1
|
Xu S, Zhang H, Zong J, Cao H, Tu D, Lu CS, Yan H. Taming Inert B-H Bond with Low Energy Light: A Near-Infrared Light-Induced Approach to Facile Carborane Cluster-Amino Acid Coupling. J Am Chem Soc 2025; 147:12845-12857. [PMID: 40168596 DOI: 10.1021/jacs.5c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The selective functionalization of inert B-H bonds in carborane clusters has been a formidable challenge. Recent advances have witnessed such reactions through photoredox methods utilizing ultraviolet or visible light irradiation. However, high-energy light sources often suffer from poor energy efficiency, a limited substrate scope, undesired side reactions, and low scalability. Here, we present the first successful B-H bond functionalization under low-energy near-infrared (NIR) light using a carborane-based electron donor-acceptor complex. Both photophysical investigations and theoretical modeling reveal a facile single-electron transfer from the carborane cage to the electron-deficient photocatalyst, generating a carborane cage radical under NIR light irradiation. The follow-up radical pathway enables the direct coupling of carboranes with amino acids or oligopeptides, yielding a diverse array of carborane-functionalized amino acids or oligopeptides. Beyond expanding the known chemical space of boron cluster derivatives, we further demonstrate that carborane-based amino acids with imaging and targeting capabilities could serve as promising multifunctional boron carriers for boron neutron capture therapy. Thus, the selective B-H bond functionalization of the carboranes via NIR light not only provides a straightforward and practical strategy in boron cluster synthetic chemistry but also lays the foundation for the development of next-generation boron-containing biomolecules and advanced functional materials.
Collapse
Affiliation(s)
- Shengwen Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongjian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Houji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Tamim R, Saini P, M S KK, Kumar Y, Mukhopadhyay P. Synthesis of Phosphinylated Naphthalene Diimides and Radical Anions: A SeT-Mediated Route Circumvents the Use of Metal/Photocatalyst. J Org Chem 2025; 90:4495-4504. [PMID: 39945295 DOI: 10.1021/acs.joc.4c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Phosphinylation of π-scaffolds is of huge current interest; however, the ensuing C-P(O) bond formation necessitates catalyst, light, heat, etc. We report that electron-deficient halogenated naphthalene diimide (NDI) scaffolds can enable catalyst-free, room-temperature phosphinylation via a possible single-eT-mediated reaction. The arylphosphinylated NDIs show multielectron acceptor property, and LUMO of -4.24 eV, rendering the Ph2PO group equally potent as the electron-withdrawing C≡N group. Thus, in situ reduction can be propelled leading to radical anions and dianions.
Collapse
Affiliation(s)
- Rustam Tamim
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Saini
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishna Kumar M S
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Xiao J, Xie D, Wang L, Lan DH, Tang ZL, Han LB. Selective C(sp 2)-P Cross-Coupling of Alkenylsulfonium Salts with P(O)H Compounds: Divergent Synthesis of Alkenylphosphorus Compounds. Org Lett 2025; 27:2641-2646. [PMID: 40080453 DOI: 10.1021/acs.orglett.5c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Herein, we report a both regioselective and stereoselective method for the formation of C(sp2)-P bonds using alkenylsulfonium salts and >P(O)-H compounds. By employing a palladium catalyst or K2CO3, a variety of (E)-alkenylphosphorus compounds and terminal alkenylphosphorus compounds were successfully synthesized with high selectivity. Notably, trisubstituted (Z)-alkenylphosphorus compounds were synthesized for the first time under metal-free conditions. This protocol has a wide substrate scope and good functional group compatibility, providing a direct and highly selective approach for the preparation of various alkenylphosphorus compounds.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dequan Xie
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lude Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dong-Hui Lan
- College of Materials and Chemical Engineering, Hunan Institute Technology of Engineering, Xiangtan 411104, Hunan China
| | - Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Li-Biao Han
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
4
|
Chen PF, Dong MY, Han CY, Li DS, Hong Y, Xue F, Liu F, Deng HP. Photoinduced Cobaloxime-Catalyzed Regio- and Diastereoselective Hydrogen-Evolution C(sp 3)-H Phosphorylation of Bicyclo[1.1.0]butanes. Org Lett 2025; 27:898-904. [PMID: 39812090 DOI: 10.1021/acs.orglett.4c04702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives. However, selective C(sp3)-H functionalization at the C2 position of BCBs remains scarce. Herein, a mild protocol for the hydrogen-evolution of C2 C(sp3)-H phosphorylation with BCBs enabled by photoinduced cobaloxime catalysis was realized in a regio- and diastereoselective manner. This oxidant- and additional photocatalyst-free method enabled C(sp3)-H phosphorylation with a wide range of BCBs and diarylphosphine oxides. The mechanism was studied via control experiments and DFT calculation. Moreover, the efficiency of this approach was highlighted in the synthesis of high-value, structurally complex molecules.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Meng-Yuan Dong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Yu Han
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
5
|
Sun J, Zheng L, Zhang H, Xie J, Wang G, Song S, Li J. Photoinduced Radical Relay Reaction of 2-Methylthiolated Phenylacetylenes/Alkynones Initiated by Electron Donor-Acceptor Complexes. Org Lett 2025; 27:223-228. [PMID: 39703041 DOI: 10.1021/acs.orglett.4c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A method was found to construct sulfur-containing five- and six-membered heterocyclic alkyl sulfonyl compounds by using visible light and free radicals activated and/or generated by EDA complexes/homolytic cleavage as initiators to stimulate the relay reaction of alkynes/alkynones. This method puts forward a new strategy to initiate alkyl sulfonation of alkynes/alkynones with only a catalytic amount of the initiator. This strategy of generating the initiator by EDA complex activation/homolytic cleavage provides a new idea for the following substances that must be excited.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lijun Zheng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Heng Zhang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jintong Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guan Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
