1
|
Ofuchi Y, Hosokawa M, Horie N, Doi S, Ogo S, Onda A, Hamaguchi T, Saiki T, Sekine Y. Efficient formation of C 3 and C 4 hydrocarbons from cellulose over Pt/Mg-doped ZrO 2 catalysts without hydrogen addition. RSC Adv 2025; 15:16869-16878. [PMID: 40395780 PMCID: PMC12090759 DOI: 10.1039/d5ra01826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
At low temperatures, C3 and C4 hydrocarbons (equivalent to propane gas) were produced using only water, a solid catalyst, and cellulose, employing no enzymes or expensive, valuable hydrogen. High C3 + C4 yields were achieved using a catalyst doped with Mg as a base site in ZrO2, which has Lewis acid and base properties, supported with Pt, which has high hydrocarbon production capacity. After screening and characterisation of this catalyst using various values of parameters such as the amount of Mg doping and the amount of Pt loading, findings indicated that 1 wt% Pt caused moderate decarbonylation and dehydration, and that the Zr0.5Mg0.5O2-δ support promoted cellulose degradation by its Lewis acid-base properties. The reaction mechanism was investigated, clarifying the C3 and C4 hydrocarbon formation mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sae Doi
- Waseda University Tokyo Japan
| | | | | | | | | | | |
Collapse
|
2
|
Yu L, Wang Q, Zhuang C, Huang JD, Zhu Y, Jing X, Guo Y, Tong YX, Zhang Z. Periodic Frustrated Lewis Pairs on Bimetallic Oxide Semiconductors for CO 2 Adsorption and Photocatalytic Conversion. ACS NANO 2025; 19:7239-7252. [PMID: 39960026 DOI: 10.1021/acsnano.4c17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Lewis acids (LAs) or Lewis bases (LBs) have been recognized as crucial catalytically active sites for enhancing the adsorption and conversion of inert CO2. However, engineering of periodic frustrated Lewis pairs (PFLPs) on the surfaces of semiconductor photocatalysts presents significant challenges, and the synergistic mechanism of PFLPs in CO2 photoreduction remains unclear. In this study, we propose a strategy that utilizes periodic oxygen vacancies to engineer dual-metallic PFLPs on bimetallic oxide semiconductor surfaces. We employ SrNb2O6-x as a model photocatalyst to elucidate the synergistic effect of PFLPs on CO2 photoreduction. Within each FLP unit, the LA (Sr2+) captures an O atom from CO2 while the LB (Nb4+) engages in an interaction with the C atom and concurrently facilitates transfer of photoinduced electrons from SrNb2O6-x to adsorbed CO2. Thus, SrNb2O6-x with the PFLPs-enriched surface exhibits ultrahigh CO2 adsorption and a low energy barrier for CO desorption. Under focused sunlight irradiation, SrNb2O6-x demonstrates nearly 100% selectivity in converting CO2 to CO at a rate of 25.5 μmol g-1 h-1. This study presents a method for designing metal PFLPs on inorganic photocatalyst surfaces, which could contribute to the practical implementation of CO2 photoreduction.
Collapse
Affiliation(s)
- Linqun Yu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Qiushi Wang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Chunqiang Zhuang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jin-Dou Huang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Yongan Zhu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Xuedong Jing
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Yuhang Guo
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Ye-Xiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenyi Zhang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| |
Collapse
|
3
|
Gong X, Jiang S, Dikhtiarenko A, Nastase SAF, Abou-Hamad E, Ye Y, Zhou H, You X, Khairova R, Patarroyo J, Cavallo L, Gascon J, Chowdhury AD. The Paradoxical Influence of Hydrothermally Treated Zeolites on the Hydrocarbon Pool Mechanism. Angew Chem Int Ed Engl 2025; 64:e202414724. [PMID: 39438258 DOI: 10.1002/anie.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Understanding the mechanistic intricacies of hydrothermally treated zeolite is crucial for valorizing any oxygen-containing renewable feedstocks (e. g., methanol, carbon dioxide, biomass). Additionally, the regeneration of deactivated zeolite catalysts under oxidative conditions, akin to hydrothermal treatment, is essential in industrial processes. While research in this area has predominantly focused on characterizing steaming-induced physicochemical changes in zeolite, their ultimate impact on the organic reaction mechanism governed by the hydrocarbon pool dual-cycle mechanism remains unclear. To bridge this knowledge gap, this study investigates the effect of steamed zeolite on the organic reaction mechanism during the industrially significant methanol-to-hydrocarbons process. We achieved this objective by strategically integrating catalytic and control experiments over the pristine and steamed zeolites and their advanced characterization, including under operando conditions, XRD structural refinement, and using "mobility-dependent" solid-state NMR spectroscopy. This multimodal characterization approach was instrumental in elucidating elusive mechanistic information in the dual-cycle mechanism, shedding light on phenomena such as the unchanged ethylene selectivity despite decreasing aromatics selectivity, while ethylene could solely be derived from arene-based reaction intermediates. This study could improve the process efficiency in zeolite catalysis by connecting steaming-induced changes in the organic reaction mechanisms with inorganic material aspects.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Shican Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Alla Dikhtiarenko
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rushana Khairova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Javier Patarroyo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
4
|
Gao G, Li M, Qi X, Cao Y, Zhang W, Ma Y, Tang B. A Highly Selective Ammonia Ratiometric Fluorescence Sensor Based on Multifunctional Metal-Organic Framework Platform with Rich Brønsted Acidic Metal Clusters. Anal Chem 2024; 96:19706-19713. [PMID: 39585964 DOI: 10.1021/acs.analchem.4c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Ammonia is a critical chemical in industry and our daily life, but its corrosiveness and toxicity also require enough attention. With the increasing pursuit of beauty, the safety of cosmetics has aroused widespread concern. Aqueous ammonia has been widely used as a universal additive in cosmetics, especially in different types of hair dye products. However, a high concentration of ammonia is toxic to human beings. In addition, improper treatment and discharge of substances with high ammonia content can also cause pollution of human domestic water. Therefore, it is of great significance to accurately monitor the level of aqueous ammonia in relative cosmetics for safe beauty and in our domestic water for daily health. In this work, a highly selective and sensitive ratiometric fluorescent sensor UiO-66-NH2@O170 was carefully designed to quickly and accurately detect the concentration of aqueous ammonia in different brands of hair dyes and human domestic water. The detection limit was as low as 83.5 nM, and the recovery rate ranged from 98.2 to 102.9%. In addition, while evaluating the actual application performance of the sensor, a novel detection mechanism based on the rich Brønsted acidic response sites on the metal clusters of the fluorescent MOF materials was demonstrated here.
