1
|
Han Z, He M, Lehn JM, Li Q. Intrinsically Adaptive Salicylaldimine: Mechanically and Thermally Induced Switching between Photochromism and Photoluminescence. J Am Chem Soc 2025; 147:22053-22061. [PMID: 40505148 DOI: 10.1021/jacs.5c05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Dynamically adaptive materials that respond to varying environmental stimuli have garnered significant attention due to their potential applications. Nevertheless, developing single-molecule-based intrinsically adaptive materials capable of responding to multiple stimuli remains a challenge. Herein, we present an intrinsically adaptive salicylaldimine 1 featuring a urea group, demonstrating versatile adaptations across three different stacking states in response to light, mechanical, and thermal stimuli, thus facilitating controllable switching between photochromism and photoluminescence. Such adaptations are enabled by intermolecular hydrogen bonds between urea groups, which play a crucial role in modulating molecular stacking configurations. Specifically, the pristine imine 1 in crystal I state exhibits fluorescence quenching but demonstrates visible-light-driven reversible photochromism. Mechanical grinding disrupts the robust intermolecular hydrogen bond, deactivating photochromism while activating photoluminescence. The resulting imine 1 powder in amorphous state displays bright fluorescence and can be reverted to the initial crystal I state either through exposure to ethanol vapor or thermal annealing of imine 1 at 60 °C. Remarkably, a new stable crystalline state, crystal II, emerges after the thermal annealing of imine 1 at an exceptionally high temperature of 240 °C with 21.5-fold fluorescence enhancement compared to imine 1 in crystal I state. These versatile adaptations underscore its potential for applications in anticounterfeiting, information encryption, and high-temperature recording. Overall, these findings provide valuable insights into strategies for the development of intrinsically adaptive systems and materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Meixia He
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
2
|
Gernet A, Balivet L, El Rhaz A, Pagès L, Laurent G, Maurel F, Jean L. Synthesis and Evaluation of the Photochemical Properties of Heterocyclic Hemiindigos. Chemistry 2025; 31:e202500803. [PMID: 40115998 PMCID: PMC12057614 DOI: 10.1002/chem.202500803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
This study reports a series of novel heterocyclic hemiindigos (Het-HI) synthesized via the condensation of indoxyl acetate with various heteroaromatic aldehydes. The influence of electron-rich and electron-poor heterocycles on the photochemical and photophysical properties of these compounds has been investigated. Our findings reveal that several Het-HIs exhibit noteworthy photoswitching behavior, including enhanced absorption at the visible region. Notably, certain derivatives respond efficiently to green and red light, achieving good conversions to the metastable E-isomer and displaying prolonged half-lives of up to 53 days in a polar solvent. The results highlight the potential of these photoswitches for applications in molecular devices and responsive materials.
Collapse
Affiliation(s)
| | | | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Lucas Pagès
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Guillaume Laurent
- Université Paris‐Saclay, ENS Paris‐Saclay, CNRS, PPSMGif‐sur‐YvetteFrance
| | | | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| |
Collapse
|
3
|
Song J, Wang Q, Feng Y, Liu K, Guo A, Gao X, Xu H, Nie Q, Wang J, Zhang H, Guo H, Li Z. Blue-/near-infrared light-triggered photochromism in a reinforced acceptor-acceptor type dithienylethene with aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125454. [PMID: 39579729 DOI: 10.1016/j.saa.2024.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The development of photochromic dithienylethene (DTE) derivatives activated by visible light, particularly those exhibiting aggregation-induced emission (AIE) properties, is highly sought after for applications in photoelectric functional materials and biological systems. In this study, we rationally designed and successfully synthesized a novel cyanostilbene- and nitro-functionalized DTE derivative (6) featuring a reinforced acceptor (A)-DTE-acceptor (A) structural motif. Each of the two cyanostilbene fragments bearing nitrobenzene groups imparts both electron-withdrawing effects and AIE characteristics, thereby ensuring efficient visible light-driven photochromic performance. The chemical structure of compound 6 was characterized using standard techniques, including 1H NMR, 13C NMR, and HRMS. As anticipated, the resulting DTE (6) demonstrates efficient photochromism in various solvents when alternately irradiated with blue light (λ = 460-470 nm) and near-infrared (NIR) light (λ = 730-740 nm). Prior to blue light irradiation, the AIE performance and solid-state luminescence behavior were assessed. Furthermore, DTE (6) exhibits enhanced photoswitching behavior within a poly(methyl methacrylate) (PMMA) film. The experimental findings are corroborated by density functional theory (DFT) calculations. Ultimately, this derivative has been successfully employed for information recording and erasing, thereby demonstrating its potential for information storage and encryption.
Collapse
Affiliation(s)
- Jinzhao Song
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qilian Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Yongliang Feng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Keyu Liu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Aodi Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Xingrui Gao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Hemin Xu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qianqian Nie
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Jucai Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
4
|
Ji G, Hou Q, Jiang W, Li X. Investigating the Properties of Triangle Terthiophene and Triphenylamine Configured Propeller-like Photochromic Dye with Ethyne Bridge. J Fluoresc 2025; 35:933-941. [PMID: 38198012 DOI: 10.1007/s10895-023-03557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Synthesis-oriented design led us to the construction of a propeller-like dye, containing the triangle terthiophene and triphenylamine units. It reveals typical photochromic properties with alternated UV (390 nm) and visible light (˃ 440 nm) irradiation and the dye solution (in THF) color was also toggled between yellow-green and colorless. A new absorption band was observed in visible region (415-600 nm). Additionally, the photochromic dye was highly emissive with the absolute quantum yield being 0.27. After UV light irradiation, the emission was quenched significantly (Φ = 0.08) at photo-stationary state, and thus establishing a switchable emission "on-off" system by alternated UV/visible light irradiation cycle. Detailed structural analysis was carried out based on the optimized dye structure. Both the antiparallel conformation and the distance of reactive carbon atoms (< 4.2 Å) led to the smoothly photochromic behavior.