6
|
Xiong B, Li M, Cao R, Yue S, Xu W, Liu Y, Zhu L, Tang KW. Elemental Sulfur/Selenium-Mediated Metal-Free Phosphinothioation and Phosphinoselenoation of Vinylsulfonium Salts with P-H Bonds. J Org Chem 2025; 90:275-291. [PMID: 39680636 DOI: 10.1021/acs.joc.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An efficient and facile method has been developed for the construction of novel P-S-C and P-Se-C bonds by facilitating the three-component cross-coupling reaction of P-H bonds with elemental sulfur/selenium and vinylsulfonium salts, utilizing sodium bicarbonate as a base. This approach eliminates the need for the use of toxic and odorous active sulfur/selenium reagents and noble metals, thereby offering a new pathway for synthesizing S-phosphinothioates and Se-phosphinoselenoates via the organic conversion of inorganic sources. The reaction has showcased remarkable versatility in terms of substrate applicability, particularly for organophosphorus compounds containing P-H bonds and vinylsulfonium salt derivatives. The resulting phosphinothioation/phosphinoselenoation products can be obtained with high yield and regioselectivity. Additionally, a plausible reaction mechanism for this transformation has been proposed based on step-by-step control experiments and 31P NMR tracking analysis.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, P. R. China
| | - Meng Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Renfeng Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Sitong Yue
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| |
Collapse
|
7
|
Fu X, Tian J, Zhang M, Jing Y, Liu Y, Song H, Wang Q. Biomimetic Dehydrogenative Intermolecular Formal Allylic Amidation of Branched α-Olefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411744. [PMID: 39556708 PMCID: PMC11727114 DOI: 10.1002/advs.202411744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Allylic amide moieties are commonly encountered in natural products and are privileged structures in pharmaceuticals and agrochemicals. Moreover, because allylic amide can be to converted into an array of high-value motifs, they have been widely employed in organic synthesis. However, the development of catalytic systems for intermolecular allylic amidation of olefins, particularly branched α-olefins, has proven to be challenging. Here, a biomimetic, synergistic catalytic method is reported that combines photoredox, cobalt, and Brønsted base catalysis for the synthesis of substituted allylic amides from branched α-olefins and simple imides without using oxidants. This low-cost, operationally simple method features a broad substrate scope and excellent functional group compatibility. Moreover, it is successfully used for the functionalization of several structurally complex molecules demonstrating the method's potential utility for medicinal chemistry applications. Mechanistic studies revealed that C(sp3)─N bond formation is mediated by a nitrogen-centered radical intermediate, which is generated via a sequence involving deprotonation and single-electron oxidation.
Collapse
Affiliation(s)
- Xiaoyang Fu
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Jiarui Tian
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Mingjun Zhang
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Hongjian Song
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
8
|
Ruan X, Wu D, Jiang C, Chen C, Bai Y, Tao L, Chen C, Wang K, Li X, Jiang J. Photocatalytic EnT-Mediated Aminophosphorylation of Alkenes Using Oxime Esters as Bifunctional Reagents. Org Lett 2024; 26:10267-10272. [PMID: 39560617 DOI: 10.1021/acs.orglett.4c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
C-P bond formation has typically been achieved by a single-electron transfer process. Herein, a novel class of oxime ester bifunctionalization reagents were first applied to the photocatalytic β-aminophosphorylation of modular olefins. The bifunctional reagents generate two distinct radical species (imine and phosphoryl radicals) that exhibit excellent regioselectivity. Subsequently, these radicals are attached to the olefins through a single-step EnT catalytic process, establishing a novel synthetic pathway. This protocol is characterized by excellent regioselectivity, broad functional group tolerance, and mild reaction conditions, which would enrich the diversity and versatility to facilitate the diversity-oriented synthesis of β-aminophosphorylated complex molecule scaffolds.
Collapse
Affiliation(s)
- Xin Ruan
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Di Wu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Cheng Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhongxu Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Tao
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Guo J, Zhang Y, Li MM, Zhang A, Yang H, Min H, Ding W. Dehydrogenative α,γ-Diphosphinylation of Allylamines Enabled by Photoinduced Cobaloxime Catalysis. Org Lett 2024; 26:10176-10182. [PMID: 39556311 DOI: 10.1021/acs.orglett.4c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A regioselective radical α,γ-diphosphinylation of allylamines with secondary phosphine oxides by photoinduced cobaloxime catalysis is described. The reaction tolerates a wide range of allylamines and phosphine oxides, affording α-amino diphosphine dioxides in moderate to good yields with hydrogen evolution. The synthesis of new diphosphine monoxide and diphosphine ligands and the promising antitumor activities of products demonstrate the great potential applications of this approach in catalysis and drug discovery. The detailed mechanism studies indicate that this reaction likely proceeds through a dehydrogenative allylic phosphinylation and nucleophilic addition process.
