1
|
Holtz M, Rago D, Nedermark I, Hansson FG, Lehka BJ, Hansen LG, Marcussen NEJ, Veneman WJ, Ahonen L, Wungsintaweekul J, Acevedo-Rocha CG, Dirks RP, Zhang J, Keasling JD, Jensen MK. Metabolic engineering of yeast for de novo production of kratom monoterpene indole alkaloids. Metab Eng 2024; 86:135-146. [PMID: 39366478 DOI: 10.1016/j.ymben.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Monoterpene indole alkaloids (MIAs) from Mitragyna speciosa ("kratom"), such as mitragynine and speciogynine, are promising novel scaffolds for opioid receptor ligands for treatment of pain, addiction, and depression. While kratom leaves have been used for centuries in South-East Asia as stimulant and pain management substance, the biosynthetic pathway of these psychoactives have only recently been partially elucidated. Here, we demonstrate the de novo production of mitragynine and speciogynine in Saccharomyces cerevisiae through the reconstruction of a five-step synthetic pathway from common MIA precursor strictosidine comprising fungal tryptamine 4-monooxygenase to bypass an unknown kratom hydroxylase. Upon optimizing cultivation conditions, a titer of ∼290 μg/L kratom MIAs from glucose was achieved. Untargeted metabolomics analysis of lead production strains led to the identification of numerous shunt products derived from the activity of strictosidine synthase (STR) and dihydrocorynantheine synthase (DCS), highlighting them as candidates for enzyme engineering to further improve kratom MIAs production in yeast. Finally, by feeding fluorinated tryptamine and expressing a human tailoring enzyme, we further demonstrate production of fluorinated and hydroxylated mitragynine derivatives with potential applications in drug discovery campaigns. Altogether, this study introduces a yeast cell factory platform for the biomanufacturing of complex natural and new-to-nature kratom MIAs derivatives with therapeutic potential.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ida Nedermark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nils E J Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Linda Ahonen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Juraithip Wungsintaweekul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai Campus, 90112, Songkhla, Thailand
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, 2333 BE, the Netherlands
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA, USA.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Yin HN, Wang PC, Liu Z. Recent advances in biocatalytic C-N bond-forming reactions. Bioorg Chem 2024; 144:107108. [PMID: 38244379 DOI: 10.1016/j.bioorg.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Molecules containing C-N bonds are of paramount importance in a diverse array of organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Biocatalytic C-N bond-forming reactions represent powerful strategies for producing these valuable targets, and their significance in the field of synthetic chemistry has steadily increased over the past decade. In this review, we provide a concise overview of recent advancements in the development of C-N bond-forming enzymes, with a particular emphasis on the inherent chemistry involved in these enzymatic processes. Overall, these enzymatic systems have proven their potential in addressing long-standing challenges in traditional small-molecule catalysis.
Collapse
Affiliation(s)
- Hong-Ning Yin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Nitin K, Rajakumara E. Proxy-approach in understanding the bisubstrate activity of strictosidine synthases. Int J Biol Macromol 2024; 262:130091. [PMID: 38354931 DOI: 10.1016/j.ijbiomac.2024.130091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Besides tryptamine (1) and secologanin (2), non-cognate substrates also undergo a Pictet-Spengler reaction (PSR) catalyzed by strictosidine synthases (STR) with differing catalytic properties. We characterized the bisubstrate binding aspect of catalysis - order, affinity, and cooperativity - with STR orthologs from Rauvolfia serpentina (RsSTR) and Ophiorrhiza pumila (OpSTR) by an isothermal titration calorimetry (ITC) based 'proxy approach' that employed a non-reactive tryptamine analog (m1) to capture its inert ternary complexes with STRs and (2). ITC studies with OpSTR and (2) revealed 'tryptamine-first' cooperative binding with (1) and a simultaneous cooperative binding with (m1). Binding cooperativity among (m1) and (2) towards OpSTR was higher than RsSTR. Crystallographic study of RsSTR-(m1) complex helped to understand the unreactive binding of (m1) in terms of orientation and interactions in the RsSTR pocket. PSR with (m1) was revealed to be energetically unfeasible by the density functional theory (DFT) scans of the first hydrogen abstraction by RsSTR. The effect of pH on the bisubstrate binding to OpSTR was deciphered by molecular dynamics simulations (MDS), which also provided a molecular basis for the stability of complex of OpSTR with (m1) and (2). Therefore, we investigated STRs from a substrate binding perspective to inform drug-design and rational enzyme engineering efforts.