Collapse
Affiliation(s)
- Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
5
|
Yi X, Liu S, Zhao T, Guo X, Zhou K, Ding W, Wang W. Temperature-Programmed Desorption of Single Zeolite Nanoparticles. J Am Chem Soc 2024. [PMID: 39566071 DOI: 10.1021/jacs.4c09274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolites are essential solid acid catalysts in various chemical processes. Temperature-programmed desorption (TPD) is one of the most established techniques used to characterize the acidity of zeolites by measuring the desorption kinetics of probes from bulk samples. However, conventional TPD can hardly deliver the intrinsic acid properties of zeolites because the apparent desorption kinetics are inevitably mixed with mass transfer and thermal conduction due to the large sample amount (∼0.1 g). Herein, we developed an optical microscopy approach to measure the TPD spectra of single zeolite nanoparticles, termed oTPD, by in situ monitoring of the reduced scattering intensity of individuals as a result of the desorption of probe molecules during heating. A significantly reduced sample amount contributed to the oTPD spectrum, revealing an intrinsic desorption temperature of ∼300 °C lower than the apparent value and also a greatly narrowed peak width from ∼150 to ∼15 °C. Correlating oTPD and micro-Raman spectra of the very same individuals further uncovered a linear dependence between the acidity and the content of silicon islands. This study provided unprecedented capabilities for measuring the intrinsic acid properties and the desorption kinetics of single zeolite nanoparticles, with implications for better understanding the structure-acidity relationship and for designing better zeolite catalysts.
Collapse
Affiliation(s)
- Xuannuo Yi
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Taotao Zhao
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangke Guo
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Hong Z, Deng L, Wang F, Zhu F, Fang Y, Song L, Li L, Zhu Z. Intergrowth MFI Zeolite with Inverse Al Zoning and Predominant Sinusoidal Channels for Highly Selective Production of Styrene. Inorg Chem 2024; 63:20888-20899. [PMID: 39425971 DOI: 10.1021/acs.inorgchem.4c03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
ZSM-5 zeolites with accessible micropore architecture and tunable acid-base sites are important shape-selective catalysts. However, the presence of exposed straight channels and the external acid-base sites of conventional ZSM-5 has a negative impact on shape selectivity. Herein, we report on the direct synthesis of an intergrowth ZSM-5 zeolite mimicking the mortise-tenon joints. It can be revealed by various methods that the mortise-tenon ZSM-5 shows an inverse Al gradient from the surface to the core of the zeolite. More importantly, the sinusoidal channels predominantly opened to their external surfaces are constructed. The shape-selective capability of the ZSM-5 zeolite has been fully exploited due to the intrinsic inert external surface and unique sinusoidal channel features, thereby resulting in high styrene selectivity (>90%) and good catalytic stability (>100 h) in the toluene side-chain alkylation reaction. In addition, in situ DRIFTS confirms that this intergrowth ZSM-5 contributes to the formation of more active intermediates of HCOO* and H3CO*, which is another reason responsible for the superior performance.
Collapse
Affiliation(s)
- Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lihua Deng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Fanglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Fangyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yingsen Fang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Li Song
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhirong Zhu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Li T, Yang J, Tan Y, Yue Y, Sun Z, Han M, Peng P, Chen Q. Promoting Catalytic Performance Involving Hydrogen Spillover by Ion Exchange of Pt@A Catalysts to Regulate Reactant Adsorption. Inorg Chem 2024; 63:5120-5131. [PMID: 38456407 DOI: 10.1021/acs.inorgchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Zeolite-encapsulated metal nanoparticle systems have exhibited interesting catalytic performances via the hydrogen spillover process, yet how to further utilize the function of zeolite supports to promote catalytic properties in such a process is still challenging and has rarely been investigated. Herein, to address this issue, the strategy to strengthen the adsorption energy of reactant onto the zeolite surface via a simple ion exchange method has been implemented. Ion-exchanged linde type A (LTA) zeolite-encapsulated platinum nanoclusters (Pt@NaA, Pt@HA, Pt@KA, and Pt@CaA) were prepared to study the influence of ion exchange on the catalytic performance in the model reaction of hydrogenation of acetophenone to 1-phenylethanol. The reaction results showed that the Pt@CaA catalyst exhibited the best catalytic activity in the series of encapsulated catalysts, and the selectivity of 1-phenylethanol approached 100%. As revealed by density functional theory (DFT) calculations and acetophenone temperature-programmed desorption (acetophenone-TPD) experiments, in comparison with introduced cations of Na+, H+, and K+, ion-exchanged Ca2+ on the zeolite maximumly enhanced the adsorption of carbonyl groups in acetophenone, playing a critical role in achieving the highest activity and excellent catalytic selectivity among the Pt@A catalysts.