Collapse
Affiliation(s)
- Jiefei Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yana Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Aijun Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaixiang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Zhang K, Liu J, Li Y, Xu Y, Cai L. Photocatalytic C(sp 3)-P and C(sp 2)-P Bond Formation via a Phosphorus Radical Cation. Org Lett 2024; 26:9056-9061. [PMID: 39400303 DOI: 10.1021/acs.orglett.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A straightforward method for the phosphorylation of electron-deficient alkenes and aryl alkynes has been developed, leading to C(sp3)-P and C(sp2)-P bond formation. This process involves the generation of phosphorus radical cation intermediates through the photocatalyzed oxidation of ethyl diarylphosphinites. The coupling with electron-deficient alkenes encompasses a variety of heteroaromatics, including pyridine, (benzo)thiazole, and benzoxazole, as well as α,β-unsaturated esters and amides. Impressively, the coupling of radical cations with aryl alkynes demonstrated remarkable regioselectivity, thereby facilitating the synthesis of rare α-aryl vinyl phosphine oxides.
Collapse
Affiliation(s)
- Kui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwei Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Guo JD, Korsaye FA, Schutz D, Ciofini I, Miesch L. Photocatalyst-free, visible-light-induced regio- and stereoselective synthesis of phosphorylated enamines from N-allenamides via [1,3]-sulfonyl shift at room temperature. Chem Sci 2024:d4sc05190d. [PMID: 39397817 PMCID: PMC11467721 DOI: 10.1039/d4sc05190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Herein, we report the first visible-light-induced strategy for the rapid synthesis of densely functionalized α- and γ-phosphorylated β-sulfonyl enamines in a regio- and stereoselective manner from N-sulfonyl allenamides and H-phosphine oxides. The transformation displays a broad substrate scope, while operating at room temperature under photocatalyst- and additive-free conditions. In this atom-economical process, either terminal or substituted N-sulfonyl allenamides trigger an unprecedented N-to-C [1,3]-sulfonyl shift, relying on a dual radical allyl resonance and α-heteroatom effect in its triplet excited state. A plausible reaction mechanism is proposed which was supported by the outcomes of theoretical approaches based on Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Jia-Dong Guo
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Feven-Alemu Korsaye
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Ilaria Ciofini
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| |
Collapse
|
12
|
Wang CH, Guo JD, Yu JX, Qiao J, Chen B, Tung CH, Wu LZ. Photocatalytic Cross-Coupling of Aldehydes and Alkenes for Aryl Vinyl Ketones by a Single Catalyst. Org Lett 2024; 26:6927-6932. [PMID: 39106055 DOI: 10.1021/acs.orglett.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Herein is the first example of photocatalytic cross-coupling of alkenes with aldehydes by a single catalyst without an external photosensitizer and any additives. Irradiation of the aromatic aldehyde and cobaloxime catalyst results in the formation of an acyl radical, which undergoes radical addition with alkene or indole and subsequently β-H elimination to afford alkenyl ketone. The reaction features cheap and readily available raw materials, a broad substrate scope, and mild conditions, even for late-stage derivatization of bioactive compounds.
Collapse
Affiliation(s)
- Chen-Hong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Yu JX, Cheng YY, Zeng XY, Chen B, Tung CH, Wu LZ. 1,3-Difunctionalization of Alkenes by Cobaloxime Photocatalysis. Org Lett 2024; 26:6809-6813. [PMID: 39102516 DOI: 10.1021/acs.orglett.4c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Represented herein is the first 1,3-difunctionalization of alkenes via photocatalysis. A single cobaloxime is used to carry out two catalytic cycles in which cobaloxime is used not only as a photocatalyst to initiate the reaction but also as a metal catalyst for the β-H elimination process. Electron-deficient alkenes, electron-rich alkenes, and unactivated alkenes could be directly converted to 1,3-bisphosphorylated products, even unsymmetric 1,3-bisphosphorylated products, with only H2 as a byproduct under extremely mild reaction conditions.
Collapse
Affiliation(s)
- Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Dam P, Zuo K, Azofra LM, El-Sepelgy O. Biomimetic Photoexcited Cobaloxime Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202405775. [PMID: 38775208 DOI: 10.1002/anie.202405775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 07/17/2024]
Abstract
Drawing inspiration from nature has long been a cornerstone of chemical innovation, with natural systems offering a wealth of untapped potential for discovery. In this minireview, we delve into the burgeoning field of cobaloxime catalysis in organic synthesis, which mimics the catalytic activity of the natural organometallic alkylcobalamine enzymes. Our focus lies on elucidating the latest advancements in this area, as well as delineating the primary mechanistic pathways at play. By describing, and comparing these mechanisms, we provide a comprehensive overview of the current state-of-the-art, while also shedding light on the key unresolved challenges that await further exploration.