Collapse
Affiliation(s)
- Kulhar Nitin
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502284, Telangana, India.
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
4
|
Mou M, Zhang C, Zhang S, Chen F, Su H, Sheng X. Uncovering the Mechanism of Azepino-Indole Skeleton Formation via Pictet-Spengler Reaction by Strictosidine Synthase: A Quantum Chemical Investigation. ChemistryOpen 2023; 12:e202300043. [PMID: 37248801 PMCID: PMC10233217 DOI: 10.1002/open.202300043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Strictosidine synthase (STR) catalyzes the Pictet-Spengler (PS) reaction of tryptamine and secologanin to produce strictosidine. Recent studies demonstrated that the enzyme can also catalyze the reaction of non-natural substrates to form new alkaloid skeletons. For example, the PS condensation of 1H-indole-4-ethanamine with secologanin could be promoted by the STR from Rauvolfia serpentina (RsSTR) to generate a rare class of skeletons with a seven-membered ring, namely azepino-[3,4,5-cd]-indoles, which are precursors for the synthesis of new compounds displaying antimalarial activity. In the present study, the detailed reaction mechanism of RsSTR-catalyzed formation of the rare seven-membered azepino-indole skeleton through the PS reaction was revealed at the atomic level by quantum chemical calculations. The structures of the transition states and intermediates involved in the reaction pathway were optimized, and the energetics of the complete reaction were analyzed. Based on our calculation results, the most likely pathway of the enzyme-catalyzed reaction was determined, and the rate-determining step of the reaction was clarified. The mechanistic details obtained in the present study are important in understanding the promiscuous activity of RsSTR in the formation of the rare azepino-indole skeleton molecule and are also helpful in designing STR enzymes for the synthesis of other new alkaloid skeleton molecules.
Collapse
Affiliation(s)
- Mingqi Mou
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
| | - Chenghua Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- School of PharmacyNorth Sichuan Medical CollegeNanchong637100P.R. China
| | - Shiqing Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| | - Fuqiang Chen
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
| | - Hao Su
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| |
Collapse
|
5
|
Kulhar N, Rajakumara E. Binding order and apparent binding affinity in the bisubstrate activity of strictosidine synthase. J Biomol Struct Dyn 2023; 41:15634-15646. [PMID: 36943789 DOI: 10.1080/07391102.2023.2193643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The Rauvolfia serpentina strictosidine synthase (RsSTR) enzyme with a bisubstrate activity is central to monoterpenoid indole alkaloid (MIA) biosynthesis pathways, as it stereoselectively condenses the terpenoid and indole metabolites, secologanin and tryptamine, respectively, into strictosidine. Here, cooperativity was aimed to be deciphered by proxy with help of a non-substrate tryptamine analog (decoy compound) to allow a bisubstrate binding without reaction, facilitating an isothermal titration calorimetry (ITC)-based analysis of the effect of the presence of one substrate on the binding of the other. Tryptamine and tryptamine analog bound to RsSTR with similar binding affinities (Kd). On the contrary, ITC revealed an exothermic titration of secologanin to RsSTR but could not fully quantify it because of weak binding. Interestingly, secologanin bound to RsSTR with an apparent binding affinity (Kd,app) of 212.1 μM in the presence of the decoy compound, as opposed to a lack of binding to RsSTR alone, strongly suggesting a "tryptamine-first" mode of binding. Conversely, binding of tryptamine analog in the presence of secologanin was enhanced >3-fold. Further, molecular dynamics simulation (MDS) analyses revealed the conformational flexibility needed for such cooperativity. Our binding studies complemented with the computational analyses suggested cooperativity in the ordered bisubstrate binding to RsSTR. Therefore, understanding thermodynamics and cooperativity in the binding of substrates or ligands would help to unravel the mechanism of enzyme catalysis and ligand-receptor interactions, and would guide the redesign of enzymes for enhanced properties and the design of inhibitors against enzymes and receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nitin Kulhar
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
6
|
Jiang CX, Yu JX, Fei X, Pan XJ, Zhu NN, Lin CL, Zhou D, Zhu HR, Qi Y, Wu ZG. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. Int J Biol Macromol 2023; 226:1360-1373. [PMID: 36442554 DOI: 10.1016/j.ijbiomac.2022.11.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Plant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.