Collapse
Affiliation(s)
- Tianhao Li
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Jing Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaozong Tan
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaning Yue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Zongyu Sun
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Mengxi Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Pai Peng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Qiang Chen
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| |
Collapse
|
8
|
Filosa C, Gong X, Bavykina A, Chowdhury AD, Gallo JMR, Gascon J. Enabling the Methanol Economy: Opportunities and Challenges for Heterogeneous Catalysis in the Production of Liquid Fuels via Methanol. Acc Chem Res 2023; 56:3492-3503. [PMID: 37991494 DOI: 10.1021/acs.accounts.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
ConspectusThirty years ago, George A. Olah proposed the concept of the methanol economy, where methanol replaces fossil fuels as a means of energy storage, ground transportation fuel, and raw material for the manufacture of other carbon-based products. Over the years, with rising global warming concerns, the concept has evolved. A special interest is devoted to the development of catalytic processes that allow the transformation of carbon dioxide, via methanol, into CO2 neutral liquid hydrocarbons. These products could replace the oil-based fuels currently used by combustion engines. The rapid depletion of such fuels would avoid a considerable amount of CO2 emissions during the current energy transition.Over the past decade, we have focused on different key processes that should allow for maximal atom efficiency and, therefore, minimal energy consumption in a field, CO2 valorization, that can easily become a zero-sum game. In this Account, we highlight the importance of catalyst design to overcome the process challenges in the production of liquid fuels from methanol. Additionally, progress in multifunctional catalysts able to directly convert, in one single reactor, CO2 to liquid fuels is also discussed in detail. This integrated option is of particular interest since it allows an important decrease in operational units while increasing throughput by converting, in situ, a thermodynamically limited intermediate.
Collapse
Affiliation(s)
- Claudia Filosa
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xuan Gong
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Anastasiya Bavykina
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Jean Marcel R Gallo
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Liu K, Ramirez A, Zhang X, Çağlayan M, Gong X, Gascon J, Chowdhury AD. Interplay Between Particle Size and Hierarchy of Zeolite ZSM-5 During the CO 2 -to-aromatics Process. CHEMSUSCHEM 2023; 16:e202300608. [PMID: 37313791 DOI: 10.1002/cssc.202300608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
The CO2 -to-aromatics process is a chemical reaction that converts carbon dioxide (CO2 ) into valuable petrochemical, i. e., aromatics (especially, benzene, toluene, and xylene) over the metal/zeolite bifunctional catalytic systems. These aromatics are used in producing plastics, fibers, and other industrial products, which are currently exclusively sourced from fossil-derived feedstocks. The significance of this process lies in its potential to mitigate climate change by reducing greenhouse gas emissions and simultaneously producing valuable chemicals. Consequently, these CO2 -derived aromatics can reduce the reliance on fossil fuels as a source of feedstocks, which can help to promote a more sustainable and circular economy. Owing to the existence of a wider straight channel favoring the aromatization process, zeolite ZSM-5 is extensively used to yield aromatics during CO2 hydrogenation over bifunctional (metal/zeolite) catalytic systems. To provide a better understanding of this unique property of zeolite ZSM-5, this work investigates the impact of particle size and hierarchy of the zeolite and how these govern the reaction performance and the overall selectivity. As a result, an improved understanding of the zeolite-catalyzed hydrocarbon conversion process has been obtained.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
10
|
Sakha MR, Halimitabrizi P, Soltanali S, Ektefa F, Hajjar Z, Salari D. Sustainable product-based approach in the production of olefins using a dual functional ZSM-5 catalyst. RSC Adv 2023; 13:7514-7523. [PMID: 36908541 PMCID: PMC9993066 DOI: 10.1039/d3ra00037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Investigation of the current industrial processes, such as methanol to olefin (MTO) and hexane to olefin (HTO), in terms of green and sustainable chemistry approaches in order to design the process, catalyst and reactor from the beginning in such a way as to minimize environmental pollution is compulsory. Therefore, the synthesis of a group of multifunctional catalysts, which can be used simultaneously in both industrial processes to produce a variety of products, was studied. The effect of incorporation of different metals (Fe, Mn, Zn, Ga and Al) on the strengthening of each of the products was also studied. The investigation of reactor productivity (WHSVHTO = 25) in HTO showed that the production efficiency of propylene in microchannels is higher than the ideal value for all samples, which is a significant improvement for sustainable approaches in future technologies. Considering the overall performances, Ga-ZM showed the best performance in both processes due to the high P/E ratio. The significant effect of Ga on the increasing of propylene was confirmed in MTO at 400 °C (P/E ≃ ∞), which indicated the dramatic effect of this metal in directing the reaction mechanism to an olefin-based cycle by converting almost all ethylene to propylene by methylation.
Collapse
Affiliation(s)
- Mohsen Rostami Sakha
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz Iran
| | - Parya Halimitabrizi
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz Iran
- Department of Chemical and Petroleum Engineering, University of Tabriz Iran
| | - Saeed Soltanali
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Fatemeh Ektefa
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Zeinab Hajjar
- Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Dariush Salari
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz Iran
| |
Collapse
|
11
|
Liutkova A, Zhang H, Simons JFM, Mezari B, Mirolo M, Garcia GA, Hensen EJM, Kosinov N. Ca Cations Impact the Local Environment inside HZSM-5 Pores during the Methanol-to-Hydrocarbons Reaction. ACS Catal 2023; 13:3471-3484. [PMID: 36970466 PMCID: PMC10028611 DOI: 10.1021/acscatal.3c00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Indexed: 02/25/2023]
Abstract
The methanol-to-hydrocarbons (MTH) process is an industrially relevant method to produce valuable light olefins such as propylene. One of the ways to enhance propylene selectivity is to modify zeolite catalysts with alkaline earth cations. The underlying mechanistic aspects of this type of promotion are not well understood. Here, we study the interaction of Ca2+ with reaction intermediates and products formed during the MTH reaction. Using transient kinetic and spectroscopic tools, we find strong indications that the selectivity differences between Ca/ZSM-5 and HZSM-5 are related to the different local environment inside the pores due to the presence of Ca2+. In particular, Ca/ZSM-5 strongly retains water, hydrocarbons, and oxygenates, which occupy as much as 10% of the micropores during the ongoing MTH reaction. This change in the effective pore geometry affects the formation of hydrocarbon pool components and in this way directs the MTH reaction toward the olefin cycle.