Collapse
Affiliation(s)
- Phong Dam
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Kaiming Zuo
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - Osama El-Sepelgy
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
15
|
Dong B, Zhao F, Lv WX, Liu YG, Wei D, Wu J, Chi YR. Regio- and stereoselective access to highly substituted vinylphosphine oxides via metal-free electrophilic phosphonoiodination of alkynes. Nat Commun 2024; 15:5385. [PMID: 38918418 PMCID: PMC11199708 DOI: 10.1038/s41467-024-49640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
In general, the P-centered ring-opening of quaternary phosphirenium salts (QPrS) predominantly leads to hydrophosphorylated products, while the C-centered ring-opening is primarily confined to intramolecular nucleophilic reactions, resulting in the formation of phosphorus-containing cyclization products instead of difunctionalized products generated through intermolecular nucleophilic processes. Here, through the promotion of ring-opening of three-member rings by iodine anions and the quenching of electronegative carbon atoms by iodine cations, we successfully synthesize β-functionalized vinylphosphine oxides by the P-addition of QPrS intermediates generated in situ. Multiple β-iodo-substituted vinylphosphine oxides can be obtained with exceptional regio- and stereo-selectivity by reacting secondary phosphine oxides with unactivated alkynes. In addition, a variety of β-functionalized vinylphosphine oxides converted from C-I bonds, especially the rapid construction of benzo[b]phospholes oxides, demonstrates the significance of this strategy.
Collapse
Affiliation(s)
- Bingbing Dong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fengqian Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen-Xin Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ying-Guo Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
16
|
Cao Q, Li MM, Mao X, Zhou QQ, Ding W. Visible-Light-Induced Regioselective Radical-Polar Crossover 1,4-Hydrophosphinylation of 1,3-Enynes: Access to Trisubstituted Allenes Bearing a Phosphine Oxide Group. Org Lett 2024. [PMID: 38787784 DOI: 10.1021/acs.orglett.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The radical 1,4-functionalizations of 1,3-enynes have emerged as a powerful strategy for the synthesis of multisubstituted allenes. However, the phosphorus-centered radical-initiated transformations remain largely elusive. Herein, visible-light photoredox catalytic regioselective radical hydrophosphinylation of 1,3-enynes with diaryl phosphine oxides as phosphinoyl radical precursors has been realized. This protocol features mild conditions, a wide substrate scope, and good functional group tolerance, producing a diverse range of phosphinoyl-substituted allenes in moderate to good yields with high atom economy. Detailed mechanistic experiments revealed a radical-polar crossover process in the reaction.
Collapse
Affiliation(s)
- Qingzhi Cao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Quan-Quan Zhou
- College of Chemistry and Chemical Engineering, Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
17
|
Mo JN, Sun S, Xu H, Shu H, Zhao J. Synthesis of γ-Oxo-phosphonates via N-Heterocyclic Carbene-Catalyzed Acylphosphorylation of Alkenes. Org Lett 2024; 26:2197-2201. [PMID: 38451224 DOI: 10.1021/acs.orglett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In this study, we present an N-heterocyclic carbene-catalyzed method for the radical acylphosphorylation of alkenes. Electrochemical investigations were employed to identify an appropriate class of oxime phosphonates capable of undergoing a single-electron transfer (SET) with Breslow enolates. The resulting phosphoryl radicals were effectively coupled with diverse styrenes and aldehydes to yield a variety of γ-oxo-phosphonates. Both radical clock experiments and electrochemical studies support our reaction design, and a plausible mechanism for the organocatalytic transformation is proposed.
Collapse
Affiliation(s)
- Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shengbin Sun
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Huiwei Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Lesnikov VK, Golovanov IS, Nelyubina YV, Aksenova SA, Sukhorukov AY. Crown-hydroxylamines are pH-dependent chelating N,O-ligands with a potential for aerobic oxidation catalysis. Nat Commun 2023; 14:7673. [PMID: 37996433 PMCID: PMC10667252 DOI: 10.1038/s41467-023-43530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Despite the rich coordination chemistry, hydroxylamines are rarely used as ligands for transition metal coordination compounds. This is partially because of the instability of these complexes that undergo decomposition, disproportionation and oxidation processes involving the hydroxylamine motif. Here, we design macrocyclic poly-N-hydroxylamines (crown-hydroxylamines) that form complexes containing a d-metal ion (Cu(II), Ni(II), Mn(II), and Zn(II)) coordinated by multiple (up to six) hydroxylamine fragments. The stability of these complexes is likely to be due to a macrocycle effect and strong intramolecular H-bonding interactions between the N-OH groups. Crown-hydroxylamine complexes exhibit interesting pH-dependent behavior where the efficiency of metal binding increases upon deprotonation of the hydroxylamine groups. Copper complexes exhibit catalytic activity in aerobic oxidation reactions under ambient conditions, whereas the corresponding complexes with macrocyclic polyamines show poor or no activity. Our results show that crown-hydroxylamines display anomalous structural features and chemical behavior with respect to both organic hydroxylamines and polyaza-crowns.