Collapse
Affiliation(s)
- Cheng-Xi Jiang
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Jia-Xing Yu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Fei
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Jun Pan
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Ning-Ning Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Chong-Liang Lin
- The 1(st) Affiliated Hospital of WMU, The 1(st) School of Medicine, Wenzhou Medical University, Wenzhou 325025, China
| | - Dan Zhou
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao-Ru Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Qi
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhi-Gang Wu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Elucidation of the 1-phenethylisoquinoline pathway from an endemic conifer Cephalotaxus hainanensis. Proc Natl Acad Sci U S A 2023; 120:e2209339120. [PMID: 36577068 PMCID: PMC9910586 DOI: 10.1073/pnas.2209339120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cephalotaxines harbor great medical potential, but their natural source, the endemic conifer Cephalotaxus is highly endangered, creating a conflict between biotechnological valorization and preservation of biodiversity. Here, we construct the whole biosynthetic pathway to the 1-phenethylisoquinoline scaffold, as first committed compound for phenylethylisoquinoline alkaloids (PIAs), combining metabolic modeling, and transcriptome mining of Cephalotaxus hainanensis to infer the biosynthesis for PIA precursor. We identify a novel protein, ChPSS, driving the Pictet-Spengler condensation and show that this enzyme represents the branching point where PIA biosynthesis diverges from the concurrent benzylisoquinoline-alkaloids pathway. We also pinpoint ChDBR as crucial step to form 4-hydroxydihydrocinnamaldehyde diverging from lignin biosynthesis. The elucidation of the early PIA pathway represents an important step toward microbe-based production of these pharmaceutically important alkaloids resolving the conflict between biotechnology and preservation of biodiversity.
Collapse
|
8
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
9
|
Zhao X, Hu X, OuYang K, Yang J, Que Q, Long J, Zhang J, Zhang T, Wang X, Gao J, Hu X, Yang S, Zhang L, Li S, Gao W, Li B, Jiang W, Nielsen E, Chen X, Peng C. Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:891-908. [PMID: 34807496 DOI: 10.1111/tpj.15600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Neolamarckia cadamba (Roxb.), a close relative of Coffea canephora and Ophiorrhiza pumila, is an important traditional medicine in Southeast Asia. Three major glycosidic monoterpenoid indole alkaloids (MIAs), cadambine and its derivatives 3β-isodihydrocadambine and 3β-dihydrocadambine, accumulate in the bark and leaves, and exhibit antimalarial, antiproliferative, antioxidant, anticancer and anti-inflammatory activities. Here, we report a chromosome-scale N. cadamba genome, with 744.5 Mb assembled into 22 pseudochromosomes with contig N50 and scaffold N50 of 824.14 Kb and 29.20 Mb, respectively. Comparative genomic analysis of N. cadamba with Co. canephora revealed that N. cadamba underwent a relatively recent whole-genome duplication (WGD) event after diverging from Co. canephora, which contributed to the evolution of the MIA biosynthetic pathway. We determined the key intermediates of the cadambine biosynthetic pathway and further showed that NcSTR1 catalyzed the synthesis of strictosidine in N. cadamba. A new component, epoxystrictosidine (C27H34N2O10, m/z 547.2285), was identified in the cadambine biosynthetic pathway. Combining genome-wide association study (GWAS), population analysis, multi-omics analysis and metabolic gene cluster prediction, this study will shed light on the evolution of MIA biosynthetic pathway genes. This N. cadamba reference sequence will accelerate the understanding of the evolutionary history of specific metabolic pathways and facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants.