Collapse
Affiliation(s)
- Anna Liutkova
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hao Zhang
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marta Mirolo
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Gustavo A. Garcia
- Synchrotron SOLEIL, L’Orme des Merisiers, St Aubin, B.P. 48, 91192 Gif sur Yvette, France
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
13
|
Gao FE, Liu JY. Synergistic effect of Brønsted/Lewis acid in olefin aromatization during MTO over Zn modified H-SAPO-34 zeolite: A periodic DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Zhang C, Shi XK, Wu CD. Stabilization of Ni 0/Ni II Heterojunctions inside Robust Porous Metal Silicate Materials for High-Performance Catalysis. Inorg Chem 2022; 61:16786-16793. [PMID: 36228321 DOI: 10.1021/acs.inorgchem.2c02624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterostructural nanomaterials demonstrate great potential to replace noble metal-based catalysts because heterojunctions could induce relocalization of electrons and facilitate the migration of electrons and charge carriers at the heterostructural boundary between electron-rich and electron-deficient metal sites; however, the instability of heterojunctions greatly hinders their practical applications. We report herein an effective strategy for the fabrication and stabilization of Ni0/NiII heterojunctions inside a porous metal silicate (PMS) material PMS-22 using a nickel coordination complex as the bifunctional template. The synergistic activity between metallic nickel and nickel silicate in PMS-22 highly boosts the catalytic activity in the hydrogenation of phenol, which could activate phenol at a very low temperature of 50 °C. Most importantly, PMS-22 demonstrates robust stability in catalysis, attributed to the strong interaction and charge transfer between metallic Ni and nickel silicate at the heterointerfaces inside the confined pores. Therefore, this work paves a new pathway to improve the stability and activity of heterostructural nanomaterials for catalytic applications.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Xiao-Ke Shi
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| |
Collapse
|
15
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
16
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Li S, Xu J, Deng F. Influence of zeolite confinement effects on cation-π interactions in methanol-to-hydrocarbon conversion. Chem Commun (Camb) 2022; 58:9242-9245. [PMID: 35899845 DOI: 10.1039/d2cc02216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using 2D 13C-13C correlation MAS NMR spectroscopy and DFT calculations, the nature of cation-π interactions between cyclopentenyl cations and benzene was clarified over H-ZSM-5, H-β and H-SSZ-13 zeolites. The cation-π interactions are favored over H-β and H-SSZ-13 with large channels or cages. The zeolite structure is identified to affect the arrangements of cyclopentenyl cations and benzene in the confined environment, leading to different extents of overlapping of positive-negative charge centers and cation-π interaction strength. The stronger cation-π interactions facilitate the bimolecular reactions between cyclopentenyl cations and benzene and the formation of coke species.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
17
|
Lyu JM, Yu S, Peng Z, Zhou J, Liu Z, Li XY, Yu-Li, Chen LH, Su BL. Control of the proximity of bifunctional zeolite@Al2O3 catalysts for efficient methanol conversion into hydrocarbons. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
He S, Wang S, Fan S, Luo L, Yuan K, Qin Z, Dong M, Wang J, Fan W. Improvement of the catalytic performance of ITQ-13 zeolite in methanol to olefins via Ce modification. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst. Nat Commun 2022; 13:2924. [PMID: 35614036 PMCID: PMC9133034 DOI: 10.1038/s41467-022-30538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
The acid sites of zeolite are important local structures to control the products in the chemical conversion. However, it remains a great challenge to precisely design the structures of acid sites, since there are still lack the controllable methods to generate and identify them with a high resolution. Here, we use the lattice mismatch of the intergrown zeolite to enrich the inherent Lewis acid sites (LASs) at the interface of a mortise-tenon ZSM-5 catalyst (ZSM-5-MT) with a 90° intergrowth structure. ZSM-5-MT is formed by two perpendicular blocks that are atomically resolved by integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM). It can be revealed by various methods that novel framework-associated Al (AlFR) LASs are generated in ZSM-5-MT. Combining the iDPC-STEM results with other characterizations, we demonstrate that the partial missing of O atoms at interfaces results in the formation of inherent AlFR LASs in ZSM-5-MT. As a result, the ZSM-5-MT catalyst shows a higher selectivity of propylene and butene than the single-crystal ZSM-5 in the steady conversion of methanol. These results provide an efficient strategy to design the Lewis acidity in zeolite catalysts for tailored functions via interface engineering. The acid sites are important local structures to determine catalytic performances of zeolites. Here, the authors expand the interface engineering to the field of porous zeolites through the lattice mismatch of the intergrown zeolite to enrich the inherent Lewis acid sites at the interface of a mortise-tenon ZSM-5 catalyst.