Collapse
Affiliation(s)
- Vladislav K Lesnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation
| | - Ivan S Golovanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilova str. 28, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (National Research University), 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilova str. 28, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (National Research University), 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| |
Collapse
|
19
|
Li JL, Li HY, Zhang SS, Shen S, Yang XL, Niu X. Photoredox/Cobalt-Catalyzed Cascade Oxidative Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles under Oxidant-Free Conditions. J Org Chem 2023; 88:14874-14886. [PMID: 37862710 DOI: 10.1021/acs.joc.3c01078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
An efficient oxidant-free, photoredox-mediated cascade cyclization strategy for the synthesis of 1,3,4-oxadiazoles by using an organo acridinium photocatalyst and a cobaloxime catalyst has been developed. Various acylhydrazones have been transformed into the corresponding 1,3,4-oxadiazole products in up to 96% yield, and H2 is the only byproduct. Mechanistic experiments and density functional theory (DFT) calculation studies indicate carbon-centered radicals rather than oxygen-centered radicals as π-radicals produced by the oxidation of photoexcited Mes-Acr+* along with deprotonation, which is responsible for this transformation. The practical utility of this method is highlighted by the one-pot gram-scale synthesis starting directly from commercially available aldehydes and acylhydrazides.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Hao-Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shan-Shan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
20
|
Zhong T, Gu C, Li Y, Huang J, Han J, Zhu C, Han J, Xie J. Manganese/Cobalt Bimetallic Relay Catalysis for Divergent Dehydrogenative Difluoroalkylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202310762. [PMID: 37642584 DOI: 10.1002/anie.202310762] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The involvement of manganese radical for halogen atom transfer (XAT) reactions has been esteemed as one reliable method but encountered with limited catalytic models. In this paper, a novel bimetallic relay catalysis of Mn2 (CO)10 and cobaloxime has been developed for divergent dehydrogenative difluoroalkylation of alkenes using commercially available difluoroalkyl bromides. A wide range of structurally diverse terminal, cyclic and internal alkenes as well as tetrasubstituted alkenes are found to be good coupling partners to deliver difluoroalkylated allylic products and difluoromethylated cyclic products, accompanied with the production of H2 as the by-product. This bimetallic relay strategy features broad substrate scope, mild reaction conditions and excellent functional group compatibility. Its success represents an important step-forward to expedite the construction of a rich library of difluoroalkylated products.
Collapse
Affiliation(s)
- Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
21
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
22
|
Xiao Y, Zhu CM, Liang RB, Huang YL, Hai CH, Chen JR, Li M, Zhong JJ, Huang XC. Building a cobaloxime-based metal-organic framework for photocatalytic aerobic oxidation of arylboronic acids to phenols. Chem Commun (Camb) 2023; 59:2239-2242. [PMID: 36723203 DOI: 10.1039/d2cc06945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, the design and synthesis of an unprecedented cobaloxime-based zirconium metal-organic framework (Zr-TCPCo) with an she net is reported. This heterogeneous material as a photocatalyst exhibits excellent catalytic activity for aerobic oxidation of arylboronic acids to phenols. Recycling experiments demonstrate the stability and reusability of Zr-TCPCo as a robust catalyst.
Collapse
Affiliation(s)
- Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chun-Hua Hai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Jian-Rui Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
23
|
Lawson T, Gentleman AS, Pinnell J, Eisenschmidt A, Antón‐García D, Frosz MH, Reisner E, Euser TG. In situ Detection of Cobaloxime Intermediates During Photocatalysis Using Hollow-Core Photonic Crystal Fiber Microreactors. Angew Chem Int Ed Engl 2023; 62:e202214788. [PMID: 36478637 PMCID: PMC10946874 DOI: 10.1002/anie.202214788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.
Collapse
Affiliation(s)
- Takashi Lawson
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Alexander S. Gentleman
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jonathan Pinnell
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Annika Eisenschmidt
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Daniel Antón‐García
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Michael H. Frosz
- Max Planck Institute for the Science of LightStaudtstr. 291058ErlangenGermany
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tijmen G. Euser
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
24
|
Zhu PW, Ma HM, Li Y, Miao LZ, Zhu J. Electro-Triggered Cascade Cyclization to Access Phosphinyl-Substituted N-Containing Heterocycles. J Org Chem 2023; 88:2069-2078. [PMID: 36701209 DOI: 10.1021/acs.joc.2c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An electro-triggered cascade cyclization strategy was disclosed with concomitant phosphinylation and N-heterocycle construction. It provides a novel and environmentally friendly approach to access phosphinyl-substituted N-heterocycles with no external metal catalyst, oxidant, or heating. Mechanistic studies have revealed that anodic oxidation of H-phosphorus compounds occurs first to generate the key P-centered radical directly and cathodic reduction leads to the concurrent release of molecular hydrogen or methane. This protocol features simple operation, broad substrate scope, clean and mild conditions, and atom and step economy to form heterocycle-containing organophosphorus scaffolds.