Collapse
Affiliation(s)
- Xiaolan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, Beijing, 100083, China
| | - Kunxi OuYang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingmin Que
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayu Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinquan Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lisu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Benping Li
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, Beijing, 100083, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, Beijing, 100083, China
| | - Erik Nielsen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Changcao Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Liu H, Panjikar S, Sheng X, Futamura Y, Zhang C, Shao N, Osada H, Zou H. β-Methyltryptamine Provoking the Crucial Role of Strictosidine Synthase Tyr151-OH for Its Stereoselective Pictet-Spengler Reactions to Tryptoline-type Alkaloids. ACS Chem Biol 2022; 17:187-197. [PMID: 34994203 DOI: 10.1021/acschembio.1c00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strictosidine synthase (STR), the gate enzyme for monoterpenoid indole alkaloid biosynthesis, catalyzes the Pictet-Spengler reaction (PSR) of various tryptamine derivatives with secologanin assisted by "indole sandwich" stabilization. Continuous exploration with β-methyltryptamine (IPA) stereoselectively delivered the C6-methylstrictosidines and C6-methylvincosides by enzymatic and nonenzymatic PSR, respectively. Unexpectedly, the first "nonindole sandwich" binding mode was witnessed by the X-ray structures of STR1-ligand complexes. Site-directed mutagenesis revealed the critical cryptic role of the hydroxyl group of Tyr151 in IPA biotransformation. Further computational calculations demonstrated the adjustable IPA position in STR1 upon the binding of secologanin, and Tyr151-OH facilitates the productive PSR binding mode via an advantageous hydrogen-bond network. Further chemo-enzymatic manipulation of C6-methylvincosides successfully resulted in the discovered antimalarial framework (IC50 = 0.92 μM).
Collapse
Affiliation(s)
- Haicheng Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Santosh Panjikar
- Australia & Department of Molecular Biology and Biochemistry, Monash University, ANSTO, Australian Synchrotron, 800 Blackburn Road, Victoria 3168, Australia
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, & National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chenghua Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, & National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
- School of Basic Medical Sciences, North Sichuan Medical College, No. 55 Dongshun Road, Gaoping District, Nanchong 637000, China
| | - Nana Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
11
|
Boccia M, Grzech D, Lopes AA, O’Connor SE, Caputi L. Directed Biosynthesis of New to Nature Alkaloids in a Heterologous Nicotiana benthamiana Expression Host. FRONTIERS IN PLANT SCIENCE 2022; 13:919443. [PMID: 35812900 PMCID: PMC9257203 DOI: 10.3389/fpls.2022.919443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 05/17/2023]
Abstract
Plants produce a wide variety of pharmacologically active molecules classified as natural products. Derivatization of these natural products can modulate or improve the bioactivity of the parent compound. Unfortunately, chemical derivatization of natural products is often difficult or impractical. Here we use the newly discovered biosynthetic genes for two monoterpene indole alkaloids, alstonine and stemmadenine acetate, to generate analogs of these compounds. We reconstitute these biosynthetic genes in the heterologous host Nicotiana benthamiana along with an unnatural starting substrate to produce the corresponding new-to-nature alkaloid product.
Collapse
Affiliation(s)
- Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Adriana A. Lopes
- Biotechnology Unit, Universidade de Ribeirão Preto (UNAERP), Ribeirão Preto, Brazil
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Sarah E. O’Connor,
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Lorenzo Caputi,
| |
Collapse
|
12
|
Darwish KM, Abdelwaly A, Atta AM, Helal MA. Discovery of tetrahydro-β-carboline- and indole-based derivatives as promising phosphodiesterase-4 inhibitors: Synthesis, biological evaluation, and molecular modeling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhu H, Cai Y, Ma S, Futamura Y, Li J, Zhong W, Zhang X, Osada H, Zou H. Privileged Biorenewable Secologanin-Based Diversity-Oriented Synthesis for Pseudo-Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. CHEMSUSCHEM 2021; 14:5320-5327. [PMID: 34636473 DOI: 10.1002/cssc.202101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bioprivileged molecules hold great promise for supplementing petrochemicals in sustainable organic synthesis of a diverse bioactive products library. Secologanin, a biorenewable monoterpenoid glucoside with unique structural elements, is the key precursor for thousands of natural monoterpenoid alkaloids. Inspired by its inherent highly congested functional groups, a secologanin-based diversity-oriented synthesis (DOS) strategy for novel pseudo-natural alkaloids was developed. All the reactive units of secologanin were involved in these operation simplicity protocols under mild reaction conditions, including the one-step enantioselective transformation of exocyclic C8, C8/C11, and C8/C9/C10 as well as the chemoenzymatic manipulation of endocyclic C2/C6 via the attack by various nucleophiles. A combinatory scenario of the aforementioned reactions further provided diverse polycyclic products with multiple chiral centers. Preliminary activity screening of these newly constructed molecules led to the discovery of antimalarial and highly potent neuroprotective skeletons. The application of green biorenewable secologanin in diversity-oriented pseudo-natural monoterpenoid alkaloid synthesis might encourage the pursuit of valuable bioactive frameworks.
