1
|
Li S, Zhang Z, Yang D, Li S, Yang L, Yan W, Xu H. Tandem modulation strategy for copper-based catalysts: Towards efficient C-C coupling in the electrochemical reduction of carbon dioxide. J Environ Sci (China) 2025; 156:267-287. [PMID: 40412930 DOI: 10.1016/j.jes.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 05/27/2025]
Abstract
The CO2 reduction reaction (CO2RR) is notable for its multiple advantages, such as mild reaction conditions, controllable product output, and ease of operation. The chemistry of CO2RR to produce multicarbon products involves multiple electron-proton transfer steps, in which the adsorption of CO intermediates is usually the key rate-determining step of the reaction. Currently, Cu is the only metal catalyst known to efficiently reduce CO2 to multicarbon products, mainly due to its appropriate adsorption energy for CO intermediates. However, single Cu catalysts often face challenges such as excessively high overpotentials and poor selectivity, which limit their potential application in CO2 reduction. In recent years, electrochemical CO2 reduction using copper-based tandem catalysts has become an effective strategy to enhance the overall performance of CO2RR and a hot topic in the research field. Here we review recent research advances in the field of electrochemical CO2RR where tandem methods have been applied. The major points are the following: (1) the tandem process allows for more precise control of the electrochemical reduction pathway, thereby increasing the yield of the target product while reducing the generation of by-products; (2) Mass transportation of *CO intermediates and spatial management is important for the generation of multicarbon products; (3) a variety of tandem means for upgrading the product to a deeply reduced product are reviewed.
Collapse
Affiliation(s)
- Shiji Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zekun Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Babu AM, Varghese A. Electroreduction of CO 2 to Methanol Using a Coordination-Moiety-Anchored Carbon-Based Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40401464 DOI: 10.1021/acs.langmuir.5c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Electrochemical reduction of carbon dioxide (CO2ER) has gained wide attention lately because of its potential to create a closed carbon loop, offering a sustainable solution toward environmental as well as energy crisis. However, the key challenge lies in the selective conversion of CO2 into electrofuels, such as methanol, which necessitates six proton-coupled electron transfers. In this work, we report the first instance of an electrochemically prepared Cu-coordinated 2,5-dimercapto-1,3,4-thiadiazole-modified carbon fiber paper electrode (CDM@CFP). The hence-engineered novel electrode was applied for the CO2ER reaction to produce methanol exclusively with an F.E. of 59.6% at a low potential of -0.73 V versus RHE. Unlike most of the copper-based electrocatalysts, which result in multiple hydrocarbons, here, we have optimized a potential-dependent selectivity for maximum efficiency, which is a significant milestone in the field.
Collapse
Affiliation(s)
- Ann Mariella Babu
- Department of Chemistry, Christ University, Bangalore, Karnataka, India-560029
- Centre for Renewable Energy and Environmental Sustainability, Christ University, Bangalore, Karnataka, India-560 029
| | - Anitha Varghese
- Department of Chemistry, Christ University, Bangalore, Karnataka, India-560029
- Centre for Renewable Energy and Environmental Sustainability, Christ University, Bangalore, Karnataka, India-560 029
| |
Collapse
|
3
|
Liang X, Li QL, Li JT, Zhao WB, Yang DZ, Yang YL, Zhong ZT. A facile colorimetric sensor based on Fe 3O 4 magnetic nanoparticles with intrinsic catalytic activity for the rapid and selective detection of ochratoxin A. Food Chem 2025; 474:143179. [PMID: 39914351 DOI: 10.1016/j.foodchem.2025.143179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Ochratoxin A (OTA) is recognized as a Group 2B carcinogen and poses significant dangers to human, making it crucial to regulate OTA levels in food products. Herein, we developed a colorimetric approach to analyze OTA utilizing the intrinsic catalytic oxidized activity of Fe3O4 magnetic nanoparticles (MNPs). Our findings reveal that OTA shows a significant impact on the absorbance signal of the catalytic system, notably reducing the absorbance at 532 nm with H2O2 and 4-aminoantipyrene (4-AP). This sensor does not require elaborate aptamer or antibody, omitting the cumbersome reaction and the loss during synthesis, thus simply realizing OTA detection. The signal correlates linearly with the OTA concentrations and achieves satisfied sensitivity. The practical application has been verified utilizing beer and rice samples, resulting in recoveries ranging from 91.0 % to 106.2 %. This accuracy and reliability verified the method feasibility for monitoring OTA levels in food products.
Collapse
Affiliation(s)
- Xiao Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qiu-Lan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ji-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wen-Bo Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - De-Zhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ya-Ling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zi-Tao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Dai J, Zhu J, Xu Y, Liu X, Zhu D, Xu G, Liu H, Li G. Structural Regulating of Cu-Based Metallic Electrocatalysts for CO 2 to C 2+ Products Conversion. CHEMSUSCHEM 2025; 18:e202402184. [PMID: 39714897 DOI: 10.1002/cssc.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) to highly value-added multi-carbon (C2+) fuels or chemicals is a promising pathway to address environment issues and energy crisis. In the periodic table, Cu as only the candidate can convert CO2 to C2+ products such as C2H4 and C2H5OH due to the suitable absorption energy to reaction intermediate. However, application of Cu is limited for its low activity and poor selectivity. The tandem catalytic strategy can effectively solve the problems caused by single copper catalyst. In tandem catalysis, how to promote the formation, transport, adsorption and coupling of the important intermediate CO is the key issue to improve the selectivity of C2+ products. Regulating the structure of Cu-based bimetallic can effectively promote these processes to Electrochemical CO2RR on account of its synergistic effect, electronic effect and interfacial interaction. In this review, we systematically summarized the relationship between structure of Cu-based bimetallic catalysts with performance of electrochemical CO2RR. More importantly, we reveal that different Cu-based bimetallic structures enhance the activity and selectivity of the catalysts by regulating the processes such as the transport and adsorption of the reaction intermediate CO. Then, we proposed well-effective strategies to rationally design Cu-based metallic catalysts. Finally, we put forward some challenges and opportunities that Cu-based bimetallic catalysts would face in the development of electrochemical CO2RR technology in the future.