Collapse
Affiliation(s)
- Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hong-Mei Ma
- Laboratory and Research Base Management, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ling-Zhen Miao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
25
|
Fan Y, Zheng H, Labalme S, Lin W. Molecular Engineering of Metal-Organic Layers for Sustainable Tandem and Synergistic Photocatalysis. J Am Chem Soc 2023; 145:4158-4165. [PMID: 36753526 DOI: 10.1021/jacs.2c12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Metal-organic layers (MOLs), a monolayered version of metal-organic frameworks (MOFs), have recently emerged as a novel two-dimensional molecular material platform to design multifunctional catalysts. MOLs inherit the intrinsic molecular tunability of MOFs and yet have more accessible and modifiable building blocks. Here we report molecular engineering of six MOLs via modulated solvothermal synthesis between HfCl4 and three photosensitizing ligands followed by postsynthetic modification with two carboxylate-containing cobaloximes for tandem and synergistic photocatalysis. Morphological and structural characterization by transmission electron microscopy and atomic force microscopy and compositional analysis by inductively coupled plasma-mass spectrometry and nuclear magnetic resonance spectroscopy establish the MOLs as flat nanoplates with a periodic lattice structure of hexagonal symmetry. The MOLs efficiently catalyze tandem dehydrogenative coupling reactions and synergistic Heck-type coupling reactions. The most active MOL catalyst was used for the gram-scale synthesis of vesnarinone, a cardiotonic agent, in 80% yield with a turnover number of 400 and in eight consecutive reaction cycles without significant loss of activities.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
26
|
Guo JD, Chen YJ, Wang CH, He Q, Yang XL, Ding TY, Zhang K, Ci RN, Chen B, Tung CH, Wu LZ. Direct Excitation of Aldehyde to Activate the C(sp 2 )-H Bond by Cobaloxime Catalysis toward Fluorenones Synthesis with Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202214944. [PMID: 36510781 DOI: 10.1002/anie.202214944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
A new way to form fluorenones via the direct excitation of substrates instead of photocatalyst to activate the C(sp2 )-H bond under redox-neutral condition is reported. Our design relies on the photoexcited aromatic aldehyde intermediates that can be intercepted by cobaloxime catalyst through single electron transfer for following β-H elimination. The generation of acyl radical and successful interception by a metal catalyst cobaloxime avoid the use of a photocatalyst and stoichiometric external oxidants, affording a series of highly substituted fluorenones, including six-membered ketones, such as xanthone and thioxanthone derivatives in good to excellent yields, and with hydrogen as the only byproduct. This catalytic system features a readily available metal catalyst, mild reaction conditions and broad substrate scope, in which sunlight reaction and scale-up experiments by continuous-flow approach make the new methodology sustainable and amenable for potentially operational procedures.
Collapse
Affiliation(s)
- Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Jing Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Hong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiao He
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tian-Yu Ding
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui-Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Ren ZG, Yu WL, Zheng HX, Xu PF. PCET-Mediated Ring-Opening Alkenylation of Cycloalkanols via Dual Photoredox and Cobalt Catalysis. Org Lett 2023; 25:93-98. [PMID: 36546834 DOI: 10.1021/acs.orglett.2c03894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of molecular skeletons and modification of molecules using widely available and easily prepared alcohols as radical precursors for coupling reactions are significant and challenging subjects. We herein report a straightforward strategy for the dehydrogenative ring-opening alkenylation of cycloalkanols with alkenes by combining a proton-coupled electron transfer strategy and a dual photoredox and cobalt catalysis system. With this approach, a series of distally unsaturated ketones were obtained in 17-83% yields with high E selectivity.
Collapse
Affiliation(s)
- Zi-Gang Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
28
|
D'Imperio N, Pelliccioli V, Grecchi S, Bossi A, Vasile F, Cauteruccio S, Arkhypchuk AI, Kumar Gupta A, Orthaber A, Ott S, Licandro E. Highly Conjugated Bis(benzo[
b
]phosphole)‐
P
‐oxides: Synthesis and Electrochemical, Optical, and Computational Studies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas D'Imperio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Consiglio Nazionale delle Ricerche (CNR-SCITEC) Via Fantoli 16/15 20138 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| | - Francesca Vasile
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Anna I. Arkhypchuk
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| |
Collapse
|
29
|
Yu J, Cheng Y, Chen B, Tung C, Wu L. Cobaloxime Photocatalysis for the Synthesis of Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022; 61:e202209293. [DOI: 10.1002/anie.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Ni-catalyzed regiodivergent hydrophosphorylation of enynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Meng SL, Ye C, Li XB, Tung CH, Wu LZ. Photochemistry Journey to Multielectron and Multiproton Chemical Transformation. J Am Chem Soc 2022; 144:16219-16231. [PMID: 36054091 DOI: 10.1021/jacs.2c02341] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The odyssey of photochemistry is accompanied by the journey to manipulate "electrons" and "protons" in time, in space, and in energy. Over the past decades, single-electron (1e-) photochemical transformations have brought marvelous achievements. However, as each photon absorption typically generates only one exciton pair, it is exponentially challenging to accomplish multielectron and proton photochemical transformations. The multistep differences in thermodynamics and kinetics urgently require us to optimize light harvesting, expedite consecutive electron transfer, manipulate the interaction of catalysts with substrates, and coordinate proton transfer kinetics to furnish selective bond formations. Tandem catalysis enables orchestrating different photochemical events and catalytic transformations from subpicoseconds to seconds, which facilitates multielectron redox chemistries and brings consecutive, value-added reactivities. Joint efforts in molecular and material design, mechanistic understanding, and theoretical modeling will bring multielectron and proton synthetic opportunities for fuels, fertilizers, and chemicals with enhanced versatility, efficiency, selectivity, and scalability, thus taking better advantage of photons (i.e., sunlight) for our sustainable society.
