1
|
Shen D, Zhao Q, Zhang H, Wu C, Jin H, Guo K, Sun R, Guo H, Zhao Q, Feng H, Dong X, Gao Z, Zhang L, Liu Y. A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues. Proc Natl Acad Sci U S A 2025; 122:e2420861122. [PMID: 40238459 PMCID: PMC12037041 DOI: 10.1073/pnas.2420861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Most bioorthogonal photouncaging reactions preferentially occur in polar environments to accommodate biological applications in the aqueous cellular milieu. However, they are not precisely designed to chemically adapt to the diverse microenvironments of the cell. Herein, we report a hydrophobic photouncaging reaction with tailored photolytic kinetics toward solvent polarity. Structural modulations of the aminobenzoquinone-based photocage reveal the impact of cyclic ring size, steric substituent, and electronic substituent on the individual uncaging kinetics (kH2O and kdioxane) and polarity preference (kdioxane/kH2O). Rational incorporation of optimized moieties leads to up to 20.2-fold nonpolar kinetic selectivity (kdioxane/kH2O). Further photochemical spectroscopic characterizations and theoretical calculations together uncover the mechanism underlying the polarity-dependent uncaging kinetics. The uncaged ortho-quinone methide product bears covalent reactivity toward diverse nucleophiles of a protein revealed by tandem mass spectrometry. Finally, we demonstrate the application of such lipophilic photouncaging chemistry toward selective labeling and profiling of proteins in proximity to lipid droplets inside human fatty liver tissues. Together, this work studies the solvent polarity effects of a photouncaging reaction and chemically adapts it toward suborganelle-targeted protein proximity labeling and profiling.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huaiyue Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ci Wu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hao Jin
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
2
|
Jahn H, Shyng SL, Schultz C. Lipid probes to study ion channels. Curr Opin Chem Biol 2025; 85:102581. [PMID: 39978055 DOI: 10.1016/j.cbpa.2025.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Lipids can have specific interaction partners and act as small molecule regulators of proteins, especially for transmembrane proteins. Transmembrane proteins, such as ion channels, can be influenced by lipids in four ways; lipids can be direct ligands, localize effector proteins or domains, affect protein-protein interaction, or change the biophysical properties of the surrounding membrane. In this article, we will give examples of how lipids directly interact with ion channels and address the complex aspect of indirect regulation via lipids of the surrounding membrane bilayer. In addition, we discuss current and propose future molecular tools and experiments elucidating the many roles lipids play in ion channel function.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA; Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Thomas A, Lobingier BT, Schultz C, Laguerre A. Cannabinoid Receptor Signaling is Dependent on Sub-Cellular Location. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586146. [PMID: 38562854 PMCID: PMC10983902 DOI: 10.1101/2024.03.21.586146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
G protein-coupled receptors (GPCRs) are membrane bound signaling molecules that regulate many aspects of human physiology. Recent advances have demonstrated that GPCR signaling can occur both at the cell surface and internal cellular membranes. Our findings suggest that cannabinoid receptor 1 (CB1) signaling is highly dependent on its subcellular location. We find that intracellular CB1 receptors predominantly couple to Gαi while plasma membrane receptors couple to Gαs. Here we show subcellular location of CB1, and its signaling, is contingent on the choice of promoters and receptor tags. Heterologous expression with a strong promoter or N-terminal tag resulted in CB1 predominantly localizing to the plasma membrane and signaling through Gαs. Conversely, CB1 driven by low expressing promoters and lacking N-terminal genetic tags largely localized to internal membranes and signals via Gαi. Lastly, we demonstrate that genetically encodable non-canonical amino acids (ncAA) offer a solution to the problem of non-native N-terminal tags disrupting CB1 signaling. We identified sites in CB1R and CB2R which can be tagged with fluorophores without disrupting CB signaling or trafficking using (trans-cyclooctene attached to lysine (TCO*A)) and copper-free click chemistry to attach fluorophores in live cells. Together, our data demonstrate the origin of location bias in cannabinoid signaling which can be experimentally controlled and tracked in living cells through promoters and novel CBR tagging strategies.