Collapse
Affiliation(s)
- Guangqian Ji
- Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research &, Development Institute Co. Ltd, Xinxiang, Henan, People's Republic of China
| | - Qiaozhi Hou
- Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
| | - Wenjuan Jiang
- NMPA Key Laboratory for Research, Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Xiaochuan Li
- NMPA Key Laboratory for Research, Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
5
|
Li Z, Ma X, Song J, Wang Q, Feng Y, Liu H, Zhang P, Guo H, Yin J. 570 nm/770 nm light-excited deep-red fluorescence switch based on dithienylethene derived from BF 2-curcuminoid. Chem Sci 2025; 16:1762-1771. [PMID: 39720129 PMCID: PMC11664253 DOI: 10.1039/d4sc05473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Developing dithienylethene (DTE)-based fluorescence switches triggered by biocompatible visible light has always been a long-term goal in view of their potential in numerous biological scenarios. However, their practical availability is severely limited by the short visible light (generally less than 500 nm) required for photocyclization, their inability to achieve red or near-infrared emission, and their short fluorescence lifetimes. Herein, we present a novel DTE derivative featuring a dimethylamine-functionalized BF2-curcuminoid moiety (NBDC) by using an "acceptor synergistic conjugation system" strategy. The dimethylamine group not only enables a red shift in the absorption and emission wavelengths of the open isomer but also endows NBDC with unique acid/base-gated photochromism. As expected, as-prepared NBDC presents 570 nm/770 nm light-driven photochromic properties, red-emissive fluorescence, and thermally activated delayed fluorescence (TADF) switching in toluene. To our knowledge, this represents the first instance of a yellow-green- and NIR light-controlled red fluorescence DTE switch with the longer fluorescence lifetime. Specifically, NBDC, which shows weak photochromic activity in CHCl3, demonstrates enhanced photochromic performance when gated by TFA/TEA. Ultimately, this non-toxic deep-red fluorescence switch has been successfully applied for photoswitchable imaging in vivo of living cells and zebrafish, further proving its versatility in life sciences.
Collapse
Affiliation(s)
- Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Xiaoxie Ma
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinzhao Song
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Qilian Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Yongliang Feng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Haining Liu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Pei Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Department of Life Science, Luoyang Normal University Luoyang 471934 P. R. China
| | - Jun Yin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
6
|
Jiang T, Fan Y, Lu JH, Huang C, Zhu BX. Two AIE-active Schiff base fluorescent probes for highly selective recognition of Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124827. [PMID: 39029205 DOI: 10.1016/j.saa.2024.124827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Two helical Schiff base compounds (H4TPA and H4TPE) containing a triphenylamine (TPA) or tetraphenylethylene (TPE) scaffold were successfully synthesized and characterized. Both H4TPA and H4TPE exhibited typical aggregation-induced emission characteristics in the mixed solvent of THF/H2O. The two compounds also showed high selectivity and sensitivity for the recognition of Cu2+ over other ions in THF/HEPES (1:4, V/V, pH = 7.4, 2.0 × 10-5 M), and could be used as turn-off fluorescent probes for Cu2+. The stoichiometric ratios and association constants were estimated via Job's plots and UV-vis spectra titration, and the detection limits of H4TPA and H4TPE toward Cu2+ were calculated to be 2.41 × 10-7 M and 1.38 × 10-7 M, respectively. Besides, the crystal structure of the complex obtained from the interaction of H4TPA with Cu2+ well illustrated the binding modes, which helped us understand the Cu2+ recognition mechanism of H4TPA and H4TPE. Moreover, the detection of Cu2+ and spiked recovery experiments were carried out, which indicated that the two probes can be applied to Cu2+ detection in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ji-Hong Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Chao Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| | - Bi-Xue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Qin KX, Su YS, Zhu MQ, Li C. Recent Progress of Photoswitchable Fluorescent Diarylethenes for Bioimaging. Chembiochem 2024; 25:e202400326. [PMID: 39235968 DOI: 10.1002/cbic.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Photochromic diarylethene has attracted broad research interest in optical applications owing to its excellent fatigue resistance and unique bistability. Photoswitchable fluorescent diarylethene become a powerful molecular tool for fluorescence imaging recently. Herein, the recent progress on photoswitchable fluorescent diarylethenes in bioimaging is reviewed. We summarize the structures and properties of diarylethene fluorescence probes and emphatically introduce their applications in bioimaging as well as super-resolution imaging. Additionally, we highlight the current challenges in practical applications and provide the prospects of the future development directions of photoswitchable fluorescent diarylethene in the field of bioimaging. This comprehensive review aims to stimulate further research into higher-performance photoswitchable fluorescent molecules and advance their progress in biological application.
Collapse
Affiliation(s)
- Kai-Xuan Qin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Shu Su
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Li R, Ou T, Wen L, Yan Y, Li W, Qin X, Wang S. All-Visible-Light-Activated Diarylethene Photoswitches. Molecules 2024; 29:5202. [PMID: 39519843 PMCID: PMC11547923 DOI: 10.3390/molecules29215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Tao Ou
- School of Pharmacy, Binzhou Medical University, Yantai 256603, China;
| | - Li Wen
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China;
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Xulong Qin
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Shouxin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| |
Collapse
|
9
|
Wu F, Xia Z, Sun D, Huang X, Hu X, Wu Y, Wang Y, Pei M, Han X, Liu S. Expanding the Color Range of Photoresponsive Multicolor Luminescent System Through Host-Guest Interaction. J Org Chem 2024; 89:14898-14907. [PMID: 39356286 DOI: 10.1021/acs.joc.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoresponsive multicolor luminescent systems offer interesting functions, which have led to applications in anticounterfeiting and biological imaging. However, expanding the color range of these materials remains a challenging task. Herein, a carbazole-modified dithienylethene derivative (DTE-CZ) that exhibits modulated fluorescence color changes through the photocyclization reaction and photolysis reaction is synthesized. DTE-CZ emits orange fluorescence, and it can release a fluorophore which emits blue fluorescence by the photolysis reaction, resulting in the color change. Upon complexation of DTE-CZ with cucurbit[10]uril (CB[10]), the fluorescence wavelength will have a blue shift and the photolysis reaction will be inhibited. Benefiting from the influence of CB[10] and the photolysis reaction of free guests, the color range of the photoresponsive system which is composed of free guests and host-guest complexes is further extended. White light emission along with a color shift from yellow-green to blue was achieved by adjusting the ratio of free guests to host-guest complexes. Finally, the photoresponsive multicolor systems are utilized to construct a photostimulated PVA film and an information encryption system. This work provides an alternative strategy for the preparing of photoresponsive multicolor luminescent system and modulation of its color range.