Collapse
Affiliation(s)
- Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deyu Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guichan Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Deng X, Liu T, Liu T. Theoretical computation of C-C coupling reactions by different C 1 intermediates at Cu n and Cu n-1Ag clusters supported on TiO 2. Phys Chem Chem Phys 2025; 27:8792-8802. [PMID: 40200861 DOI: 10.1039/d5cp00596e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
*CO dimerization is a well-known pathway for C-C bond formation, producing C2+ products. However, the mechanisms of C-C coupling between other C1 intermediates remain less explored. In this study, we investigate C-C bond formation involving *CO, *CHO, *COH, and other C1 intermediates on Cun and Cun-1Ag clusters supported on TiO2. Interestingly, our results reveal that the activation energy for *CO dimerization is not the lowest, indicating that it is not the dominant pathway for C-C bond formation. Coupling reactions involving *CHO, *COH, and other C1 intermediates exhibit lower activation energies. Furthermore, the activation energy for the same reaction varies across different Cun clusters, emphasizing the role of cluster selection in C-C coupling. Notably, on certain clusters, such as Cu8, the activation energy for C-C bond formation at the Ag site is lower than that at the Cu site, suggesting that Ag doping can enhance C-C coupling. However, in larger clusters like Cu13, the activation energy at the Ag site exceeds that at the Cu site, highlighting that the effect of Ag doping is cluster size dependent. This study provides new insights into C-C bond formation, offering guidance for designing efficient co-catalysts to produce high-value C2+ products.
Collapse
Affiliation(s)
- Xinyan Deng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China.
| | - Tongling Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China.
| | - Taifeng Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Sun H, Liu JY. A Pulsed Tandem Electrocatalysis Strategy for CO 2 Reduction. J Am Chem Soc 2025; 147:14388-14400. [PMID: 40249642 DOI: 10.1021/jacs.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Electroreduction of CO2 to value-added C2 products remains hindered by sluggish C-C coupling kinetics and competing side reactions. Inspired by the tandem catalytic mechanisms of multienzyme systems, we designed a dual-site single-atom nanozyme (DSAN) comprising FeN4 and FeO4 sites (FeN4-FeO4). Density functional theory (DFT) calculations under constant potential reveal that the FeN4 site functions as a CO generator, while the FeO4 site facilitates CO migration, C-C coupling, and subsequent C2 product formation. To further optimize the catalytic efficiency, we introduced a pulsed electrocatalysis strategy by alternating between zero potential and -0.7 V. This approach dynamically modulates active-site functions: at -0.70 V, CO2 adsorption and *CH3CH2OH formation are facilitated, while at 0 V, CO migration and C-C coupling are enhanced due to the spin-state transitions during potential switching. Additionally, the zero potential suppresses excessive hydrogenation of key intermediates, thereby improving CH3CH2OH selectivity. These findings highlight the synergistic strategy integrating tandem catalysis and pulsed potential control, offering a novel and effective approach for CO2-to-C2 conversion using SAN catalysts.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
7
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
8
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Swinnen S, de Azambuja F, Parac-Vogt TN. From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications. Adv Healthc Mater 2025; 14:e2401547. [PMID: 39246191 DOI: 10.1002/adhm.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.
Collapse
Affiliation(s)
- Siene Swinnen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | |
Collapse
|
10
|
Sun Y, Wang C, Li H, Wang K, Bai Q, Zhang G, Feng S, Wang L, Zhu Z, Sui N. sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme for Sensing and Microplastic Degradation. Angew Chem Int Ed Engl 2025; 64:e202418707. [PMID: 39714432 DOI: 10.1002/anie.202418707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes. This study introduces a universal spatial engineering strategy in which molecular ligands are replaced with graphdiyne (GDY) to induce d-π orbital hybridization with copper nanoparticles (Cu NPs), leading to an asymmetric electron-rich distribution along the longitudinal axis that mimics the local electric field of natural laccase. Moreover, multiple sp bonds within GDY scaffold effectively anchor Cu NPs, facilitating the construction of 3D geometric structure similar to that of natural laccase. An enzymatic activity of 82.53 U mg-1 is achieved, 4.72 times higher than that of natural laccase. By reconstructing both 3D structures and local electric fields of natural enzymes through d-π orbital hybridization, this approach enhances electron interactions between cofactors, active centers, and substrates, and offers a versatile framework for biomimetic design of nanozymes.
Collapse
Affiliation(s)
- Yujian Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Chenguang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Haoxin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Guoli Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Shuishui Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
11
|
Dissanayake M, Somerville SV, Soda Y, Yao Y, Duong HTK, Tilley RD, Gooding JJ. An Array of Glucose Nanozymes That Can Selectively Detect Glucose in Whole Blood. ACS Sens 2025; 10:545-552. [PMID: 39749524 DOI: 10.1021/acssensors.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Achieving sensors that can sensitively and selectively quantify levels of analytes in complex biofluids such as blood remains a significant challenge. To address this, we synthesized an array of isolated carbon nanochannels on a flat gold electrode that function as molecular sieves to prevent protein fouling and eliminate the need for antifouling layers. Utilizing a two-step pulsed technique, a reductive pulse expels negative interferences and fouling molecules followed by an oxidative pulse that oxidizes glucose at the bottom of the channel and on the gold surface. The nanoconfined environment created by the top carbon nanochannel layer (6 nm diameter, 21 nm length confirmed by TEM and SEM), with redox pulses enabled the gold catalytic center to generate hydroxide ions, fostering a higher pH environment favorable for glucose oxidation. The nonenzymatic approach to detecting glucose was shown to give equivalent data directly in whole blood to that achieved by using an enzyme blood glucose meter determined using a Clark Error Grid. This simplified sensor design, suitable for wearable systems, offers a solution for glucose monitoring in complex biofluids with a far greater stability over time.
Collapse
Affiliation(s)
- Manusha Dissanayake
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Samuel V Somerville
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yoshiki Soda
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - H T Kim Duong
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Ma Y, Li H, Liu J, Zhao D. Understanding the chemistry of mesostructured porous nanoreactors. Nat Rev Chem 2024; 8:915-931. [PMID: 39443751 DOI: 10.1038/s41570-024-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Porous nanoreactors mimic the structures and functions of cells, providing an adaptable material with multiple functions and effects. These reactors can be nanoscale containers and shuttles or catalytic centres, drawing in reactants for cascading reactions with multishelled designs. The detailed construction of multi-level reactors at the nanometre scale remains a great challenge, but to regulate the reaction pathways within a reactor, designs of great intricacy are required. In this Review, we define the basic structural characteristics of porous nanoreactors, while also discussing the design principles and synthetic chemistry of these structures with respect to their emerging applications in energy storage and heterogeneous catalysis. Finally, we describe the difficulties of the structural optimization of these reactors and propose possible ways to improve porous nanoreactor design for future applications.
Collapse
Affiliation(s)
- Yuzhu Ma
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Haitao Li
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Jian Liu
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, P. R. China.