Collapse
|
20
|
Gao D, Zhi Y, Cao L, Zhao L, Gao J, Xu C. Optimizing the Acid Properties of the HZSM-5 Catalyst for Increasing the p-Xylene Yield in 1-Hexene Aromatization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Yibo Zhi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liyuan Cao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liang Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Jinsen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| |
Collapse
|
21
|
Liu C, Uslamin EA, Khramenkova E, Sireci E, Ouwehand LTLJ, Ganapathy S, Kapteijn F, Pidko EA. High Stability of Methanol to Aromatic Conversion over Bimetallic Ca,Ga-Modified ZSM-5. ACS Catal 2022; 12:3189-3200. [PMID: 35280436 PMCID: PMC8902757 DOI: 10.1021/acscatal.1c05481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Indexed: 11/29/2022]
Abstract
![]()
The production of
valuable aromatics and the rapid catalyst deactivation
due to coking are intimately related in the zeolite-catalyzed aromatization
reactions. Here, we demonstrate that these two processes can be decoupled
by promoting the Ga/HZSM-5 aromatization catalyst with Ca. The resulting
bimetallic catalysts combine high selectivity to light aromatics with
extended catalyst lifetime in the methanol-to-aromatics process. Evaluation
of the catalytic performance combined with detailed catalyst characterization
suggests that the added Ca interacts with the Ga-LAS, with a strong
effect on the aromatization processes. A genetic algorithm approach
complemented by ab initio thermodynamic analysis is used to elucidate
the possible structures of bimetallic extraframework species formed
under reaction conditions. The promotion effect of minute amounts
of Ca is attributed to the stabilization of the intra-zeolite extraframework
gallium oxide clusters with moderated dehydrogenation activity.
Collapse
Affiliation(s)
- Chuncheng Liu
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Uslamin
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Elena Khramenkova
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Enrico Sireci
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Lucas T. L. J. Ouwehand
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Swapna Ganapathy
- Radiation Science and Technology Department, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Freek Kapteijn
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
22
|
Yang L, Wang C, Dai W, Wu G, Guan N, Li L. Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. FUNDAMENTAL RESEARCH 2022; 2:184-192. [PMID: 38933155 PMCID: PMC11197791 DOI: 10.1016/j.fmre.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the complete reaction network and mechanism of methanol-to-hydrocarbons remains a key challenge in the field of zeolite catalysis and C1 chemistry. Inspired by the identification of the reactive surface methoxy species on solid acids, several direct mechanisms associated with the formation of the first C-C bond in methanol conversion have been recently disclosed. Identifying the stepwise involvement of the initial intermediates containing the first C-C bond in the whole reaction process of methanol-to-hydrocarbons conversion becomes possible and attractive for the further development of this important reaction. Herein, several initial unsaturated aldehydes/ketones containing the C-C bond are identified via complementary spectroscopic techniques. With the combination of kinetic and spectroscopic analyses, a complete roadmap of the zeolite-catalyzed methanol-to-hydrocarbons conversion from the initial C-C bonds to the hydrocarbon pool species via the oxygen-containing unsaturated intermediates is clearly illustrated. With the participation of both Brønsted and Lewis acid sites in H-ZSM-5 zeolite, an initial aldol-cycle is proposed, which can be closely connected to the well-known dual-cycle mechanism in the methanol-to-hydrocarbons conversion.
Collapse
Affiliation(s)
- Liu Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chang Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Liu Z, Zhang Z, Xie D, Guan X, Wang F, Xue B. Preparation of graphitic carbon nitride g-C3N4-HMCM-22 composite catalysts and enhanced para-selectivity in m-xylene isomerization. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation‐Induced Noncovalent Interactions in the Methanol‐to‐Olefins Reaction over ZSM‐5 Zeolite by Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
25
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation-Induced Noncovalent Interactions in the Methanol-to-Olefins Reaction over ZSM-5 Zeolite by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:26847-26854. [PMID: 34636120 DOI: 10.1002/anie.202112948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Ramirez A, Gong X, Caglayan M, Nastase SAF, Abou-Hamad E, Gevers L, Cavallo L, Dutta Chowdhury A, Gascon J. Selectivity descriptors for the direct hydrogenation of CO 2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nat Commun 2021; 12:5914. [PMID: 34625554 PMCID: PMC8501036 DOI: 10.1038/s41467-021-26090-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.
Collapse
Affiliation(s)
- Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xuan Gong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Mustafa Caglayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Stefan-Adrian F Nastase
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Lieven Gevers
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | | | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
27
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
28
|
Chen W, Li G, Yi X, Day SJ, Tarach KA, Liu Z, Liu SB, Edman Tsang SC, Góra-Marek K, Zheng A. Molecular Understanding of the Catalytic Consequence of Ketene Intermediates under Confinement. J Am Chem Soc 2021; 143:15440-15452. [PMID: 34478267 PMCID: PMC8461653 DOI: 10.1021/jacs.1c08036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C-C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Sarah J Day
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Karolina A Tarach
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shang-Bin Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Kinga Góra-Marek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Bornes C, Fischer M, Amelse JA, Geraldes CFGC, Rocha J, Mafra L. What Is Being Measured with P-Bearing NMR Probe Molecules Adsorbed on Zeolites? J Am Chem Soc 2021; 143:13616-13623. [PMID: 34410690 DOI: 10.1021/jacs.1c05014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elucidating the nature, strength, and siting of acid sites in zeolites is fundamental to fathom their reactivity and catalytic behavior. Despite decades of research, this endeavor remains a major challenge. Trimethylphosphine oxide (TMPO) has been proposed as a reliable probe molecule to study the acid properties of solid acid catalysts, allowing the identification of distinct Brønsted and Lewis acid sites and the assessment of Brønsted acid strengths. Recently, doubts have been raised regarding the assignment of the 31P NMR resonances of TMPO-loaded zeolites. Here, it is shown that a judicious control of TMPO loading combined with two-dimensional 1H-31P HETCOR solid-state NMR, DFT, and ab initio molecular dynamics (AIMD)-based computational modeling provides an unprecedented atomistic description of the host-guest and guest-guest interactions of TMPO molecules confined within HZSM-5 molecular-sized voids. 31P NMR resonances usually assigned to TMPO molecules interacting with Brønsted sites of different acid strength arise instead from both changes in the probe molecule confinement effects at ZSM-5 channel system and the formation of protonated TMPO dimers. Moreover, DFT/AIMD shows that the 1H and 31P NMR chemical shifts strongly depend on the siting of the framework aluminum atoms. This work overhauls the current interpretation of NMR spectra, raising important concerns about the widely accepted use of probe molecules for studying acid sites in zeolites.