Collapse
Affiliation(s)
- Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mengqi Pei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
10
|
Hendrich CM, Reinschmidt M, Büllmann SM, Kolmar T, Jäschke A. Synthesis and Development of Inverse-Type Nucleoside Diarylethene Photoswitches. Chemistry 2024; 30:e202401537. [PMID: 39045626 DOI: 10.1002/chem.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Nucleosidic diarylethenes (DAEs) have evolved from an emerging class of photochromes into a well-established option for integrating photochromic functionalities into biological systems. However, a comprehensive understanding of how chemical structure influences their photochromic properties remains essential. While structural features, such as an inverse connection between the aryl residues and the ethene bridge, are well-documented for classical DAEs, their application to nucleosidic DAEs has been underexplored. In this study, we address this gap by developing three distinct types of inverse nucleosidic DAEs-semi-inverse thiophenes, semi-inverse uridines and inverse uridines. We successfully synthesized these compounds and conducted comprehensive analyses of their photostationary states, thermal stability, reversibility, and reaction quantum yields. Additionally, we conducted an in-depth comparison of their photochromic properties with those of their normal-type counterparts. Among the synthesized compounds, seven semi-inverse thiophenes exhibited the most promising characteristics. Notably, these compounds demonstrated excellent fatigue resistance, with up to 96 % retention of photochromic activity over 40 switching cycles, surpassing the performance of all comparable nucleosidic DAEs reported to date. These findings hold significant promise for future applications in various fields.
Collapse
Affiliation(s)
- Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Simon M Büllmann
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
van Vliet S, Sheng J, Stindt CN, Feringa BL. All-visible-light-driven salicylidene schiff-base-functionalized artificial molecular motors. Nat Commun 2024; 15:6461. [PMID: 39085193 PMCID: PMC11291758 DOI: 10.1038/s41467-024-50587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Light-driven rotary molecular motors are among the most promising classes of responsive molecular machines and take advantage of their intrinsic chirality which governs unidirectional rotation. As a consequence of their dynamic function, they receive considerable interest in the areas of supramolecular chemistry, asymmetric catalysis and responsive materials. Among the emerging classes of responsive photochromic molecules, multistate first-generation molecular motors driven by benign visible light remain unexplored, which limits the exploitation of the full potential of these mechanical light-powered systems. Herein, we describe a series of all-visible-light-driven first-generation molecular motors based on the salicylidene Schiff base functionality. Remarkable redshifts up to 100 nm in absorption are achieved compared to conventional first-generation motor structures. Taking advantage of all-visible-light-driven multistate motor scaffolds, adaptive behaviour is found as well, and potential application in multistate photoluminescence is demonstrated. These functional visible-light-responsive motors will likely stimulate the design and synthesis of more sophisticated nanomachinery with a myriad of future applications in powering dynamic systems.
Collapse
Affiliation(s)
- Sven van Vliet
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Xu F, Sheng J, Stindt CN, Crespi S, Danowski W, Hilbers MF, Buma WJ, Feringa BL. All-visible-light-driven stiff-stilbene photoswitches. Chem Sci 2024; 15:6763-6769. [PMID: 38725493 PMCID: PMC11077541 DOI: 10.1039/d4sc00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular photoswitches are potent tools to construct dynamic functional systems and responsive materials that can be controlled in a non-invasive manner. As P-type photoswitches, stiff-stilbenes attract increasing interest, owing to their superiority in quantum yield, significant geometric differences between isomers, excellent thermostability and robust switching behavior. Nevertheless, the UV-light-triggered photoisomerization of stiff-stilbenes has been a main drawback for decades as UV light is potentially harmful and has low penetration depth. Here, we provided a series of para-formylated stiff-stilbenes by Rieche ortho-formylation to achieve all-visible-light-responsiveness. Additional phenolic groups provide access to late-stage chemical modification facilitating design of molecules responsive to visible light. Remarkably, the photoisomerization of aldehyde-appended stiff-stilbenes could be fully manipulated using visible light, accompanied by a high photostationary state (PSS) distribution. These features render them excellent candidates for future visible-light-controllable smart materials and dynamic systems.
Collapse
Affiliation(s)
- Fan Xu
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jinyu Sheng
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Charlotte N Stindt
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Department of Chemistry-Ångström Laboratory, Uppsala University Box 523 Uppsala Sweden
| | - Wojciech Danowski
- University of Strasbourg CNRS ISIS UMR 7006, 8 Allée Gaspard Monge Strasbourg F-67000 France
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Michiel F Hilbers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c, 6525 ED Nijmegen The Netherlands
| | - Ben L Feringa
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
13
|
Chen X, Zhang X, Han J, Xia SH. Photochemical Mechanisms of Hydroxyquinoline Benzimidazole: Insights from Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2024; 128:1984-1992. [PMID: 38446415 DOI: 10.1021/acs.jpca.3c07298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.
Collapse
Affiliation(s)
- Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - XinYu Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
14
|
Qi Q, Huang S, Liu X, Aprahamian I. 1,2-BF 2 Shift and Photoisomerization Induced Multichromatic Response. J Am Chem Soc 2024; 146:6471-6475. [PMID: 38428039 DOI: 10.1021/jacs.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
15
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Hong P, Liu J, Qin KX, Tian R, Peng LY, Su YS, Gan Z, Yu XX, Ye L, Zhu MQ, Li C. Towards Optical Information Recording: A Robust Visible-Light-Driven Molecular Photoswitch with the Ring-Closure Reaction Yield Exceeding 96.3 . Angew Chem Int Ed Engl 2024; 63:e202316706. [PMID: 38126129 DOI: 10.1002/anie.202316706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording.