- Laboratory of Advanced Materials, Fudan University, Shanghai, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, P. R. China.
| |
Collapse
|
13
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024; 30:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
14
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
15
|
Ali MY, Gao J, Zhang Z, Hossain MM, Sethupathy S, Zhu D. Directional co-immobilization of artificial multimeric-enzyme complexes as a robust biocatalyst for biosynthesis curcumin glucosides and regeneration of UDP-glucose. Int J Biol Macromol 2024; 278:135035. [PMID: 39182864 DOI: 10.1016/j.ijbiomac.2024.135035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Site-directed protein immobilization allows the homogeneous orientation of proteins while maintaining high activity, which is advantageous for various applications. In this study, the use of SpyCatcher/SpyTag technology and magnetic nickel ferrite (NiFe2O4 NPs) nanoparticles were used to prepare a site-directed immobilization of BsUGT2m from Bacillus subtilis and AtSUSm from Arabidopsis thaliana for enhancing curcumin glucoside production with UDP-glucose regeneration from sucrose and UDP. The immobilization of self-assembled multienzyme complex (MESAs) enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage stability, and reusability. The immobilized MESAs exhibited a 2.5-fold reduction in UDP consumption, enhancing catalytic efficiency. Moreover, the immobilized MESAs demonstrated high storage and temperature stability over 21 days at 4 °C and 25 °C, outperforming their free counterparts. Reusability assays showed that the immobilized MESAs retained 78.7 % activity after 10 cycles. Utilizing fed-batch technology, the cumulative titer of curcumin 4'-O-β-D-glucoside reached 6.51 mM (3.57 g/L) and 9.45 mM (5.18 g/L) for free AtSUSm/BsUGT2m and immobilized MESAs, respectively, over 12 h. This study demonstrates the efficiency of magnetic nickel ferrite nanoparticles in co-immobilizing enzymes, enhancing biocatalysts' catalytic efficiency, reusability, and stability.
Collapse
Affiliation(s)
- Mohamed Yassin Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Jiayue Gao
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Md Muzammel Hossain
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
16
|
Jia C, Sun Q, Liu R, Mao G, Maschmeyer T, Gooding JJ, Zhang T, Dai L, Zhao C. Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404659. [PMID: 38870958 DOI: 10.1002/adma.202404659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Single-atom electrocatalysts (SACs) are a class of promising materials for driving electrochemical energy conversion reactions due to their intrinsic advantages, including maximum metal utilization, well-defined active structures, and strong interface effects. However, SACs have not reached full commercialization for broad industrial applications. This review summarizes recent research achievements in the design of SACs for crucial electrocatalytic reactions on their active sites, coordination, and substrates, as well as the synthesis methods. The key challenges facing SACs in activity, selectivity, stability, and scalability, are highlighted. Furthermore, it is pointed out the new strategies to address these challenges including increasing intrinsic activity of metal sites, enhancing the utilization of metal sites, improving the stability, optimizing the local environment, developing new fabrication techniques, leveraging insights from theoretical studies, and expanding potential applications. Finally, the views are offered on the future direction of single-atom electrocatalysis toward commercialization.
Collapse
Affiliation(s)
- Chen Jia
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Qian Sun
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruirui Liu
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
17
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
18
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
19
|
Hamed EM, Fung FM, Li SFY. Unleashing the Potential of Single-Atom Nanozymes: Catalysts for the Future. ACS Sens 2024; 9:3840-3847. [PMID: 39083641 DOI: 10.1021/acssensors.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Single-atom nanozymes (SANs) have become a breakthrough in atomically precise catalysis, which relies on the catalytic active site formed by the single-atom itself. From this angle, SANs and their advantages compared to natural enzymes as well as spaces for their application are emphasized. The SANs have outstanding control over their catalytic activities; this is compared with bulk materials and natural enzymes. The structure of the SANs has very promising potential for the next generation of biosensing and biomedical devices and environmental remediation. Although their capabilities are high, difficulties still arise. The specificity, scalability, biosafety, and catalysis mechanisms raise additional issues that require further research. We build up a vision of the perspectives of the better implementation of SANs, which are designed for diagnostic purposes, improving industrial technologies, and creating new sustainable technologies in the food processing industry. AI and machine learning systems may clarify the structure-performance relationship of SANs for improved material and process selectivity. The future of SANs is very promising, and by addressing these challenges and leveraging advancements in artificial intelligence and materials science, SANs have the potential to become powerful tools for a sustainable future.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Fun Man Fung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Teaching, Learning and Technology, National University of Singapore, 15 Kent Ridge Road, Singapore 119225, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
20
|
Niu W, Feng J, Chen J, Deng L, Guo W, Li H, Zhang L, Li Y, Zhang B. High-efficiency C 3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface. Nat Commun 2024; 15:7070. [PMID: 39152122 PMCID: PMC11329774 DOI: 10.1038/s41467-024-51478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The synthesis of multi-carbon (C2+) fuels via electrocatalytic reduction of CO, H2O using renewable electricity, represents a significant stride in sustainable energy storage and carbon recycling. The foremost challenge in this field is the production of extended-chain carbon compounds (Cn, n ≥ 3), wherein elevated *CO coverage (θco) and its subsequent multiple-step coupling are both critical. Notwithstanding, there exists a "seesaw" dynamic between intensifying *CO adsorption to augment θco and surmounting the C-C coupling barrier, which have not been simultaneously realized within a singular catalyst yet. Here, we introduce a facilely synthesized lattice-strain-stabilized nitrogen-doped Cu (LSN-Cu) with abundant defect sites and robust nitrogen integration. The low-coordination sites enhance θco and concurrently, the compressive strain substantially fortifies nitrogen dopants on the catalyst surface, promoting C-C coupling activity. The n-propanol formation on the LSN-Cu electrode exhibits a 54% faradaic efficiency and a 29% half-cell energy efficiency. Moreover, within a membrane electrode assembly setup, a stable n-propanol electrosynthesis over 180 h at a total current density of 300 mA cm-2 is obtained.