Collapse
Affiliation(s)
- Alix Thomas
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Braden T Lobingier
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Carsten Schultz
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Aurélien Laguerre
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Ding C, Du M, Xiong Z, Wang X, Li H, He E, Li H, Dang Y, Lu Q, Li S, Xiao R, Xu Z, Jing L, Deng L, Wang X, Geng M, Xie Z, Zhang A. Photochemically controlled activation of STING by CAIX-targeting photocaged agonists to suppress tumor cell growth. Chem Sci 2023; 14:5956-5964. [PMID: 37293644 PMCID: PMC10246697 DOI: 10.1039/d3sc01896b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Controllable activation of the innate immune adapter protein - stimulator of interferon genes (STING) pathway is a critical challenge for the clinical development of STING agonists due to the potential "on-target off-tumor" toxicity caused by systematic activation of STING. Herein, we designed and synthesized a photo-caged STING agonist 2 with a tumor cell-targeting carbonic anhydrase inhibitor warhead, which could be readily uncaged by blue light to release the active STING agonist leading to remarkable activation of STING signaling. Furthermore, compound 2 was found to preferentially target tumor cells, stimulate the STING signaling in zebrafish embryo upon photo-uncaging and to induce proliferation of macrophages and upregulation of the mRNA expression of STING as well as its downstream NF-kB and cytokines, thus leading to significant suppression of tumor cell growth in a photo-dependent manner with reduced systemic toxicity. This photo-caged agonist not only provides a powerful tool to precisely trigger STING signalling, but also represents a novel controllable STING activation strategy for safer cancer immunotherapy.
Collapse
Affiliation(s)
- Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
- Zhangjiang Institute of Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Mengyan Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 200031 China
| | - Zhi Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
- School of Pharmacy, Nanchang University Jiangxi 330000 China
| | - Xue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Hongji Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Ende He
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 200031 China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Qing Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Shicong Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Ruoxuan Xiao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Lili Jing
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| | - Xiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, College of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University Shanghai 200240 China +86 21 50806035
| |
Collapse
|
7
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
8
|
Jiménez-López C, Nadler A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr Opin Chem Biol 2023; 72:102234. [PMID: 36493527 DOI: 10.1016/j.cbpa.2022.102234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Lipids exert their cellular functions in individual organelles, in some cases on the scale of even smaller, specialized membrane domains. Thus, the experimental capacity to precisely manipulate lipid levels at the subcellular level is crucial for studying lipid-related processes in cell biology. Photo-caged lipid probes which partition into specific cellular membranes prior to photoactivation have emerged as key tools for localized and selective perturbation of lipid concentration in living cells. In this review, we provide an overview of the recent advances in the area and outline which developments are still required for the methodology to be more widely implemented in the wider membrane biology community.
Collapse
Affiliation(s)
| | - André Nadler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
9
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
10
|
Hogenkamp F, Hilgers F, Bitzenhofer NL, Ophoven V, Haase M, Bier C, Binder D, Jaeger K, Drepper T, Pietruszka J. Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. Chembiochem 2022; 23:e202100467. [PMID: 34750949 PMCID: PMC9299732 DOI: 10.1002/cbic.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Indexed: 12/05/2022]
Abstract
Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Vera Ophoven
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Mona Haase
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Claus Bier
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Dennis Binder
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| |
Collapse
|
11
|
Tobias JM, Rajic G, Viray AEG, Icka-Araki D, Frank JA. Genetically-targeted photorelease of endocannabinoids enables optical control of GPR55 in pancreatic β-cells. Chem Sci 2021; 12:13506-13512. [PMID: 34777770 PMCID: PMC8528030 DOI: 10.1039/d1sc02527a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty acid amides (FAAs) are a family of second-messenger lipids that target cannabinoid receptors, and are known mediators of glucose-stimulated insulin secretion from pancreatic β-cells. Due to the diversity observed in FAA structure and pharmacology, coupled with the expression of at least 3 different cannabinoid G protein-coupled receptors in primary and model β-cells, our understanding of their role is limited by our inability to control their actions in time and space. To investigate the mechanisms by which FAAs regulate β-cell excitability, we developed the Optically-Cleavable Targeted (OCT)-ligand approach, which combines the spatial resolution of self-labeling protein (SNAP-) tags with the temporal control of photocaged ligands. By linking a photocaged FAA to an o-benzylguanine (BG) motif, FAA signalling can be directed towards genetically-defined cellular membranes. We designed a probe to release palmitoylethanolamide (PEA), a GPR55 agonist known to stimulate glucose-stimulated insulin secretion (GSIS). When applied to β-cells, OCT-PEA revealed that plasma membrane GPR55 stimulates β-cell Ca2+ activity via phospholipase C. Moving forward, the OCT-ligand approach can be translated to other ligands and receptors, and will open up new experimental possibilities in targeted pharmacology.