Collapse
Affiliation(s)
- Pan Hong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Kai-Xuan Qin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Ling-Yan Peng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yun-Shu Su
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Zongsong Gan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xiang-Xiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
17
|
Kalapos P, Kunfi A, Bogner MM, Holczbauer T, Kochman MA, Durbeej B, London G. Salicylideneaniline/Dithienylethene Hybrid Molecular Switches: Design, Synthesis, and Photochromism. J Org Chem 2024; 89:16-26. [PMID: 38060251 PMCID: PMC10777402 DOI: 10.1021/acs.joc.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
A hybrid molecular switch comprising salicylideneaniline (SA) and dithienylethene (DTE) moieties around a single benzene ring is reported. Due to an interplay between solvent-assisted enol-keto tautomerization in the former moiety and photochromic electrocyclization in the latter, this dithienylbenzene derivative was found to be photoresponsive at room temperature with a thermally stable closed form. The main photoproduct featuring ring-closed DTE and keto-enamine SA structures could be isolated and converted back to the starting material by irradiation with visible light. The optical properties of the potential structures involved in the overall process were characterized by using density functional theory (DFT) calculations in good agreement with the measured data. The reversibility of the conversion could be tuned by the presence of donor and acceptor substituents, while the introduction of the imine in the form of a benzothiazole moiety enabled photochemistry even in nonprotic solvents.
Collapse
Affiliation(s)
- Péter
Pál Kalapos
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Attila Kunfi
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Marcell M. Bogner
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Tamás Holczbauer
- Institute
of Organic Chemistry, Centre for Structural
Science, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Marcina Kasprzaka
44/52, 01-224 Warsaw, Poland
| | - Bo Durbeej
- Division
of Theoretical Chemistry, IFM, Linköping
University, SE-58183 Linköping, Sweden
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
18
|
Dohn AO, Markmann V, Nimmrich A, Haldrup K, Møller KB, Nielsen MM. Eliminating finite-size effects on the calculation of x-ray scattering from molecular dynamics simulations. J Chem Phys 2023; 159:124115. [PMID: 38127395 DOI: 10.1063/5.0164365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 12/23/2023] Open
Abstract
Structural studies using x-ray scattering methods for investigating molecules in solution are shifting focus toward describing the role and effects of the surrounding solvent. However, forward models based on molecular dynamics (MD) simulations to simulate structure factors and x-ray scattering from interatomic distributions such as radial distribution functions (RDFs) face limitations imposed by simulations, particularly at low values of the scattering vector q. In this work, we show how the value of the structure factor at q = 0 calculated from RDFs sampled from finite MD simulations is effectively dependent on the size of the simulation cell. To eliminate this error, we derive a new scheme to renormalize the sampled RDFs based on a model of the excluded volume of the particle-pairs they were sampled from, to emulate sampling from an infinite system. We compare this new correction method to two previous RDF-correction methods, developed for Kirkwood-Buff theory applications. We present a quantitative test to assess the reliability of the simulated low-q scattering signal and show that our RDF-correction successfully recovers the correct q = 0 limit for neat water. We investigate the effect of MD-sampling time on the RDF-corrections, before advancing to a molecular example system, comprised of a transition metal complex solvated in a series of water cells with varying densities. We show that our correction recovers the correct q = 0 behavior for all densities. Furthermore, we employ a simple continuum scattering model to dissect the total scattering signal from the solvent-solvent structural correlations in a solute-solvent model system to find two distinct contributions: a non-local density-contribution from the finite, fixed cell size in NVT simulations, and a local contribution from the solvent shell. We show how the second contribution can be approximated without also including the finite-size contribution. Finally, we provide a "best-practices"-checklist for experimentalists planning to incorporate explicit solvation MD simulations in future work, offering guidance for improving the accuracy and reliability of structural studies using x-ray scattering methods in solution.
Collapse
Affiliation(s)
- A O Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
- Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - V Markmann
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - A Nimmrich
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - K Haldrup
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - K B Møller
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - M M Nielsen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
19
|
Liao Q, Li Q, Li Z. The Key Role of Molecular Packing in Luminescence Property: From Adjacent Molecules to Molecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306617. [PMID: 37739004 DOI: 10.1002/adma.202306617] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The luminescence materials act as the key components in many functional devices, as well as the detection and imaging systems, which can be permeated in each aspect of modern life, and attract more and more attention for the creative technology and applications. In addition to the diverse properties of organic luminogens, the multiple molecular packing at aggregated states frequently offers new and/or exciting performance. However, there still lacks comprehensive analysis of molecular packing in these organic materials, resulting in an increased gap between molecular design and practical applications. In this review, from the basic knowledge of organic compounds as single molecules, to the discernable property of excimer, charge transfer (CT) complex or self-assembly systems by adjacent molecules, and finally to the opto-electronic performance of molecular aggregates, the relevant factors to molecular packing and practical applications are discussed.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
20
|
Nakanishi T, Hori Y, Shigeta Y, Sato H, Kiyanagi R, Munakata K, Ohhara T, Okazawa A, Shimada R, Sakamoto A, Sato O. Development of an Iron(II) Complex Exhibiting Thermal- and Photoinduced Double Proton-Transfer-Coupled Spin Transition in a Short Hydrogen Bond. J Am Chem Soc 2023; 145:19177-19181. [PMID: 37623927 DOI: 10.1021/jacs.3c06323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Ryoji Kiyanagi
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Koji Munakata
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takashi Ohhara
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rintaro Shimada
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Li X, Qian Q, Jiang W. Photo-Induced Fluorochromism of a Star-Shaped Photochromic Dye with 2,4-Dimethylthiazole Attaching to Triangle Terthiophene. J Fluoresc 2023; 33:1907-1915. [PMID: 36881208 DOI: 10.1007/s10895-023-03196-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
A photochrmic triangle terthiophene dye with 2,4-dimethylthiazole attached was synthesized and shows regular photochromic properties when irradiated with UV/Vis light alternately. It was found that the attaching of 2,4-dimethylthiazole has a significant effect on both the photochromism and fluorescence of triangle terthiophene. During the photocyclizatioin prcess, not only the color but also the fluorescence of the dye in THF can be toggled between ring-open and ring-closed forms of the dye. Additionally, the absolute quantum yields (AQY) of ring-open and ring-closed forms of the dye (0.32/0.58) were greatly larger than the literature report. Along with the 254 nm light irradiation, the fluorescence color changed from deep blue (428 nm) to sky blue (486 nm) in THF. A fluorochromism cycle could be established based on the UV/visible light irradiation cycle, which provides a strategy for the design of new type fluorescent diarylethene derivatives for biological application.