Collapse
Affiliation(s)
- Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunrui Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shijia Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
14
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4-Dihydro-β-carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021; 60:25135-25142. [PMID: 34581483 DOI: 10.1002/anie.202112383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/21/2022]
Abstract
Chiral tetrahydro-β-carboline (THβC) is not only a prevailing structural feature of many natural alkaloids but also a versatile synthetic precursor for a vast array of monoterpenoid indole alkaloids. Asymmetric synthesis of C1-alkynyl THβCs remains rarely explored and challenging. Herein, we describe the development of two complementary approaches for the catalytic asymmetric alkynylation of 3,4-dihydro-β-carbolinium ions with up to 96 % yield and 99 % ee. The utility of chiral C1-alkynyl THβCs was demonstrated by the collective total syntheses of seven indole alkaloids: harmicine, eburnamonine, desethyleburnamonine, larutensine, geissoschizol, geissochizine, and akuammicine.
Collapse
Affiliation(s)
- Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shiqiang Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4‐Dihydro‐β‐carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Shiqiang Zhou
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Wei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Rongbiao Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
16
|
Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and β-carboline alkaloids. Chin J Nat Med 2021; 19:591-607. [PMID: 34419259 DOI: 10.1016/s1875-5364(21)60059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/21/2022]
Abstract
Terpenoid indole (TIAs) and β-carboline alkaloids (BCAs), such as suppressant reserpine, vasodilatory yohimbine, and antimalarial quinine, are natural compounds derived from strictosidine. These compounds can exert powerful pharmacological effects but be obtained from limited source in nature. the whole biosynthetic pathway of TIAs and BCAs, The Pictet-Spengler reaction catalyzed by strictosidine synthase (STR; EC: 4.3.3.2) is the rate-limiting step. Therefore, it is necessary to investigate their biosynthesis pathways, especially the role of STR, and related findings will support the biosynthetic generation of natural and unnatural compounds. This review summarizes the latest studies concerning the function of STR in TIA and BCA biosynthesis, and illustrates the compounds derived from strictosidine. The substrate specificity of STR based on its structure is also summarized. Proteins that contain six-bladed four-stranded β-propeller folds in many organisms, other than plants, are listed. The presence of these folds may lead to similar functions among organisms. The expression of STR gene can greatly influence the production of many compounds. STR is mainly applied to product various valuable drugs in plant cell suspension culture and biosynthesis in other carriers.