Collapse
Affiliation(s)
- Wenzhe Niu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Junfeng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Lei Deng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, China
| | - Wen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China.
| | - Huajing Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
21
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Du Y, Guo M, Chen Y, Mo X, Cao J, Hu F. Ultrasensitive cortisol electrochemical immunosensor amplifying by Au single-atom nanozymes and HRP enzymes. Anal Chim Acta 2024; 1303:342462. [PMID: 38609277 DOI: 10.1016/j.aca.2024.342462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Cortisol, a corticosteroid hormone as a primary stress hormone response to internal and external stress, has been regarded as a gold standard reliable biomarker to evaluate human mental stress. The double enzymes strategy, using nanozyme and enzyme amplifying the electrochemical signal, has been widely used to improve the performance of electrochemical biosensors. An ultra-sensitive electrochemical cortisol sensor based on Au single-atom nanozymes had been fabricated through HRP labeled anti-cortisol antibody binding with Au by Au-S bond. Based on the high catalytic activity of Au single-atom nanozymes and the high selectivity of HRP-labeled anti-cortisol antibodies, the cortisol electrochemical sensor-based Au single-atom nanozymes had an excellent response to cortisol, such as high electrochemical activity, high sensitivity, high selectivity, and wide linear range (0.15-300 ng mL-1) and low detection (0.48 pg mL-1) through the four-parameter logistic model with 95% confidence. The electrochemical cortisol sensor was used to determine the cortisol concentration of human saliva at different times.
Collapse
Affiliation(s)
- Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Min Guo
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yan Chen
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Xiaohui Mo
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Junlei Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
23
|
Xu K, Cui Y, Guan B, Qin L, Feng D, Abuduwayiti A, Wu Y, Li H, Cheng H, Li Z. Nanozymes with biomimetically designed properties for cancer treatment. NANOSCALE 2024; 16:7786-7824. [PMID: 38568434 DOI: 10.1039/d4nr00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.
Collapse
Affiliation(s)
- Ke Xu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Bin Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Dihao Feng
- School of Art, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Abudumijiti Abuduwayiti
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yimu Wu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hao Li
- Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
24
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
26
|
Jiang Y, Chen Z, Sui N, Zhu Z. Data-Driven Evolutionary Design of Multienzyme-like Nanozymes. J Am Chem Soc 2024; 146:7565-7574. [PMID: 38445842 DOI: 10.1021/jacs.3c13588] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Multienzyme-like nanozymes are nanomaterials with multiple enzyme-like activities and are the focus of nanozyme research owing to their ability to facilitate cascaded reactions, leverage synergistic effects, and exhibit environmentally responsive selectivity. However, multienzyme-like nanozymes exhibit varying enzyme-like activities under different conditions, making them difficult to precisely regulate according to the design requirements. Moreover, individual enzyme-like activity in a multienzyme-like activity may accelerate, compete, or antagonize each other, rendering the overall activity a complex interplay of these factors rather than a simple sum of single enzyme-like activity. A theoretically guided strategy is highly desired to accelerate the design of multienzyme-like nanozymes. Herein, nanozyme information was collected from 4159 publications to build a nanozyme database covering element type, element ratio, chemical valence, shape, pH, etc. Based on the clustering correlation coefficients of the nanozyme information, the material features in distinct nanozyme classifications were reorganized to generate compositional factors for multienzyme-like nanozymes. Moreover, advanced methods were developed, including the quantum mechanics/molecular mechanics method for analyzing the surface adsorption and binding energies of substrates, transition states, and products in the reaction pathways, along with machine learning algorithms to identify the optimal reaction pathway, to aid the evolutionary design of multienzyme-like nanozymes. This approach culminated in creating CuMnCo7O12, a highly active multienzyme-like nanozyme. This process is named the genetic-like evolutionary design of nanozymes because it resembles biological genetic evolution in nature and offers a feasible protocol and theoretical foundation for constructing multienzyme-like nanozymes.
Collapse
Affiliation(s)
- Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong, China
| | - Zibei Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong, China
| |
Collapse
|
27
|
Jiang L, Ao Q, Tong X, Lv X, Song Y, Tang J. A biocatalytic cascade in enzyme/metal continuous-microflow microgel with stable intermediate channel for point-of-care biosensing. Biosens Bioelectron 2024; 248:115965. [PMID: 38176253 DOI: 10.1016/j.bios.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
A fast and accurate method for ultrasensitive monitoring of substrate is significant for cascade molecular detection. Here, we synthesize a glucose oxidase (GOx) microgel with iron coordination (Fe/GOx microgel). The microgel is cross-linked by chitosan and iron ion coordination which construct a tubular structure. Powder X-ray diffraction and Brunauer-Emmett-Teller results confirm the tubular crystal structure with a high specific surface area is formed in the microgel. The tubular structure offers a stable channel for intermediate transport which ensures the stabilization for the intermediate transport, and high specific surface area enhances the interaction between substrates and catalysts. As a result, the sensitivity of the Fe/GOx microgel is 175.5 μA mM-1 cm-2 and the lowest detection limit is 4.42 μM. In addition, the nanoscale Fe/GOx microgel also has the characteristics of reusability and maintains its activity after five times of catalysis. The generation of free radicals during the catalytic process can be detected by light detection and electrochemical signal detection within different detection limits. Therefore, Fe/GOx microgel provides a new platform and catalyst for the precise detection of cascade catalysis.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
28
|
Somerville SV, Li Q, Wordsworth J, Jamali S, Eskandarian MR, Tilley RD, Gooding JJ. Approaches to Improving the Selectivity of Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211288. [PMID: 37017492 DOI: 10.1002/adma.202211288] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nanozymes mimic enzymes and that includes their selectivity. To achieve selectivity, significant inspiration for nanoparticle design can come from the geometric and molecular features that make enzymes selective catalysts. The two central features enzymes use are control over the arrangement of atoms in the active site and the placing of the active site down a nanoconfined substrate channel. The implementation of enzyme-inspired features has already been shown to both improve activity and selectivity of nanoparticles for a variety of catalytic and sensing applications. The tuning and control of active sites on metal nanoparticle surfaces ranges from simply changing the composition of the surface metal to sophisticated approaches such as the immobilization of single atoms on a metal substrate. Molecular frameworks provide a powerful platform for the implementation of isolated and discrete active sites while unique diffusional environments further improve selectivity. The implementation of nanoconfined substrate channels around these highly controlled active sites offers further ability to control selectivity through altering the solution environment and transport of reactants and products. Implementing these strategies together offers a unique opportunity to improve nanozyme selectivity in both sensing and catalysis.