Collapse
Affiliation(s)
- Janelle M Tobias
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
- Graduate Program in Physiology & Pharmacology, Oregon Health & Science University Portland OR USA
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University Portland OR USA
| | - Alexander E G Viray
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
| | - David Icka-Araki
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
- Graduate Program in Biomedical Sciences, Oregon Health & Science University Portland OR USA
| | - James A Frank
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
| |
Collapse
|
12
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis- and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021; 60:19759-19765. [PMID: 34075669 PMCID: PMC8390440 DOI: 10.1002/anie.202103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Indexed: 12/15/2022]
Abstract
We synthesized the first multifunctionalized phosphoinositide polyphosphate derivatives featuring a photo-removable protecting group ("cage"), a photo-crosslinkable diazirine group, and a terminal alkyne group useful for click chemistry. We demonstrate that the lipid derivatives readily enter cells. After photo-crosslinking, cell fixation and fluorescent tagging via click chemistry, we determined the intracellular location of the lipid derivatives before and after uncaging of the lipids. We find that there is rapid trafficking of PI(3,4)P2 and PI(3,4,5)P3 derivatives to the plasma membrane, opening the intriguing possibility that there is active transport of these lipids involved. We employed the photo-crosslinking and click chemistry functions to analyze the proteome of PI(3,4,5)P3 -binding proteins. From the latter, we validated by RNAi that the putative lipid binding proteins ATP11A and MPP6 are involved in the transport of PI(3,4,5)P3 to the plasma membrane.
Collapse
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| |
Collapse
|
13
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis‐ and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| |
Collapse
|
14
|
Farley S, Laguerre A, Schultz C. Caged lipids for subcellular manipulation. Curr Opin Chem Biol 2021; 65:42-48. [PMID: 34119744 DOI: 10.1016/j.cbpa.2021.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
We present recently developed strategies to manipulate lipid levels in live cells by light. We focus on photoremovable protecting groups that lead to subcellular restricted localization and activation and discuss alternative techniques. We emphasize the development of organelle targeting of caged lipids and discuss recent advances in chromatic orthogonality of caging groups for future applications.
Collapse
Affiliation(s)
- Scotland Farley
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aurélien Laguerre
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
15
|
Laguerre A, Keutler K, Hauke S, Schultz C. Regulation of Calcium Oscillations in β-Cells by Co-activated Cannabinoid Receptors. Cell Chem Biol 2021; 28:88-96.e3. [PMID: 33147441 DOI: 10.1016/j.chembiol.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
Abstract
Pharmacological treatment of pancreatic β cells targeting cannabinoid receptors 1 and 2 (CB1 and CB2) has been shown to result in significant effects on insulin release, possibly by modulating intracellular calcium levels ([Ca2+]i). It is unclear how the interplay of CB1 and CB2 affects insulin secretion. Here, we demonstrate by the use of highly specific receptor antagonists and the recently developed photo-releasable endocannabinoid 2-arachidonoylglycerol that both receptors have counteracting effects on cytosolic calcium oscillations. We further show that both receptors are juxtaposed in a way that increases [Ca2+]i oscillations in silent β cells but dampens them in active ones. This study highlights a functional role of CB1 and CB2 acting in concert as a compensator/attenuator switch for regulating β cell excitability.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| | - Kaya Keutler
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
16
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β‐Borylacrylates as Ambiphilic C
3
‐Synthons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Max Wienhold
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - John J. Molloy
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
17
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β-Borylacrylates as Ambiphilic C 3 -Synthons. Angew Chem Int Ed Engl 2021; 60:685-689. [PMID: 32975367 PMCID: PMC7839779 DOI: 10.1002/anie.202012099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Modular β-borylacrylates have been validated as programmable, ambiphilic C3 -synthons in the cascade annulation of 2-halo-phenol derivatives to generate structurally and electronically diverse coumarins. Key to this [3+3] disconnection is the BPin unit which serves a dual purpose as both a traceless linker for C(sp2 )-C(sp2 ) coupling, and as a chromophore extension to enable inversion of the alkene geometry via selective energy transfer catalysis. Mild isomerisation is a pre-condition to access 3-substituted coumarins and provides a handle for divergence. The method is showcased in the synthesis of representative natural products that contain this venerable chemotype. Facile entry into π-expanded estrone derivatives modified at the A-ring is disclosed to demonstrate the potential of the method in bioassay development or in drug repurposing.