Collapse
Affiliation(s)
- Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Yu JX, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Photocatalysis for Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xin Yu
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Yuan-Yuan Cheng
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Bin Chen
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Science Zhongguancun east road 29#, haidian district, Beijing 100190, China 100190 Beijing CHINA
| |
Collapse
|
33
|
Wang C, Azofra LM, Dam P, Sebek M, Steinfeldt N, Rabeah J, El-Sepelgy O. Catalytic Desaturation of Aliphatic Amides and Imides Enabled by Excited-State Base-Metal Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chenyang Wang
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Phong Dam
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Michael Sebek
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Osama El-Sepelgy
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Gan QC, Song ZQ, Tung CH, Wu LZ. Direct C( sp)-H/Si-H Cross-Coupling via Copper Salts Photocatalysis. Org Lett 2022; 24:5192-5196. [PMID: 35801840 DOI: 10.1021/acs.orglett.2c02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein is the first example of C(sp)-H/Si-H cross-coupling by photocatalysis. In terms of cheap and readily available starting materials, a series of alkynylsilanes are prepared in good to excellent yields upon visible-light irradiation of CuCl and alkynes with silane. The large scale reaction with flow chemistry and late-stage functionalization of natural products shows the potential of the transformation in practical organic synthesis of the alkynylsilanes intermediates.
Collapse
Affiliation(s)
- Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
35
|
Yu WL, Ren ZG, Ma KX, Yang HQ, Yang JJ, Zheng H, Wu W, Xu PF. Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light. Chem Sci 2022; 13:7947-7954. [PMID: 35865906 PMCID: PMC9258329 DOI: 10.1039/d2sc02291e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
The transformations that allow the direct removal of hydrogen from their corresponding saturated counterparts by the dehydrogenative strategy are a dream reaction that has remained largely underexplored. In this report, a straightforward and robust cobaloxime-catalyzed photochemical dehydrogenation strategy via intramolecular HAT is described for the first time. The reaction proceeds through an intramolecular radical translocation followed by the cobalt assisted dehydrogenation without needing any other external photosensitizers, noble-metals or oxidants. With this approach, a series of valuable unsaturated compounds such as α,β-unsaturated amides, enamides and allylic and homoallylic sulfonamides were obtained in moderate to excellent yields with good chemo- and regioselectivities, and the synthetic versatility was demonstrated by a range of transformations. And mechanistic studies of the method are discussed.
Collapse
Affiliation(s)
- Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| | - Zi-Gang Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ke-Xing Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Hui-Qing Yang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University Kaifeng 475004 China
| | - Jun-Jie Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences Lanzhou China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences Lanzhou China
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| |
Collapse
|
36
|
Jia Z, Zhang L, Luo S. Asymmetric C-H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light. J Am Chem Soc 2022; 144:10705-10710. [PMID: 35674475 DOI: 10.1021/jacs.2c03299] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein an asymmetric C-H dehydrogenative allylic alkylation by a synergistic catalytic system involving a chiral primary amine, a photoredox catalyst, and a cobaloxime cocatalyst. The ternary catalytic system enables the coupling of β-ketocarbonyls and olefins with good yields and high enantioselectivities. Mechanism studies disclosed a cooperative radical addition process with a chiral α-imino radical and Co(II)-metalloradical wherein the chiral primary aminocatalyst and the cobaloxime catalyst work in concert to control the stereoinduction.
Collapse
Affiliation(s)
- Zongbin Jia
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China, 100084
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
37
|
Chen Y, Bao G, Zhan X, Fu J, Ji X, Zhang S, Feng C. Highly Stereoselective Synthesis of 2,
2‐Disubstituted
Vinylphosphonates via Aryl to Vinyl 1,
4‐Palladium
Migration. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Zhen Chen
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Geng‐Yu Bao
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xin‐Chen Zhan
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Jian‐Guo Fu
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xiao‐Ming Ji
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Shu‐Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Chen‐Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
38
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Sun K, Shi A, Liu Y, Chen X, Xiang P, Wang X, Qu L, Yu B. A general electron donor-acceptor complex for photoactivation of arenes via thianthrenation. Chem Sci 2022; 13:5659-5666. [PMID: 35694358 PMCID: PMC9116284 DOI: 10.1039/d2sc01241c] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
General photoactivation of electron donor-acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C-H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl-(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.