Collapse
Affiliation(s)
- Samuel V Somerville
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Qinyu Li
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Johanna Wordsworth
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Sina Jamali
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Mohammad Reza Eskandarian
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
29
|
Li J, Chen Y, Yao B, Yang W, Cui X, Liu H, Dai S, Xi S, Sun Z, Chen W, Qin Y, Wang J, He Q, Ling C, Wang D, Zhang Z. Cascade Dual Sites Modulate Local CO Coverage and Hydrogen-Binding Strength to Boost CO 2 Electroreduction to Ethylene. J Am Chem Soc 2024; 146:5693-5701. [PMID: 38335459 DOI: 10.1021/jacs.4c00475] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rationally modulating the binding strength of reaction intermediates on surface sites of copper-based catalysts could facilitate C-C coupling to generate multicarbon products in an electrochemical CO2 reduction reaction. Herein, theoretical calculations reveal that cascade Ag-Cu dual sites could synergistically increase local CO coverage and lower the kinetic barrier for CO protonation, leading to enhanced asymmetric C-C coupling to generate C2H4. As a proof of concept, the Cu3N-Ag nanocubes (NCs) with Ag located in partial Cu sites and a Cu3N unit center are successfully synthesized. The Faraday efficiency and partial current density of C2H4 over Cu3N-Ag NCs are 7.8 and 9.0 times those of Cu3N NCs, respectively. In situ spectroscopies combined with theoretical calculations confirm that Ag sites produce CO and Cu sites promote asymmetric C-C coupling to *COCHO, significantly enhancing the generation of C2H4. Our work provides new insights into the cascade catalysis strategy at the atomic scale for boosting CO2 to multicarbon products.
Collapse
Affiliation(s)
- Junjun Li
- Department of Chemistry, School of Science; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Bingqing Yao
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore 117575, Singapore
| | - Wenjuan Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaoya Cui
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huiling Liu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Zhiyi Sun
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuchen Qin
- College of Sciences, Henan Agricultural University, Zhengzhou 450000, P. R. China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore 117575, Singapore
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhicheng Zhang
- Department of Chemistry, School of Science; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Yao S, Wu Q, Wang S, Zhao Y, Wang Z, Hu Q, Li L, Liu H. Self-Driven Electric Field Control of Orbital Electrons in AuPd Alloy Nanoparticles for Cancer Catalytic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307087. [PMID: 37802973 DOI: 10.1002/smll.202307087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Indexed: 10/08/2023]
Abstract
The free radical generation efficiency of nanozymes in cancer therapy is crucial, but current methods fall short. Alloy nanoparticles (ANs) hold promise for improving catalytic performance due to their inherent electronic effect, but there are limited ways to modulate this effect. Here, a self-driven electric field (E) system utilizing triboelectric nanogenerator (TENG) and AuPd ANs with glucose oxidase (GOx)-like, catalase (CAT)-like, and peroxidase (POD)-like activities is presented to enhance the treatment of 4T1 breast cancer in mice. The E stimulation from TENG enhances the orbital electrons of AuPd ANs, resulting in increased CAT-like, GOx-like, and POD-like activities. Meanwhile, the catalytic cascade reaction of AuPd ANs is further amplified after catalyzing the production of H2 O2 from the GOx-like activities. This leads to 89.5% tumor inhibition after treatment. The self-driven E strategy offers a new way to enhance electronic effects and improve cascade catalytic therapeutic performance of AuPd ANs in cancer therapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Wu S, Jiang Y, Luo W, Xu P, Huang L, Du Y, Wang H, Zhou X, Ge Y, Qian J, Nie H, Yang Z. Ag-Co 3 O 4 -CoOOH-Nanowires Tandem Catalyst for Efficient Electrocatalytic Conversion of Nitrate to Ammonia at Low Overpotential via Triple Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303789. [PMID: 37822155 PMCID: PMC10667848 DOI: 10.1002/advs.202303789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Indexed: 10/13/2023]
Abstract
The electrocatalytic conversion of nitrate (NO3 ‾) to NH3 (NO3 RR) offers a promising alternative to the Haber-Bosch process. However, the overall kinetic rate of NO3 RR is plagued by the complex proton-assisted multiple-electron transfer process. Herein, Ag/Co3 O4 /CoOOH nanowires (i-Ag/Co3 O4 NWs) tandem catalyst is designed to optimize the kinetic rate of intermediate reaction for NO3 RR simultaneously. The authors proved that NO3 ‾ ions are reduced to NO2 ‾ preferentially on Ag phases and then NO2 ‾ to NO on Co3 O4 phases. The CoOOH phases catalyze NO reduction to NH3 via NH2 OH intermediate. This unique catalyst efficiently converts NO3 ‾ to NH3 through a triple reaction with a high Faradaic efficiency (FE) of 94.3% and a high NH3 yield rate of 253.7 μmol h-1 cm-2 in 1 M KOH and 0.1 M KNO3 solution at -0.25 V versus RHE. The kinetic studies demonstrate that converting NH2 OH into NH3 is the rate-determining step (RDS) with an energy barrier of 0.151 eV over i-Ag/Co3 O4 NWs. Further applying i-Ag/Co3 O4 NWs as the cathode material, a novel Zn-nitrate battery exhibits a power density of 2.56 mW cm-2 and an FE of 91.4% for NH3 production.
Collapse
Affiliation(s)
- Shilu Wu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yingyang Jiang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Wenjie Luo
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Peng Xu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Longlong Huang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yiwen Du
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Hui Wang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| |
Collapse
|
33
|
Ding J, Wei Z, Li F, Zhang J, Zhang Q, Zhou J, Wang W, Liu Y, Zhang Z, Su X, Yang R, Liu W, Su C, Yang HB, Huang Y, Zhai Y, Liu B. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH 3OH. Nat Commun 2023; 14:6550. [PMID: 37848430 PMCID: PMC10582074 DOI: 10.1038/s41467-023-42307-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
In this work, via engineering the conformation of cobalt active center in cobalt phthalocyanine molecular catalyst, the catalytic efficiency of electrochemical carbon monoxide reduction to methanol can be dramatically tuned. Based on a collection of experimental investigations and density functional theory calculations, it reveals that the electron rearrangement of the Co 3d orbitals of cobalt phthalocyanine from the low-spin state (S = 1/2) to the high-spin state (S = 3/2), induced by molecular conformation change, is responsible for the greatly enhanced CO reduction reaction performance. Operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements disclose accelerated hydrogenation of CORR intermediates, and kinetic isotope effect validates expedited proton-feeding rate over cobalt phthalocyanine with high-spin state. Further natural population analysis and density functional theory calculations demonstrate that the high spin Co2+ can enhance the electron backdonation via the dxz/dyz-2π* bond and weaken the C-O bonding in *CO, promoting hydrogenation of CORR intermediates.