Collapse
Affiliation(s)
- Max Wienhold
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - John J. Molloy
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
18
|
LeValley PJ, Sutherland BP, Jaje J, Gibbs S, Jones M, Gala R, Kloxin CJ, Kiick KL, Kloxin AM. On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:6944-6958. [PMID: 34327309 PMCID: PMC8315695 DOI: 10.1021/acsabm.0c00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been an increased interest in the use of protein therapeutics, especially antibodies, for the treatment of a variety of diseases due to their high specificity to tissues and biological pathways of interest. However, the use of antibodies can be hindered by physical aggregation, degradation, and diffusion when injected in vivo leading to the need for antibody-releasing depots for the controlled and localized delivery within tissues of interest. Here, we investigated photolabile hydrogel chemistries for creating on-demand and tunable antibody release profiles. Innovative, scalable synthetic procedures were established and applied for fabricating hydrogels with nitrobenzyl (NB) and coumarin (CMR) photolabile crosslinks that responded to clinically relevant doses of long-wavelength UV and short-wavelength visible light. This synthetic procedure includes a route to make a CMR linker possessing two functional handles at the same ring position with water-stable bonds. The photocleavage properties of NB and CMR crosslinked hydrogels were characterized, as well as their potential for translational studies by degradation through pig skin, a good human skin mimic. The mechanism of hydrogel degradation, bulk versus surface eroding, was determined to be dependent on the wavelength of light utilized and the molar absorptivity of the different photolabile linkers, providing a facile means for altering protein release upon hydrogel degradation. Further, the encapsulation and on-demand release of a model monoclonal antibody was demonstrated, highlighting the ability to control antibody release from these hydrogels through the application of light while retaining its bioactivity. In particular, the newly designed CMR hydrogels undergo surface erosion-based protein release using visible light, which is more commonly used clinically. Overall, this work establishes scalable syntheses and relevant pairings of formulation-irradiation conditions for designing on-demand and light-responsive material systems that provide controlled, tunable release of bioactive proteins toward addressing barriers to preclinical translation of light-based materials and ultimately improving therapeutic regimens.
Collapse
Affiliation(s)
- Paige J. LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Bryan P. Sutherland
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Sandra Gibbs
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Rikhav Gala
- Fraunhofer USA Center for Molecular Biotechnology (CMB), Newark, DE, United States
| | - Christopher J. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
19
|
Huey J, Keutler K, Schultz C. Chemical Biology Toolbox for Studying Pancreatic Islet Function - A Perspective. Cell Chem Biol 2020; 27:1015-1031. [PMID: 32822616 DOI: 10.1016/j.chembiol.2020.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023]
Abstract
The islets of Langerhans represent one of the many complex endocrine organs in mammals. Traditionally, islet function is studied by a mixture of physiological, cell biological, and molecular biological methods. Recently, novel techniques stemming from the ever-increasing toolbox provided by chemical laboratories have been added to the repertoire. Many emerging techniques will soon be available to manipulate and monitor islet function at the single-cell level and potentially in intact model animals, as well as in isolated human islets. Here, we review the most current small-molecule-based and genetically encoded molecular tool sets available to study islet function. We provide an outlook regarding future tool developments that will impact islet research, with a special focus on the interplay between different islet cell types.
Collapse
Affiliation(s)
- Julia Huey
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Kaya Keutler
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA.
| |
Collapse
|
20
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
21
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|