Collapse
Affiliation(s)
- Carlos Bornes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michael Fischer
- Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Jeffrey A Amelse
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Science and Technology, University of Coimbra, 3000-393 Coimbra, Portugal.,CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, 3000-548 Coimbra, Portugal
| | - João Rocha
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Nastase SAF, Logsdail AJ, Catlow CRA. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Phys Chem Chem Phys 2021; 23:17634-17644. [PMID: 34369957 DOI: 10.1039/d1cp02535j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C2+ species, rather than inter-framework migration, and that the role of carbenes in the formation of the first C-C bond will be via a concerted type of mechanism rather than stepwise.
Collapse
Affiliation(s)
- Stefan A F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT, UK.
| | | | | |
Collapse
|
31
|
Yang L, Wang C, Zhang L, Dai W, Chu Y, Xu J, Wu G, Gao M, Liu W, Xu Z, Wang P, Guan N, Dyballa M, Ye M, Deng F, Fan W, Li L. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nat Commun 2021; 12:4661. [PMID: 34341350 PMCID: PMC8329068 DOI: 10.1038/s41467-021-24403-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
As a commercial MTO catalyst, SAPO-34 zeolite exhibits excellent recyclability probably due to its intrinsic good hydrothermal stability. However, the structural dynamic changes of SAPO-34 catalyst induced by hydrocarbon pool (HP) species and the water formed during the MTO conversion as well as its long-term stability after continuous regenerations are rarely investigated and poorly understood. Herein, the dynamic changes of SAPO-34 framework during the MTO conversion were identified by 1D 27Al, 31P MAS NMR, and 2D 31P-27Al HETCOR NMR spectroscopy. The breakage of T-O-T bonds in SAPO-34 catalyst during long-term continuous regenerations in the MTO conversion could be efficiently suppressed by pre-coking. The combination of catalyst pre-coking and water co-feeding is established to be an efficient strategy to promote the catalytic efficiency and long-term stability of SAPO-34 catalysts in the commercial MTO processes, also sheds light on the development of other high stable zeolite catalyst in the commercial catalysis. Stability of zeolite catalysts is a highly desirable property for commercial methanol to olefins conversion but extremely challenging to achieve. Here, the authors combine the catalyst pre-coking and water co-feeding to develop an efficient strategy to enhance the long-term stability of SAPO-34 catalyst.
Collapse
Affiliation(s)
- Liu Yang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Chang Wang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Lina Zhang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Weili Dai
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China. .,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Mingbin Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Wenjuan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, P. R. China
| | - Naijia Guan
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China.,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China
| | - Michael Dyballa
- Institute of Chemical Technology, University of Stuttgart, Stuttgart, Germany
| | - Mao Ye
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, P. R. China
| | - Landong Li
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China.,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China
| |
Collapse
|
32
|
Li T, Shoinkhorova T, Gascon J, Ruiz-Martínez J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Teng Li
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Tuiana Shoinkhorova
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Valecillos J, Ruiz-Martinez J, Aguayo AT, Castaño P. Combined Ex and In Situ Measurements Elucidate the Dynamics of Retained Species in ZSM-5 and SAPO-18 Catalysts Used in the Methanol-to-Olefins Reaction. Chemistry 2021; 27:6719-6731. [PMID: 33347673 DOI: 10.1002/chem.202004865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/07/2022]
Abstract
The dynamics of the retained species on ZSM-5 and SAPO-18 catalysts are studied by using a combination of temperature-programmed desorption/oxidation, ex situ analysis, and in situ FTIR spectroscopic measurements over the entire conversion range, using fixed-bed and spectroscopic cell reactors, in continuous and discontinuous mode. The results point to the appropriateness of the combined methodologies to track the interconversion of active into deactivating species. A statistically relevant (supported by linear regression and multivariate analysis) association of the observations is found by using the different complementary methodologies. The kinetics of this interconversion depends on the initial conversion (tuned by acidity and space time) and microporous topology, and involve: (i) in the ZSM-5 catalysts, the diffusion of monocyclic aromatics toward the exterior of the zeolite to form coke, and (ii) in the SAPO-18 catalysts, the obstruction of the cavities by aromatics that grow into tetracyclic aromatic islands.
Collapse
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Javier Ruiz-Martinez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal, 23955-6900, Saudi Arabia
| | - Andrés T Aguayo
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Pedro Castaño
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
34
|
Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Lin L, Fan M, Sheveleva AM, Han X, Tang Z, Carter JH, da Silva I, Parlett CMA, Tuna F, McInnes EJL, Sastre G, Rudić S, Cavaye H, Parker SF, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Attfield MP, Liu Y, Tang CC, Han B, Yang S. Control of zeolite microenvironment for propene synthesis from methanol. Nat Commun 2021; 12:822. [PMID: 33547288 PMCID: PMC7865006 DOI: 10.1038/s41467-021-21062-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins. Lower olefins are mainly produced from fossil resources and the methanol-to-olefins process offers a new sustainable pathway. Here, the authors show a new zeolite containing tantalum and aluminium centres which shows simultaneously high propene selectivity, catalytic activity, and stability for the synthesis of propene.