Collapse
Affiliation(s)
- Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Jincheng Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Weijue Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhen Zhang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Runze Yang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China.
| |
Collapse
|
34
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|
35
|
Du C, Mills JP, Yohannes AG, Wei W, Wang L, Lu S, Lian JX, Wang M, Guo T, Wang X, Zhou H, Sun CJ, Wen JZ, Kendall B, Couillard M, Guo H, Tan Z, Siahrostami S, Wu YA. Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO 2 electroreduction toward multicarbon products. Nat Commun 2023; 14:6142. [PMID: 37798263 PMCID: PMC10556094 DOI: 10.1038/s41467-023-41871-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Electrocatalytic CO2 reduction into value-added multicarbon products offers a means to close the anthropogenic carbon cycle using renewable electricity. However, the unsatisfactory catalytic selectivity for multicarbon products severely hinders the practical application of this technology. In this paper, we report a cascade AgCu single-atom and nanoparticle electrocatalyst, in which Ag nanoparticles produce CO and AgCu single-atom alloys promote C-C coupling kinetics. As a result, a Faradaic efficiency (FE) of 94 ± 4% toward multicarbon products is achieved with the as-prepared AgCu single-atom and nanoparticle catalyst under ~720 mA cm-2 working current density at -0.65 V in a flow cell with alkaline electrolyte. Density functional theory calculations further demonstrate that the high multicarbon product selectivity results from cooperation between AgCu single-atom alloys and Ag nanoparticles, wherein the Ag single-atom doping of Cu nanoparticles increases the adsorption energy of *CO on Cu sites due to the asymmetric bonding of the Cu atom to the adjacent Ag atom with a compressive strain.
Collapse
Affiliation(s)
- Cheng Du
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Joel P Mills
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Wei Wei
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Siyan Lu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jian-Xiang Lian
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maoyu Wang
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hua Zhou
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cheng-Jun Sun
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - John Z Wen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Brian Kendall
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Martin Couillard
- Energy, Mining and Environment Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Hongsheng Guo
- Energy, Mining and Environment Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - ZhongChao Tan
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Samira Siahrostami
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Interdisciplinary Center on Climate Change, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
36
|
Roy P, Ghoshal S, Pramanik A, Sarkar P. Single B-vacancy enriched α 1-borophene sheet: an efficient metal-free electrocatalyst for CO 2 reduction. Phys Chem Chem Phys 2023; 25:25018-25028. [PMID: 37698058 DOI: 10.1039/d3cp01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
By employing first principles calculations, we have studied the electronic structures of pristine (α1) and different defective (α1-t1, α1-t2) borophene sheets to understand the efficacy of such systems as metal-free electrocatalysts for the CO2 reduction reaction. Among the three studied systems, only α1-t1, the defective borophene sheet created by removal of a 5-coordinated boron atom, can chemisorb and activate a CO2 molecule for its subsequent reduction processes, leading to different C1 chemicals, followed by selective conversion into C2 products by multiple proton coupled electron transfer steps. The computed onset potentials for the C1 chemicals such as CH3OH and CH4 are low enough. On the other hand, in the case of the C2 reduction process, the C-C coupling barrier is only 0.80 eV in the solvent phase which produces CH3CHO and CH3CH2OH with very low onset potential values of -0.21 and -0.24 V, respectively, suppressing the competing hydrogen evolution reaction.
Collapse
Affiliation(s)
- Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
37
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
38
|
Huang X, Kong D, Ma Y, Luo B, Wang B, Zhi L. An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO 2 to ethanol. FUNDAMENTAL RESEARCH 2023; 3:786-795. [PMID: 38933297 PMCID: PMC11197807 DOI: 10.1016/j.fmre.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 10/19/2022] Open
Abstract
Electrochemically reducing CO2 to ethanol is attractive but suffers from poor selectivity. Tandem catalysis that integrates the activation of CO2 to an intermediate using one active site and the subsequent formation of hydrocarbons on the other site offers a promising approach, where the control of the intermediate transfer between different catalytic sites is challenging. We propose an internally self-feeding mechanism that relies on the orientation of the mass transfer in a hierarchical structure and demonstrate it using a one-dimensional (1D) tandem core-shell catalyst. Specifically, the carbon-coated Ni-core (Ni/C) catalyzes the transformation of CO2-to-CO, after which the CO intermediates are guided to diffuse to the carbon-coated Cu-shell (Cu/C) and experience the selective reduction to ethanol, realizing the orientated key intermediate transfer. Results show that the Faradaic efficiency for ethanol was 18.2% at -1 V vs. RHE (VRHE) for up to 100 h. The following mechanism study supports the hypothesis that the CO2 reduction on Ni/C generates CO, which is further reduced to ethanol on Cu/C sites. Density functional theory calculations suggest a combined effect of the availability of CO intermediate in Ni/C core and the dimerization of key *CO intermediates, as well as the subsequent proton-electron transfer process on the Cu/C shell.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
39
|
Niu W, Chen Z, Guo W, Mao W, Liu Y, Guo Y, Chen J, Huang R, Kang L, Ma Y, Yan Q, Ye J, Cui C, Zhang L, Wang P, Xu X, Zhang B. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat Commun 2023; 14:4882. [PMID: 37573371 PMCID: PMC10423280 DOI: 10.1038/s41467-023-40689-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an "atomic size misfit" strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FEpropanol) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FEpropanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C-C coupling ability, thus promoting the CO-to-n-propanol conversion.