Collapse
Affiliation(s)
- Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China.
| | - Qixuan Qian
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China
| | - Wenjuan Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China
| |
Collapse
|
22
|
Gernet A, El Rhaz A, Jean L. Easily Accessible Substituted Heterocyclic Hemithioindigos as Bistable Molecular Photoswitches. Chemistry 2023; 29:e202301160. [PMID: 37357141 DOI: 10.1002/chem.202301160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Thioaurone chromophores, part of the indigoid family and commonly named hemithioindigos, have recently gained attention due to their interesting photoswitching properties. The study focuses on heterocyclic hemithioindigos (Het-HTIs) and investigates their synthesis using electron-rich and electron-poor heterocycles and modifications to the thioindigo moiety. Furthermore, it aims to evaluate the photoswitching performances of these synthesised compounds, with a particular emphasis on the influence of the heterocycles on the photoisomerization capabilities, which was found to be more prominent than the modifications made to the thioindigo moiety. Among the 44 Het-HTIs tested, several exhibited highly efficient photoswitchable properties, demonstrating Z-to-E photoisomerization in the blue region, and E-to-Z photoisomerization in the green or the red regions. Additionally, the metastable E-isomer displayed an impressive half-life of up to 54 days in a polar solvent (DMSO). These results suggest that heterocyclic hemithioindigos hold great promise as photoswitches for researchers interested in light-controlled molecular mechanisms.
Collapse
Affiliation(s)
- Aurélie Gernet
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| |
Collapse
|
23
|
Ji G, Hou Q, Jiang W, Li X. Investigating the Properties of Double Triangle Terthiophene Configured Dumbbell-Like Photochromic Dye with Ethyne and 1,3-Butadiene Bridge. J Fluoresc 2023; 33:1495-1503. [PMID: 36763298 DOI: 10.1007/s10895-023-03171-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Dumbbell-like photochromic dyes were constructed by incorporation of double triangle terthiophene with ethyne or 1,3-butadiene bridge. Regular photochromic behavior was investigated with alternated UV (365 nm) and Visible light (˃ 400 nm) irradiation. However, the different bridge group leads to distinct difference in their photochromic wavelength. For the ethyne bridged triangle terthiophene (DT1), the photochromic wavelength was observed around 500-700 nm (peak value: 605 nm) and the solution turned to red with 365 nm light irradiation. However, the photochromic wavelength was blue shift to 418-550 nm and the solution was turned to light yellow for 1,3-butadiene bridged dye (DT2). Both of the colored solution can be bleached via visible light irradiation. Additionally, the two dyes in THF were emissive with absolute quantum yield (QY) of 0.36/0.40. Along with the photo-induced photocyclization process, the emissive solution can be effectively quenched at photo-stationary sate (Φ = 0.05/0.04). And emission "on-off" cycle could be established based on the UV/visible light irradiation cycle.
Collapse
Affiliation(s)
- Guangqian Ji
- Huanghe Science and Technology University, Zhengzhou, Henan, P. R. China
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research & Development Institute Co., Ldt., Xinxiang, Henan, P. R. China
| | - Qiaozhi Hou
- Huanghe Science and Technology University, Zhengzhou, Henan, P. R. China
| | - Wenjuan Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, Henan, P. R. China
| | - Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, Henan, P. R. China.
| |
Collapse
|
24
|
Gao H, Qi X, Zhang J, Wang N, Xin J, Jiao D, Liu K, Qi J, Guan Y, Ding D. Smart One-for-All Agent with Adaptive Functions for Improving Photoacoustic /Fluorescence Imaging-Guided Photodynamic Immunotherapy. SMALL METHODS 2023; 7:e2201582. [PMID: 36807567 DOI: 10.1002/smtd.202201582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Multifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy. A dithienylethene-based molecule is designed and synthesized because it has two light-switchable forms. In the ring-closed form, most of the absorbed energy dissipates via nonradiative thermal deactivation for photoacoustic (PA) imaging. In the ring-open form, the molecule possesses obvious aggregation-induced emission features with excellent fluorescence and photodynamic therapy properties. In vivo experiments demonstrate that preoperative PA and fluorescence imaging help to delineate tumors in a high-contrast manner, and intraoperative fluorescence imaging is able to sensitively detect tiny residual tumors. Furthermore, the nanoagent can induce immunogenic cell death to elicit antitumor immunity and significantly suppress solid tumors. This work develops a smart one-for-all agent that the photophysical energy transformation and related phototheranostic properties can be optimized by light-driven structure switch, which is promising for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinwen Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaining Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital /Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Qiu Q, Sun Z, Joubran D, Li X, Wan J, Schmidt-Rohr K, Han GGD. Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angew Chem Int Ed Engl 2023; 62:e202300723. [PMID: 36688731 DOI: 10.1002/anie.202300723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Danielle Joubran
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
26
|
Wang H, Tang Y, Krishna Bisoyi H, Li Q. Reversible Handedness Inversion and Circularly Polarized Light Reflection Tuning in Self-Organized Helical Superstructures Using Visible-Light-Driven Macrocyclic Chiral Switches. Angew Chem Int Ed Engl 2023; 62:e202216600. [PMID: 36509701 DOI: 10.1002/anie.202216600] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
A series of macrocyclic azobenzene-based chiral photoswitches have been judiciously designed, synthesized, and characterized. In the molecular structures, binaphthyl is covalently linked to ortho-positions of azobenzene, and four different substituents are linked to 6,6'-positions of binaphthyl. The photoswitches show enhanced helical twisting power (HTP) when doping in commercially available achiral liquid crystals to form self-organized helical superstructures, i.e., cholesteric liquid crystals (CLCs). All the photoswitches exhibit reversible photoisomerization driven by visible light of different wavelengths in both organic solvent and liquid crystals. The photoswitches with shorter substituents enable handedness inversion of CLCs upon photoisomerization. These are the first examples of ortho-linked azobenzene-based photoswitches that enable handedness inversion in CLCs. The photoswitches with longer substituents display only HTP values decreasing while maintaining the same handedness.