Collapse
Affiliation(s)
- Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Anzai Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering Zhengzhou 451191 China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Panjie Xiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Xiaotong Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Lingbo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
40
|
Wang J, Bai PB, Yang SD. Palladium-catalyzed relay C–H functionalization to construct novel hybrid-arylcyclophosphorus ligand precursors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Wang X, Li Y, Wu X. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
42
|
Ma J, Wang L, Duan Z. Chemo- and Regioselectivity-Tunable Phosphination of Alkynes. Org Lett 2022; 24:1550-1555. [DOI: 10.1021/acs.orglett.2c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Ma
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
43
|
Bioinspired desaturation of alcohols enabled by photoredox proton-coupled electron transfer and cobalt dual catalysis. Nat Commun 2022; 13:809. [PMID: 35145083 PMCID: PMC8831637 DOI: 10.1038/s41467-022-28441-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the biosynthesis sterols an enzyme-catalyzed demethylation is achieved via a stepwise oxidative transformation of alcohols to olefins. The overall demethylation proceeds through two sequential monooxygenation reactions and a subsequent dehydroformylative saturation. To mimic the desaturation processes observed in nature, we have successfully integrated photoredox proton-coupled electron transfer (PCET) and cobaloxime chemistry for the acceptorless dehydrogenation of alcohols. The state-of-the-art remote and precise desaturation of ketones proceeds efficiently through the activation of cyclic alcohols using bond-dissociation free energy (BDFE) as thermodynamic driving force. The resulting transient alkoxyl radical allows C-C bond scission to generate the carbon-centered radical remote to the carbonyl moiety. This key intermediate is subsequently combined with cobaloxime photochemistry to furnish the alkene. Moreover, the mild protocol can be extended to desaturation of linear alcohols as well as aromatic hydrocarbons. Application to bioactive molecules and natural product derivatives is also presented. Dehydrogenative reactions can provide alkenes, which are among the most useful handles for synthetic organic chemists. Here the authors integrated photoredox proton-coupled electron transfer and cobaloxime chemistry for the acceptorless dehydrogenation of alkyl alcohols.
Collapse
|
44
|
Fang X, Zhang N, Chen SC, Luo T. Scalable Total Synthesis of (-)-Triptonide: Serendipitous Discovery of a Visible-Light-Promoted Olefin Coupling Initiated by Metal-Catalyzed Hydrogen Atom Transfer (MHAT). J Am Chem Soc 2022; 144:2292-2300. [PMID: 35089705 DOI: 10.1021/jacs.1c12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient and scalable total synthesis of (-)-triptonide is accomplished based on a metal-catalyzed hydrogen atom transfer (MHAT)-initiated radical cyclization. During the optimization of the key step, we discovered that blue LEDs significantly promoted the efficiency of reaction initiated by Co(TPP)-catalyzed MHAT. Further exploration and optimization of this catalytic system led to development of a dehydrogenative MHAT-initiated Giese reaction.
Collapse
Affiliation(s)
- Xianhe Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Nan Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
45
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
46
|
Shao A, Chen J, Wang L, Yi M, Yang H, Zhang Y, Fan S, Chen S, Wu H, Shi R. Excited-state cobaloxime catalysis enabled scalable oxidant-free dehydrogenative C–H phosphinoylation of undirected heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-induced excited-state cobalt catalysis enables C(sp2)–H/C(sp3)–H phosphinoylation accompanied by H2 evolution. The reaction achieves the late-stage modification of more than 10 distinct classes of heterocycles and arenes.
Collapse
Affiliation(s)
- Ailong Shao
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Jifang Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Lingxiao Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Mingchen Yi
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Han Yang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Yuqing Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Suhua Fan
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Shuisheng Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Hai Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, Anhui, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, P. R. China
| |
Collapse
|
47
|
Li JL, Niu X, Song YF, Du JL, Shen S, Yang XL. Photocatalytic synthesis of 10-phenanthrenols via intramolecular cycloaromatization under oxidant-free conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tandem photocycloaddition/dehydrogenative aromatization with hydrogen evolution of ortho biaryl-appended 1,3-dicarbonyl compounds for the synthesis of 10-phenanthrenol via cobaloxime catalysis is disclosed.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xiaoying Niu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Yi-Fan Song
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jian-Long Du
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Shigang Shen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|
48
|
Battaglioli S, Bertuzzi G, Pedrazzani R, Benetti J, Valenti G, Montalti M, Monari M, Bandini M. Visible‐Light‐Assisted Synthesis of Allylic Triflamides via Dual Acridinium/Co Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone Battaglioli
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Jessica Benetti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Giovanni Valenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| |
Collapse
|
49
|
Pandia BK, Pattanaik S, Gunanathan C. Manganese(I) Catalyzed Alkenylation of Phosphine Oxides Using Alcohols with Liberation of Hydrogen and Water. J Org Chem 2021; 86:17848-17855. [PMID: 34818022 DOI: 10.1021/acs.joc.1c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a catalytic cross-coupling of methyldiphenylphosphine oxide with arylmethyl alcohols leading to the alkenylphosphine oxides is reported. A manganese pincer catalyst catalyzes the reactions, which provides exclusive formation of trans-alkenylphosphine oxides. Mechanistic studies indicate that reactions proceed via aldehyde intermediacy and the catalyst promotes the C═C bond formation. Reactions are facilitated by dearomatization, and aromatization metal-ligand cooperation operates in catalyst. Use of abundant base metal catalyst and formation of water and H2 as the only byproducts make this catalytic protocol sustainable and environmentally benign.
Collapse
Affiliation(s)
- Biplab Keshari Pandia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, 752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, 752050, India
| |
Collapse
|
50
|
Sun K, Xiao F, Yu B, He WM. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63850-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|