C-F and C-CF3 bonds are realized under mild Barbier conditions. This polarity reversal approach enables the polymer chemistry with polarity reversal ketyl mode, opens up a new avenue toward the polymerization of challenging C-X bonds under mild conditions, and sparks design inspiration of new reaction, polymerization, and functional polymer.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Ya-Nan Jing
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China.
| |
Collapse
|
36
|
Zhu N, Chiou MF, Xiong H, Su M, Su M, Li Y, Wan WM, Bao H. The Introduction of the Radical Cascade Reaction into Polymer Chemistry: A One-Step Strategy for Synchronized Polymerization and Modification. iScience 2020; 23:100902. [PMID: 32106054 PMCID: PMC7044516 DOI: 10.1016/j.isci.2020.100902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Polymerization and modification play central roles in polymer chemistry and are generally implemented in two steps, which suffer from the time-consuming two-step strategy and present considerable challenge for complete modification. By introducing the radical cascade reaction (RCR) into polymer chemistry, a one-step strategy is demonstrated to achieve synchronized polymerization and complete modification in situ. Attributed to the cascade feature of iron-catalyzed three-component alkene carboazidation RCR exhibiting carbon-carbon bond formation and carbon-azide bond formation with extremely high efficiency and selectivity in one step, radical cascade polymerization therefore enables the in situ synchronized polymerization through continuous carbon-carbon bond formation and complete modification through carbon-azide bond formation simultaneously. This results in a series of α, β, and γ poly(amino acid) precursors. This result not only expands the methodology library of polymerization, but also the possibility for polymer science to achieve functional polymers with tailored chemical functionality from in situ polymerization.
Collapse
Affiliation(s)
- Nengbo Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Muqiao Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| |
Collapse
|