Collapse
Affiliation(s)
- Wenzhe Niu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zheng Chen
- Department of Chemistry, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Wen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wei Mao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jingzhao Chen
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Rui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lin Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yiwen Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qisheng Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chunyu Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Xin Xu
- Department of Chemistry, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
40
|
Su X, Meng F, Li X, Liu Y, Tan H, Chen G. Theoretical Study of the Defects and Doping in Tuning the Electrocatalytic Activity of Graphene for CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2273. [PMID: 37570590 PMCID: PMC10421040 DOI: 10.3390/nano13152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
41
|
Ajmal S, Yasin G, Kumar A, Tabish M, Ibraheem S, Sammed KA, Mushtaq MA, Saad A, Mo Z, Zhao W. A disquisition on CO2 electroreduction to C2H4: An engineering and design perspective looking beyond novel choosy catalyst materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
42
|
Chen PC, Chen C, Yang Y, Maulana AL, Jin J, Feijoo J, Yang P. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:10116-10125. [PMID: 37115017 DOI: 10.1021/jacs.3c00467] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Silver-copper (AgCu) bimetallic catalysts hold great potential for electrochemical carbon dioxide reduction reaction (CO2RR), which is a promising way to realize the goal of carbon neutrality. Although a wide variety of AgCu catalysts have been developed so far, it is relatively less explored how these AgCu catalysts evolve during CO2RR. The absence of insights into their stability makes the dynamic catalytic sites elusive and hampers the design of AgCu catalysts in a rational manner. Here, we synthesized intermixed and phase-separated AgCu nanoparticles on carbon paper electrodes and investigated their evolution behavior in CO2RR. Our time-sequential electron microscopy and elemental mapping studies show that Cu possesses high mobility in AgCu under CO2RR conditions, which can leach out from the catalysts by migrating to the bimetallic catalyst surface, detaching from the catalysts, and agglomerating as new particles. Besides, Ag and Cu manifest a trend to phase-separate into Cu-rich and Ag-rich grains, regardless of the starting catalyst structure. The composition of the Cu-rich and Ag-rich grains diverges during the reaction and eventually approaches thermodynamic values, i.e., Ag0.88Cu0.12 and Ag0.05Cu0.95. The separation between Ag and Cu has been observed in the bulk and on the surface of the catalysts, highlighting the importance of AgCu phase boundaries for CO2RR. In addition, an operando high-energy-resolution X-ray absorption spectroscopy study confirms the metallic state of Cu in AgCu as the catalytically active sites during CO2RR. Taken together, this work provides a comprehensive understanding of the chemical and structural evolution behavior of AgCu catalysts in CO2RR.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Miller Institute, University of California, Berkeley, California 94720, United States
| | - Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julian Feijoo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Duan W, Wang J, Peng X, Cao S, Shang J, Qiu Z, Lu X, Zeng J. Rational design of trimetallic AgPt-Fe 3O 4 nanozyme for catalyst poisoning-mediated CO colorimetric detection. Biosens Bioelectron 2023; 223:115022. [PMID: 36563527 DOI: 10.1016/j.bios.2022.115022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) is not only a highly poisonous gas that brings great health risk, but also a significant signaling molecule in body. However, it is still challengeable for development of alternative colorimetric probes to traditional organic chromophores for simple, sensitive and convenient CO sensing. Here, for the first time, we rationally design a novel hydrophilic AgPt-Fe3O4 nanozyme with a unique heterodimeric nanostructure for colorimetric sensing of CO based on the excellent peroxidase-like catalytic activity as well as highly poisonous effect of CO on the nanozyme's catalytic activity. Both experimental evidence and theoretical calculations reveal the trimetallic AgPt-Fe3O4 nanozyme is susceptible to poisoning with the strongest affinity towards CO compared to individual Fe3O4 or Ag-Fe3O4, which is attributed to the adequate exposure of the active metallic sites and efficient interfacial synergy of unique heterodimeric nanostructure. Accordingly, a novel nanozyme-based colorimetric strategy is developed for CO detection with a low detection limit of 5.6 ppb in solution. Furthermore, the probe can be prepared as very convenient test strips and integrated with the portable smartphone platforms for detecting CO gas samples with a low detection limit of 8.9 ppm. Overall, our work proposes guidelines for the rational design of metallic heterogeneous nanostructure to expand the analytical application of nanozyme.
Collapse
Affiliation(s)
- Wei Duan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinling Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaomeng Peng
- China Tobacco Anhui Industrial Co, Ltd, Anhui, 230031, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingjing Shang
- Tobacco Quality Supervision and Test Station of Anhui, Anhui, 230071, PR China
| | - Zhiwei Qiu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
44
|
Li L, Su J, Lu J, Shao Q. Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO 2 to C 2+ Products. Chem Asian J 2023; 18:e202201044. [PMID: 36640117 DOI: 10.1002/asia.202201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Copper is a key metal for carbon dioxide (CO2 ) reduction reaction, which can reduce CO2 to value-added products. The core-shell structure can effectively promote the C-C coupling process due to its strong synergistic effect originated from its unique electronic structure and interface environment. Therefore, the combination of copper and core-shell structure to design an efficient Cu-based core-shell structure catalyst is of great significance for electrocatalytic CO2 reduction (CO2 RR). In this review, we first briefly summarize the basic principle of CO2 RR. In addition, we outline the advantages of core-shell structure for catalysis. Then, we review the recent research progresses of Cu-based core-shell structures for the selective reduction of multi-carbon (C2+ ) products. In the end, the challenges of using core-shell catalyst for CO2 RR are described, and the future development of this field is prospected.
Collapse
Affiliation(s)
- Lamei Li
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
45
|
Zhang J, He W, Quast T, Junqueira JRC, Saddeler S, Schulz S, Schuhmann W. Single-entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of Cu 2 O and Co 3 O 4 for Converting NO 3 - to NH 3. Angew Chem Int Ed Engl 2023; 62:e202214830. [PMID: 36469860 PMCID: PMC10108016 DOI: 10.1002/anie.202214830] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Electrochemically converting nitrate to ammonia is an essential and sustainable approach to restoring the globally perturbed nitrogen cycle. The rational design of catalysts for the nitrate reduction reaction (NO3 RR) based on a detailed understanding of the reaction mechanism is of high significance. We report a Cu2 O+Co3 O4 tandem catalyst which enhances the NH3 production rate by ≈2.7-fold compared to Co3 O4 and ≈7.5-fold compared with Cu2 O, respectively, however, most importantly, we precisely place single Cu2 O and Co3 O4 cube-shaped nanoparticles individually and together on carbon nanoelectrodes provide insight into the mechanism of the tandem catalysis. The structural and phase evolution of the individual Cu2 O+Co3 O4 nanocubes during NO3 RR is unveiled using identical location transmission electron microscopy. Combining single-entity electrochemistry with precise nano-placement sheds light on the dynamic transformation of single catalyst particles during tandem catalysis in a direct way.
Collapse
Affiliation(s)
- Jian Zhang
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Wenhui He
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.,Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Stephan Schulz
- Inorganic Chemistry, Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
46
|
Wang M, Loiudice A, Okatenko V, Sharp ID, Buonsanti R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C 2 products in tandem electrocatalytic CO 2 reduction. Chem Sci 2023; 14:1097-1104. [PMID: 36756336 PMCID: PMC9891351 DOI: 10.1039/d2sc06359j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The coupling of CO-generating molecular catalysts with copper electrodes in tandem schemes is a promising strategy to boost the formation of multi-carbon products in the electrocatalytic reduction of CO2. While the spatial distribution of the two components is important, this aspect remains underexplored for molecular-based tandem systems. Herein, we address this knowledge gap by studying tandem catalysts comprising Co-phthalocyanine (CoPc) and Cu nanocubes (Cucub). In particular, we identify the importance of the relative spatial distribution of the two components on the performance of the tandem catalyst by preparing CoPc-Cucub/C, wherein the CoPc and Cucub share an interface, and CoPc-C/Cucub, wherein the CoPc is loaded first on carbon black (C) before mixing with the Cucub. The electrocatalytic measurements of these two catalysts show that the faradaic efficiency towards C2 products almost doubles for the CoPc-Cucub/C, whereas it decreases by half for the CoPc-C/Cucub, compared to the Cucub/C. Our results highlight the importance of a direct contact between the CO-generating molecular catalyst and the Cu to promote C-C coupling, which hints at a surface transport mechanism of the CO intermediate between the two components of the tandem catalyst instead of a transfer via CO diffusion in the electrolyte followed by re-adsorption.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Anna Loiudice
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
47
|
Liu G, Zhan J, Zhang Z, Zhang LH, Yu F. Recent Advances of the Confinement Effects Boosting Electrochemical CO 2 Reduction. Chem Asian J 2023; 18:e202200983. [PMID: 36373345 DOI: 10.1002/asia.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.