Collapse
Affiliation(s)
- Hao Wang
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA.,Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
27
|
Ziani Z, Cobo S, Loiseau F, Jouvenot D, Lognon E, Boggio-Pasqua M, Royal G. All Visible Light Photoswitch Based on the Dimethyldihydropyrene Unit Operating in Aqueous Solutions with High Quantum Yields. JACS AU 2023; 3:131-142. [PMID: 36711101 PMCID: PMC9875246 DOI: 10.1021/jacsau.2c00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Molecular systems and devices whose properties can be modulated using light as an external stimulus are the subject of numerous research studies in the fields of materials and life sciences. In this context, the use of photochromic compounds that reversibly switch upon light irradiation is particularly attractive. However, for many envisioned applications, and in particular for biological purposes, illumination with harmful UV light must be avoided and these photoactivable systems must operate in aqueous media. In this context, we have designed a benzo[e]-fused dimethyldihydropyrene compound bearing a methyl-pyridinium electroacceptor group that meets these requirements. This compound (closed state) is able to reversibly isomerize under aerobic conditions into its corresponding cyclophanediene form (open isomer) through the opening of its central carbon-carbon bond. Both the photo-opening and the reverse photoclosing processes are triggered by visible light illumination and proceed with high quantum yields (respectively 14.5% yield at λ = 680 nm and quantitative quantum yield at λ = 470 nm, in water). This system has been investigated by nuclear magnetic resonance and absorption spectroscopy, and the efficient photoswitching behavior was rationalized by spin-flip time-dependent density functional theory calculations. In addition, it is demonstrated that the isomerization from the open to the closed form can be electrocatalytically triggered.
Collapse
Affiliation(s)
- Zakaria Ziani
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| | - Saioa Cobo
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| | | | | | - Elise Lognon
- LCPQ
UMR 5626, CNRS et Université Toulouse
III − Paul Sabatier, 118 route de Narbonne, Toulouse31062, France
| | - Martial Boggio-Pasqua
- LCPQ
UMR 5626, CNRS et Université Toulouse
III − Paul Sabatier, 118 route de Narbonne, Toulouse31062, France
| | - Guy Royal
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| |
Collapse
|
28
|
Ji G, Hou Q, Zhang J, Li X. Investigation of Triangle Terthiophene and Hydroxyphenylbenzothiazole Configured Fluorescent Dye with a Triple Bond Bridge. J Fluoresc 2023; 33:153-159. [PMID: 36318417 DOI: 10.1007/s10895-022-03049-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
A photochromic dye was constructed by incorporation of a carbon-carbon triple bond spaced triangle terthiophene skeleton and hydroxyphenylbenzothiazole. Regular photochromic behavior was investigated with alternated UV (254 nm) and visible light (≥ 400 nm) irradiation. The color of dye in solution can be cycled between pink and colorless. Additionally, the dye solution strongly fluoresces in THF with the absolute quantum yield (QY) being 0.56. When irradiation with 254 nm light, the emissive solution can be effectively quenched to photo-stationary sate (Φ = 0.05). An emission "on-off" cycle could be established based on the UV/visible light irradiation cycle. The photochromic dye also exhibits good photo- and thermal-stability at room temperature. The emission decay profile indicates typical single component character with the fluorescence lifetime being 6.68 ns. The emission color was determined by the CIE 1931 coordinates of x = 0.14, y = 0.25 in the blue region.
Collapse
Affiliation(s)
- Guangqian Ji
- School of Medicine, Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research & Development Institute Co., Ldt., Xinxiang, Henan, People's Republic of China
| | - Qiaozhi Hou
- School of Medicine, Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
| | - Junna Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
29
|
Li M, Zhu WH. Sterically Hindered Diarylethenes with a Benzobis(thiadiazole) Bridge: Enantiospecific Transformation and Reversible Photosuperstructures. Acc Chem Res 2022; 55:3136-3149. [PMID: 36260815 DOI: 10.1021/acs.accounts.2c00419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusPhotochromic diarylethenes featuring reversible regulation by external light irradiation have attracted increasing attention in versatile applications such as logic gates, supramolecular systems, liquid crystals, and super-resolution imaging because of their outstanding bistability and fatigue resistance. However, for typical diarylethene systems, there always exist three typical unsolved issues. The first is how to modulate the bistability between the open and closed forms from the viewpoint of ethene bridge aromaticity. The second is how to decrease and avoid the photoinactive parallel conformer in order to achieve a high quantum yield, since the open form possesses the photoactive antiparallel (ap) conformation and the photoinactive parallel (p) conformation. Because of the typical rapid rotation of the flexible side aryl groups, the two conformers cannot be separated efficiently, thereby resulting in a relatively low photocyclization quantum yield. The third is how to fulfill the enantiospecific transformation with reversibility to photomodulate the chirality. Stereochemically, the ap conformer with C2 symmetry can be further subdivided into a pair of enantiomers with P and M helicity originating from the central hexatriene moiety. Similarly, the rapid rotation can also lead to the loss of intrinsic chirality, restricting the development and application of light-driven chiroptical switches. Accordingly, it is desirable to construct a specific diarylethene system to break through these bottlenecks for real versatile applications.Our group has recently developed a unique sterically hindered diarylethene system based on benzobis(thiadiazole) as the ethene bridge for completely solving these issues. We introduce a low-aromaticity benzobis(thiadiazole) unit into the diarylethene as a central ethene bridge with incomparably high bistability. To block or freeze the rotation of flexible side aryls, we further incorporate a large bulky benzothiophene unit to induce a large steric hindrance, or rotation barrier, between the ethene bridge and side aryls, thereby successfully separating multiple conformers of the diarylethenes with high photocyclization quantum yields and enantiospecific photoreaction. Consequently, given such a fantastic building block, we enhance its performance by means of supramolecular self-assembly, thereby realizing unique conformer-dependent self-assembly as well as unprecedented concerted isomerization and enantiospecific photoreaction of photoresponsive metallacycles. In addition, decoration of the intrinsically chiral diarylethenes with mesogenic units can enable us to manipulate the helical superstructure of liquid crystals, thus achieving a multiple anticounterfeiting technique and a quadridimensional manipulable laser. We also unravel the dual aggregation-induced emission (AIE) behavior of the sterically hindered diarylethene, especially as applied in super-resolution imaging.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Mao L, Li X, Ding H, Fan C, Liu G, Pu S. A Highly Selective Hg 2+ Fluorescent Chemosensor Based On Photochromic Diarylethene With Quinoline Unit. J Fluoresc 2022; 32:2119-2128. [PMID: 35932385 DOI: 10.1007/s10895-022-02930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 12/01/2022]
Abstract
A novel diarylethene-based fluorescent chemosensor containing a quinoline unit (1o) had been designed and synthesized. 1o showed good photochromic ability and fluorescence switching properties by alternating UV/vis light irradiation. The chemosensor showed high "Turn-off" fluorescent selectivity for Hg2+ by competitive tests of the fluorescence reaction in the presence other ions in acetonitrile solution. The stoichiometry between the compound 1o and Hg2+ was 1:1 by Job's plot curve and HRMS analysis. In addition, the LOD for Hg2+ was calculated as 60 nM. The fluorescence emission can be back to the "Turn-on" state by adding EDTA. Based on these facts, a molecular logic gate that including four input signals (UV/vis and Hg2+/EDTA) and one output signal (fluorescent intensity at 491 nm) was designed.