Collapse
Affiliation(s)
- Longfei Lin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Mengtian Fan
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester, UK.,Photon Science Institute, University of Manchester, Manchester, UK
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Zhimou Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Joseph H Carter
- Department of Chemistry, University of Manchester, Manchester, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK
| | - Christopher M A Parlett
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK.,Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK.,University of Manchester at Harwell, Diamond Light Source, Didcot, Oxfordshire, UK.,UK Catalysis Hub, Research Complex at Harwell, Didcot, Oxfordshire, UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, UK.,Photon Science Institute, University of Manchester, Manchester, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, UK.,Photon Science Institute, University of Manchester, Manchester, UK
| | - German Sastre
- Instituto de Tecnologia Quimica, UPV-CSIC Universidad Politecnica de Valencia, Valencia, Spain
| | - Svemir Rudić
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK
| | - Hamish Cavaye
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK
| | - Stewart F Parker
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK.,UK Catalysis Hub, Research Complex at Harwell, Didcot, Oxfordshire, UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | | | - Yueming Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
36
|
Xian X, Chen J, Chu Y, He M, Zhao S, Dong L, Ren J. Unraveling the spatial distribution of the acidity of
HZSM
‐5 zeolite on the level of crystal grains. AIChE J 2021. [DOI: 10.1002/aic.17134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaochao Xian
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Jun Chen
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Yirong Chu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Mengjun He
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Kowloon Hong Kong
| |
Collapse
|
37
|
Sakha MR, Soltanali S, Salari D, Rashidzadeh M, Halimitabrizi P. Synergistic effect of Fe and Ga incorporation into ZSM-5 to increase propylene production in the cracking of n-hexane utilizing a microchannel reactor. NEW J CHEM 2021. [DOI: 10.1039/d1nj01866c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive investigation of the synergistic effect of incorporating Fe and Ga into ZSM-5 in cracking of hexane.
Collapse
Affiliation(s)
- Mohsen Rostami Sakha
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Saeed Soltanali
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Darush Salari
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
| | - Mehdi Rashidzadeh
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Parya Halimitabrizi
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz
- Iran
| |
Collapse
|
38
|
Valecillos J, Elordi G, Aguayo AT, Castaño P. The intrinsic effect of co-feeding water on the formation of active/deactivating species in the methanol-to-hydrocarbons reaction on ZSM-5 zeolite. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02497j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is formed and added in the conversion of methanol to hydrocarbons, slowing down both the reaction and deactivation rates. The retained species that are reaction intermediates and coke precursors are swept/desorbed, particularly those on silanol sites.
Collapse
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Gorka Elordi
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Pedro Castaño
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC)
| |
Collapse
|
39
|
Fu D, Lucini Paioni A, Lian C, Heijden O, Baldus M, Weckhuysen BM. Elucidating Zeolite Channel Geometry–Reaction Intermediate Relationships for the Methanol‐to‐Hydrocarbon Process. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Donglong Fu
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Cheng Lian
- Institute for Theoretical Physics, Utrecht University Princetonplein 5 3584 CC Utrecht The Netherlands
| | - Onno Heijden
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| |
Collapse
|
40
|
Fu D, Lucini Paioni A, Lian C, van der Heijden O, Baldus M, Weckhuysen BM. Elucidating Zeolite Channel Geometry-Reaction Intermediate Relationships for the Methanol-to-Hydrocarbon Process. Angew Chem Int Ed Engl 2020; 59:20024-20030. [PMID: 32761941 PMCID: PMC7692936 DOI: 10.1002/anie.202009139] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Indexed: 11/10/2022]
Abstract
The chemical industry has exploited zeolite shape selectivity for more than 50 years, yet our fundamental understanding remains incomplete. Herein, the zeolite channel geometry-reactive intermediate relationships are studied in detail using anisotropic zeolite ZSM-5 crystals for the methanol-to-hydrocarbon (MTH) process, and advanced magic-angle spinning solid-state NMR (ssNMR) spectroscopy. The utilization of anisotropic ZSM-5 crystals enabled the preferential formation of reaction intermediates in single-orientation zeolite channels, as revealed by molecular dynamics simulations and in situ UV/Vis diffuse-reflectance spectroscopy. The ssNMR results show that the slightly more constrained sinusoidal zeolite channels favor the olefin cycle by promoting the homologation of alkanes, whereas the more extended straight zeolite channels facilitate the aromatic cycle with a higher degree of alkylation of aromatics. Dynamic nuclear polarization experiments further indicate the preferential formation of heavy aromatics at the zeolite surface dominated by the sinusoidal channels, providing further insight into catalyst deactivation.