Collapse
Affiliation(s)
- Guomeng Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiauyu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
48
|
Somerville S, O’Mara PB, Benedetti TM, Cheong S, Schuhmann W, Tilley RD, Gooding JJ. Nanoconfinement Allows a Less Active Cascade Catalyst to Produce More C 2+ Products in Electrochemical CO 2 Reduction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:289-299. [PMID: 37342618 PMCID: PMC10278131 DOI: 10.1021/acs.jpcc.2c07518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Indexed: 06/23/2023]
Abstract
Enzymes with multiple distinct active sites linked by substrate channels combined with control over the solution environment near the active sites enable the formation of complex products from simple reactants via the confinement of intermediates. We mimic this concept to facilitate the electrochemical carbon dioxide reduction reaction using nanoparticles with a core that produces intermediate CO at different rates and a porous copper shell. CO2 reacts at the core to produce CO which then diffuses through the Cu to give higher order hydrocarbon molecules. By altering the rate of CO2 delivery, the activity of the CO producing site, and the applied potential, we show that the nanoparticle with lower activity for CO formation produces greater amounts of hydrocarbon products. This is attributed to a combination of higher local pH and the lower amount of CO, resulting in more stable nanoparticles. However, when lower amounts of CO2 were delivered to the core, the particles that are more active for CO formation produce more C3 products. The importance of these results is twofold. They show that in cascade reactions, more active intermediate producing catalysts do not necessarily give greater amounts of high-value products. The effect an intermediate producing active site has on the local solution environment around the secondary active site plays an important role. As the less active catalyst for producing CO also possesses greater stability, we show that nanoconfinement can be used to get the best of both worlds with regard to having a stable catalyst with high activity.
Collapse
Affiliation(s)
- Samuel
V. Somerville
- School
of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney2052, Australia
| | - Peter B. O’Mara
- School
of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney2052, Australia
| | - Tania M. Benedetti
- School
of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney2052, Australia
| | - Soshan Cheong
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney2052, Australia
| | - Wolfgang Schuhmann
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitatsstraße
150, BochumD-44780, Germany
| | - Richard D. Tilley
- School
of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney2052, Australia
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney2052, Australia
| | - J. Justin Gooding
- School
of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney2052, Australia
| |
Collapse
|
49
|
Sun L, Liu B. Mesoporous PdN Alloy Nanocubes for Efficient Electrochemical Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207305. [PMID: 36281796 DOI: 10.1002/adma.202207305] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Developing highly active and selective electrocatalysts for electrochemical nitrate reduction reaction (NITRR) is very important for synthesizing recyclable ammonia (NH3 ) in an economic and environmentally friendly manner. Despite some encouraging progress, their activity and selectivity have been remarkably slower than expected. In this manuscript, mesoporous palladium-nonmetal (meso-PdX) nanocubes (NCs) are reported as a new series of highly efficient electrocatalysts for selective nitrate reduction reaction (NITRR) electrocatalysis to NH3 . The samples feature uniformly alloyed compositions and highly penetrated mesopores with abundant highly active sites and optimized electronic structures. The best meso-PdN NCs hold an outstanding NITRR activity and selectivity with a remarkable NH3 Faradaic efficiency of 96.1% and a yield rate of 3760 µg h-1 mg-1 , suppressing the state-of-the-art electrocatalysts. Meanwhile, meso-PdN NCs are electrocatalytically stable, retaining well the activity and selectivity of NO3 - -to-NH3 electrocatalysis for more than 20 cycles. Detailed mechanism studies ascribe the superior performance to combined compositional and structural synergies of meso-PdN NCs that not only promote the adsorption (reactivity) of NO3 - and the desorption of NH3 but also increase the retention time of key intermediates for the deeper NITRR electrocatalysis to NH3 through an eight-electron pathway.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
50
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Sohn YS, Karmi O, Qin Y, Chen X, Nechushtai R, Willner I. Aptamer-Functionalized Ce 4+-Ion-Modified C-Dots: Peroxidase Mimicking Aptananozymes for the Oxidation of Dopamine and Cytotoxic Effects toward Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55365-55375. [PMID: 36475576 PMCID: PMC9782376 DOI: 10.1021/acsami.2c16199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Aptamer-functionalized Ce4+-ion-modified C-dots act as catalytic hybrid systems, aptananozymes, catalyzing the H2O2 oxidation of dopamine. A series of aptananozymes functionalized with different configurations of the dopamine binding aptamer, DBA, are introduced. All aptananozymes reveal substantially enhanced catalytic activities as compared to the separated Ce4+-ion-modified C-dots and aptamer constituents, and structure-catalytic functions between the structure and binding modes of the aptamers linked to the C-dots are demonstrated. The enhanced catalytic functions of the aptananozymes are attributed to the aptamer-induced concentration of the reaction substrates in spatial proximity to the Ce4+-ion-modified C-dots catalytic sites. The oxidation processes driven by the Ce4+-ion-modified C-dots involve the formation of reactive oxygen species (•OH radicals). Accordingly, Ce4+-ion-modified C-dots with the AS1411 aptamer or MUC1 aptamer, recognizing specific biomarkers associated with cancer cells, are employed as targeted catalytic agents for chemodynamic treatment of cancer cells. Treatment of MDA-MB-231 breast cancer cells and MCF-10A epithelial breast cells, as control, with the AS1411 aptamer- or MUC1 aptamer-modified Ce4+-ion-modified C-dots reveals selective cytotoxicity toward the cancer cells. In vivo experiments reveal that the aptamer-functionalized nanoparticles inhibit MDA-MB-231 tumor growth.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|