Collapse
Affiliation(s)
- Liangtao Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xiumei Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China. .,Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
31
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐Coordinated Hydrazone‐Based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022; 61:e202202655. [DOI: 10.1002/anie.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jufu Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shanying Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
- College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|
33
|
Efficient blue light-responsed dithienylethenes with exceptional photochromic performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
35
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
36
|
Jiang Y, Cao Q, Wang Y, Feng M, Kong S. Influence of periodic heteroatom substitution in the aryl rings on optical properties and thermal stability of diarylethene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
A diarylethene-based fluorescent chemosensor for highly selective recognition of Zn2+ and its application in real samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐coordinated Hydrazone‐based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Ma
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiandong Shen
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jufu Zhao
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiangang Li
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shanying Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Chenyuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Juan Wei
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications 9 Wenyuan Road 210023 Nanjing CHINA
| |
Collapse
|
39
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
40
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
41
|
Yuan SH, Huang DC, Tao YT. Photochromic Dithienylethene Monolayer-Modified Gold Nanoparticles as a Tunable Floating Gate in the Fabrication of Nonvolatile Organic Memory. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7102-7108. [PMID: 35089031 DOI: 10.1021/acsami.1c23347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonvolatile memory (NVM) devices were fabricated by implanting a self-assembled monolayer (SAM) of functional dithienylethene (DTE) derivative on the gold nanoparticle (Au-NP) surface in a pentacene-based organic transistor. The Au-NPs and DTE served as a charge-trapping medium and tunneling barrier layer, respectively. The transfer characteristic of the NVM device showed a narrow hysteresis window and wide memory window, indicating that the DTE-SAM served as a variable barrier layer to regulate the trapping and detrapping of external free charges at the Au-NPs. The energy gap introduced by the DTE-SAM is modulated through photoisomerization between a ring-open form and a ring-closed form by absorbing UV or visible light. For a memory device, the ring-closed DTE allows more free charge injection into the trapping sites, and the ring-open one better retains the trapped charges. A longer anchoring alkanethiol chain at the DTE moiety can further extend the device's retention time. For the NVM operation, programming with the ring-closed DTE and then switching the DTE structure to the ring-open form for erasing can facilitate the charge trapping and charge retention with the same molecule compared to operating all in the ring-open form or all in the ring-closed form of DTE. The structural characterization and electronic characteristics of these devices are discussed in detail.
Collapse
Affiliation(s)
- Shuo-Huang Yuan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ding-Chi Huang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
42
|
Fan T, Li Z, Liu G, Fan C, Pu S. Zn-diarylethene organic framework for anticounterfeiting: Crystal structure, photochromism and fluorescence switch. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wu NMW, Ng M, Yam VWW. Photocontrolled multiple-state photochromic benzo[b]phosphole thieno[3,2-b]phosphole-containing alkynylgold(I) complex via selective light irradiation. Nat Commun 2022; 13:33. [PMID: 35013225 PMCID: PMC8748877 DOI: 10.1038/s41467-021-27711-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
Photochromic materials have drawn growing attention because using light as a stimulus has been regarded as a convenient and environmental-friendly way to control properties of smart materials. While photoresponsive systems that are capable of showing multiple-state photochromism are attractive, the development of materials with such capabilities has remained a challenging task. Here we show that a benzo[b]phosphole thieno[3,2‑b]phosphole-containing alkynylgold(I) complex features multiple photoinduced color changes, in which the gold(I) metal center plays an important role in separating two photoactive units that leads to the suppression of intramolecular quenching processes of the excited states. More importantly, the exclusive photochemical reactivity of the thieno[3,2‑b]phosphole moiety of the gold(I) complex can be initiated upon photoirradiation of visible light. Stepwise photochromism of the gold(I) complex has been made possible, offering an effective strategy for the construction of multiple-state photochromic materials with multiple photocontrolled states to enhance the storage capacity of potential optical memory devices.