Collapse
Affiliation(s)
- Donglong Fu
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University3584 CGUtrechtThe Netherlands
| | - Alessandra Lucini Paioni
- NMR SpectroscopyBijvoet Centre for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Cheng Lian
- Institute for Theoretical Physics, Utrecht UniversityPrincetonplein 53584 CCUtrechtThe Netherlands
| | - Onno van der Heijden
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University3584 CGUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Centre for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University3584 CGUtrechtThe Netherlands
| |
Collapse
|
41
|
To AT, Wilke TJ, Nelson E, Nash CP, Bartling A, Wegener EC, Unocic KA, Habas SE, Foust TD, Ruddy DA. Dehydrogenative Coupling of Methanol for the Gas-Phase, One-Step Synthesis of Dimethoxymethane over Supported Copper Catalysts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:12151-12160. [PMID: 38435970 PMCID: PMC10906941 DOI: 10.1021/acssuschemeng.0c03606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Oxymethylene dimethyl ethers (OMEs), CH3-(OCH2)n-OCH3, n = 1-5, possess attractive low-soot diesel fuel properties. Methanol is a key precursor in the production of OMEs, providing an opportunity to incorporate renewable carbon sources via gasification and methanol synthesis. The costly production of anhydrous formaldehyde in the typical process limits this option. In contrast, the direct production of OMEs via a dehydrogenative coupling (DHC) reaction, where formaldehyde is produced and consumed in a single reactor, may address this limitation. We report the gas-phase DHC reaction of methanol to dimethoxymethane (DMM), the simplest OME, with n = 1, over bifunctional metal-acid catalysts based on Cu. A Cu-zirconia-alumina (Cu/ZrAlO) catalyst achieved 40% of the DMM equilibrium-limited yield under remarkably mild conditions (200 °C, 1.7 atm). The performance of the Cu/ZrAlO catalyst was attributed to metallic Cu nanoparticles that enable dehydrogenation and a distribution of acid strengths on the ZrAlO support, which reduced the selectivity to dimethyl ether compared to a that obtained with a Cu/Al2O3 catalyst. The DMM formation rate of 6.1 h-1 compares favorably against well-studied oxidative DHC approaches over non-noble, mixed-metal oxide catalysts. The results reported here set the foundation for further development of the DHC route to OME production, rather than oxidative approaches.
Collapse
Affiliation(s)
- Anh The To
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Trenton J. Wilke
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Eric Nelson
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Connor P. Nash
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Andrew Bartling
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Evan C. Wegener
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United
States
| | - Kinga A. Unocic
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Susan E. Habas
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Thomas D. Foust
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| | - Daniel A. Ruddy
- National
Bioenergy Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United
States
| |
Collapse
|
42
|
Nastase SAF, Cnudde P, Vanduyfhuys L, De Wispelaere K, Van Speybroeck V, Catlow CRA, Logsdail AJ. Mechanistic Insight into the Framework Methylation of H-ZSM-5 for Varying Methanol Loadings and Si/Al Ratios Using First-Principles Molecular Dynamics Simulations. ACS Catal 2020; 10:8904-8915. [PMID: 32923027 PMCID: PMC7479850 DOI: 10.1021/acscatal.0c01454] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Indexed: 11/29/2022]
Abstract
![]()
The
methanol-to-hydrocarbon process is known to proceed autocatalytically
in H-ZSM-5 after an induction period where framework methoxy species
are formed. In this work, we provide mechanistic insight into the
framework methylation within H-ZSM-5 at high methanol loadings and
varying acid site densities by means of first-principles molecular
dynamics simulations. The molecular dynamics simulations show that
stable methanol clusters form in the zeolite pores, and these clusters
commonly deprotonate the active site; however, the cluster size is
dependent on the temperature and acid site density. Enhanced sampling
molecular dynamics simulations give evidence that the barrier for
methanol conversion is significantly affected by the neighborhood
of an additional acid site, suggesting that cooperative effects influence
methanol clustering and reactivity. The insights obtained are important
steps in optimizing the catalyst and engineering the induction period
of the methanol-to-hydrocarbon process.
Collapse
Affiliation(s)
- Stefan A. F. Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Ghent 9000, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Ghent 9000, Belgium
| | | | | | - C. Richard A. Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxford OX11 0FA, U.K
| | - Andrew J. Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
43
|
Bailleul S, Dedecker K, Cnudde P, Vanduyfhuys L, Waroquier M, Van Speybroeck V. Ab initio enhanced sampling kinetic study on MTO ethene methylation reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Fu T, Wang Y, Li Z. Surface-Protection-Induced Controllable Restructuring of Pores and Acid Sites of the Nano-ZSM-5 Catalyst and Its Influence on the Catalytic Conversion of Methanol to Hydrocarbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3737-3749. [PMID: 32239942 DOI: 10.1021/acs.langmuir.0c00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Creating mesopores for the nano-ZSM-5 catalyst could further promote the diffusion of molecules in its micropores and improve the catalytic activity and stability. Inorganic alkali treatment of ZSM-5 usually removes internal silica for the existence of an aluminum distribution gradient and leads to a hollow structure. Herein, surface TPA+ adsorption-induced protective desilication and recrystallization successively occurred during hydrothermal treatment, and controllable mesopore fabrication was achieved. The evolution of mesopores and acid sites was characterized by N2 physisorption, XRD, XRF, TEM, NH3-TPD, Py-IR, 27Al MAS NMR, 29Si MAS NMR, and TG techniques. It was found that the TPAOH concentration influenced the formation of internal cavity and mesopores in the shell. Introducing TPABr into TPAOH solution increased the surface protection because of the increased TPA+ adsorption, and coated hollow ZSM-5 was obtained. The acidity was restructured during the above mesopore fabrication. High-concentration TPAOH solution promoted the insertion of destructive Al into the skeleton structure to form strong acid sites, and the catalytic lifetime was recovered and even obviously prolonged. This reflected the key role of strong acid sites on the catalytic performance. Applying hollow nano-ZSM-5 with a mesoporous shell and strong acidity increased the lifetime by 50% and the conversion capacity for liquid hydrocarbon by 20% compared to the parent sample.
Collapse
Affiliation(s)
- Tingjun Fu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yujie Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhong Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
45
|
Wang C, Xu J, Deng F. Mechanism of Methanol‐to‐hydrocarbon Reaction over Zeolites: A solid‐state NMR Perspective. ChemCatChem 2020. [DOI: 10.1002/cctc.201901937] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
46
|
Dokania A, Dutta Chowdhury A, Ramirez A, Telalovic S, Abou-Hamad E, Gevers L, Ruiz-Martinez J, Gascon J. Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|