Collapse
|
17
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
18
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
20
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
21
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
22
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Yu S, Li J, Yao P, Feng J, Cui Y, Li J, Liu X, Wu Q, Lin J, Zhu D. Inverting the Enantiopreference of Nitrilase‐Catalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirror‐Image Strategy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinlong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianjiong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xiangtao Liu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianping Lin
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
24
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
25
|
Yu S, Li J, Yao P, Feng J, Cui Y, Li J, Liu X, Wu Q, Lin J, Zhu D. Inverting the Enantiopreference of Nitrilase‐Catalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirror‐Image Strategy. Angew Chem Int Ed Engl 2020; 60:3679-3684. [DOI: 10.1002/anie.202012243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinlong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianjiong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xiangtao Liu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianping Lin
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
26
|
Eger E, Schrittwieser JH, Wetzl D, Iding H, Kuhn B, Kroutil W. Asymmetric Biocatalytic Synthesis of 1-Aryltetrahydro-β-carbolines Enabled by "Substrate Walking". Chemistry 2020; 26:16281-16285. [PMID: 33017078 PMCID: PMC7756766 DOI: 10.1002/chem.202004449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Stereoselective catalysts for the Pictet-Spengler reaction of tryptamines and aldehydes may allow a simple and fast approach to chiral 1-substituted tetrahydro-β-carbolines. Although biocatalysts have previously been employed for the Pictet-Spengler reaction, not a single one accepts benzaldehyde and its substituted derivatives. To address this challenge, a combination of substrate walking and transfer of beneficial mutations between different wild-type backbones was used to develop a strictosidine synthase from Rauvolfia serpentina (RsSTR) into a suitable enzyme for the asymmetric Pictet-Spengler condensation of tryptamine and benzaldehyde derivatives. The double variant RsSTR V176L/V208A accepted various ortho-, meta- and para-substituted benzaldehydes and produced the corresponding chiral 1-aryl-tetrahydro-β-carbolines with up to 99 % enantiomeric excess.
Collapse
Affiliation(s)
- Elisabeth Eger
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
| | - Joerg H. Schrittwieser
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
| | - Dennis Wetzl
- Process Chemistry & CatalysisF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Hans Iding
- Process Chemistry & CatalysisF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Bernd Kuhn
- Pharma Research & Early DevelopmentF. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/II8010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
| |
Collapse
|
27
|
Roddan R, Sula A, Méndez-Sánchez D, Subrizi F, Lichman BR, Broomfield J, Richter M, Andexer JN, Ward JM, Keep NH, Hailes HC. Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Commun Chem 2020; 3:170. [PMID: 36703392 PMCID: PMC9814250 DOI: 10.1038/s42004-020-00416-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet-Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48-99%) and e.e.s (79-95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs.
Collapse
Affiliation(s)
- Rebecca Roddan
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Altin Sula
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Daniel Méndez-Sánchez
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Benjamin R Lichman
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, WC1E 6BT, UK
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Joseph Broomfield
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Schulgasse 11a, 94315, Straubing, Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - John M Ward
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, WC1E 6BT, UK.
| | - Nicholas H Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| | - Helen C Hailes
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
28
|
Sheng X, Himo F. Computational Study of Pictet–Spenglerase Strictosidine Synthase: Reaction Mechanism and Origins of Enantioselectivity of Natural and Non-Natural Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
29
|
Goodsell DS, Sanner MF, Olson AJ, Forli S. The AutoDock suite at 30. Protein Sci 2020; 30:31-43. [PMID: 32808340 DOI: 10.1002/pro.3934] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The AutoDock suite provides a comprehensive toolset for computational ligand docking and drug design and development. The suite builds on 30 years of methods development, including empirical free energy force fields, docking engines, methods for site prediction, and interactive tools for visualization and analysis. Specialized tools are available for challenging systems, including covalent inhibitors, peptides, compounds with macrocycles, systems where ordered hydration plays a key role, and systems with substantial receptor flexibility. All methods in the AutoDock suite are freely available for use and reuse, which has engendered the continued growth of a diverse community of primary users and third-party developers.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.,Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Michel F Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
30
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
31
|
Sakamoto J, Umeda Y, Rakumitsu K, Sumimoto M, Ishikawa H. Total Syntheses of (−)‐Strictosidine and Related Indole Alkaloid Glycosides. Angew Chem Int Ed Engl 2020; 59:13414-13422. [DOI: 10.1002/anie.202005748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jukiya Sakamoto
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yuhei Umeda
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Kenta Rakumitsu
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Michinori Sumimoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University 2-16-1, Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Hayato Ishikawa
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- Faculty of Advanced Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
32
|
Sakamoto J, Umeda Y, Rakumitsu K, Sumimoto M, Ishikawa H. Total Syntheses of (−)‐Strictosidine and Related Indole Alkaloid Glycosides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jukiya Sakamoto
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yuhei Umeda
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Kenta Rakumitsu
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Michinori Sumimoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University 2-16-1, Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Hayato Ishikawa
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- Faculty of Advanced Science and Technology Kumamoto University 2-39-1, Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|