Collapse
Affiliation(s)
- Nathan Man-Wai Wu
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| |
Collapse
|
44
|
Liu N, Wu Q, Li Q, Scheiner S. Promotion of TH 3 (T = Si and Ge) group transfer within a tetrel bond by a cation-π interaction. Phys Chem Chem Phys 2022; 24:1113-1119. [PMID: 34927648 DOI: 10.1039/d1cp05323j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The possibility of the transfer of the TH3 group across a tetrel bond is considered by ab initio calculations. The TB is constructed by pairing PhTH3 (Ph = phenyl; T = Si and Ge) with bases NH3, NHCH2, and the C3N2H4 carbene. The TH3 moves toward the base but only by a small amount in these dimers. However, when a Be2+ or Mg2+ dication is placed above the phenyl ring, the tetrel bond strength is greatly magnified reaching up to nearly 100 kcal mol-1. This dication also induces a much higher degree of transfer which can be best categorized as half-transfer for the two N-bases and a near complete transfer for the carbene.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
45
|
Fan T, Liu F, Fan C, Pu S. A dual-functional chemical sensor for the detection of Cu2+ and Cd2+ based on the photochromic diarylethene. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Jiang G, Hai Y, Ye H, You L. Dynamic Covalent Chemistry Constrained Diphenylethenes: Control over Reactivity and Luminescence in both Solution and Solid State. Org Chem Front 2022. [DOI: 10.1039/d2qo00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethenes (DAEs) are an important class of building blocks in chemistry and materials science, and hence, their modulation and functionalization are of critical significance. Here we demonstrate a general strategy...
Collapse
|
47
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
48
|
Martín Giménez VM, Arya G, Zucchi IA, Galante MJ, Manucha W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. SOFT MATTER 2021; 17:8577-8584. [PMID: 34580698 DOI: 10.1039/d1sm00999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional drug delivery systems often have several pharmacodynamic and pharmacokinetic limitations related to their low efficacy and bad safety. It is because these traditional systems cannot always be selectively addressed to their therapeutic target sites. Currently, target-specific and controlled drug delivery is one of the foremost challenges in the biomedical field. In this context, stimuli-responsive polymeric nanomaterials have been recognized as a topic of intense research. They have gained immense attention in therapeutics - particularly in the drug delivery area - due to the ease of tailorable behavior in response to the surroundings. Light irradiation is of particular interest among externally triggered stimuli because it may be specifically localized in a contact-free manner. Light-human body interactions may sometimes be harmful due to photothermal and photomechanical reactions that lead to cell death by photo-toxicity and/or photosensitization. However, these limitations may also be overcome by the use of photo-responsive polymeric nanostructures. This review summarizes recent developments in photo-responsive polymeric nanocarriers used in the field of drug delivery systems, including nanoparticles, nanogels, micelles, nanofibers, dendrimers, and polymersomes, as well as their classification and mechanisms of drug release.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Geeta Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, India
| | - Ileana A Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina
| | - María J Galante
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| |
Collapse
|
49
|
Ju X, Song J, Han J, Shi Y, Gao Y, Duan P. Photofluorochromic water-dispersible nanoparticles for single-photon-absorption upconversion cell imaging. NANOTECHNOLOGY 2021; 32:475606. [PMID: 34252893 DOI: 10.1088/1361-6528/ac137f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photofluorochromic diarylethene (DAE) molecules have been widely investigated due to their excellent fatigue resistance and thermal stability. However, the poor water solubility of DAEs limits their biological applications to some extent. Herein, we reported two kinds of water-dispersible DAE nanoparticles (DAEI-NPs and DAEB-NPs), in which DAE molecules were stabilized by the amphiphilic polymer DSPE-mPEG2000 using the nanoprecipitation approach. The fabricated nanoparticles retain well-controlled luminescence and fluorescence photoswitching properties in aqueous solution, which could be reversibly switched on and off under the alternating irradiation of ultraviolet (UV) and visible light. In addition, the closed-ring isomers of DAEB-NPs performed hot-band-absorption-based photon upconversion when excited by a 593.5 nm laser. Bearing excellent photophysical properties and low cytotoxicity, DAEB-NPs were applicable for upconversion cell imaging without high-excitation power density and free from oxygen removal. Additionally, the imaging process could be switched on by regulating the photofluorochromic nanoparticles.
Collapse
Affiliation(s)
- Xiuhao Ju
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jialei Song
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Yonghong Shi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
50
|
Becht S, Sen R, Büllmann SM, Dreuw A, Jäschke A. "Click-switch" - one-step conversion of organic azides into photochromic diarylethenes for the generation of light-controlled systems. Chem Sci 2021; 12:11593-11603. [PMID: 34667559 PMCID: PMC8447918 DOI: 10.1039/d1sc02526k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylethenes (DAEs) are an established class of photochromic molecules, but their effective incorporation into pre-existing targets is synthetically difficult. Here we describe a new class of DAEs in which one of the aryl rings is a 1,2,3-triazole that is formed by “click” chemistry between an azide on the target and a matching alkyne–cyclopentene–thiophene component. This late-stage zero-length linking allows for tight integration of the DAE with the target, thereby increasing the chances for photomodulation of target functions. Nineteen different DAEs were synthesized and their properties investigated. All showed photochromism. Electron-withdrawing groups, and in particular −M-substituents at the triazole and/or thiophene moiety resulted in DAEs with high photo- and thermostability. Further, the chemical nature of the cyclopentene bridge had a strong influence on the behaviour upon UV light irradiation. Incorporation of perfluorinated cyclopentene led to compounds with high photo- and thermostability, but the reversible photochromic reaction was restricted to halogenated solvents. Compounds containing the perhydrogenated cyclopentene bridge, on the other hand, allowed the reversible photochromic reaction in a wide range of solvents, but had on average lower photo- and thermostabilities. The combination of the perhydrocyclopentene bridge and electron-withdrawing groups resulted in a DAE with improved photostability and no solvent restriction. Quantum chemical calculations helped to identify the photoproducts formed in halogenated as well as non-halogenated solvents. For two optimized DAE photoswitches, photostationary state composition and reaction quantum yields were determined. These data revealed efficient photochemical ring closure and opening. We envision applications of these new photochromic diarylethenes in photonics, nanotechnology, photobiology, photopharmacology and materials science. New photochromic diarylethenes are reported in which one aryl ring is a 1,2,3-triazole that is formed by “click” chemistry between an azide on the target and a matching alkyne–cyclopentene–thiophene component.![]()
Collapse
Affiliation(s)
- Steffy Becht
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Reena Sen
- Theoretical and Computational Chemistry, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 205A 69120 Heidelberg Germany
| | - Simon M Büllmann
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Andreas Dreuw
- Theoretical and Computational Chemistry, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 205A 69120 Heidelberg Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|