1
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
3
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Xie Q, Wang X, Zhang G, Zhou D, Zhao Y, Liu H, Duan J, Yu D, Sang Y. Ultrasmall Fe 3O 4 nanoparticles self-assembly induced dual-mode T 1/T 2-weighted magnetic resonance imaging and enhanced tumor synergetic theranostics. Sci Rep 2024; 14:10646. [PMID: 38724530 PMCID: PMC11082189 DOI: 10.1038/s41598-024-59525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.
Collapse
Affiliation(s)
- Qinghua Xie
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Shandong BIOBASE Biology Co., Ltd, Jinan, 250000, Shandong, China
| | - Xuemei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Qingzhou Peoples`S Hospital, Qingzhou, 262500, Shandong, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Dawei Zhou
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Yuxuan Zhao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China.
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
5
|
Wu L, Lu X, Lu Y, Shi M, Guo S, Feng J, Yang S, Xiong W, Xu Y, Yan C, Shen Z. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T 1-Weighted Contrast Agent for Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308547. [PMID: 37988646 DOI: 10.1002/smll.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.
Collapse
Affiliation(s)
- Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Meng Shi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
6
|
Bok I, Rauch B, Ashtiani A, Hai A. Direct observation of NMR transverse relaxation in nanopatterned clusters of iron oxide particles. Magn Reson Med 2024; 91:687-698. [PMID: 37867452 PMCID: PMC11489851 DOI: 10.1002/mrm.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE We aim to verify predictions showing T2 relaxation rate of nanoparticle clusters and its dependence on spacing, size, geometry, and pulse sequence. METHODS We performed a laboratory validation study using nanopatterned arrays of iron oxide nanoparticles to precisely control cluster geometry and image diverse samples using a 4.7T MRI scanner with a T2 -weighted fast spin-echo multislice sequence. We applied denoising and normalization to regions of interest and estimated relative R2 for each relevant nanoparticle array or nanocluster array. We determined significance using an unpaired two-tailed t-test or one-way analysis of variance and performed curve fitting. RESULTS We measured a density-dependent T2 effect (p = 8.9976 × 10-20 , one-way analysis of variance) and insignificant effect of cluster anisotropy (p = 0.5924, unpaired t-test) on T2 relaxation. We found negative quadratic relationships (-0.0045[log τD ]2 -0.0655[log τD ]-2.7800) for single nanoparticles of varying sizes and for clusters (-0.0045[log τD ]2 -0.0827[log τD ]-2.3249) for diffusional correlation time τD = rp 2 /D. Clusters show positive quadratic relationships for large (3.8615 × 10-6 [dpp /rp ]2 -9.3853 × 10-5 [dpp /rp ]-2.0393) and exponential relationships for small (-2.0050[dpp /rp ]0.0010 ) clusters. Calculated R2 peak values also align well with in silico predictions (7.85 × 10-4 ms compared with 1.47 × 10-4 , 4.23 × 10-4 , and 5.02 × 10-4 ms for single iron oxide nanoparticles, 7.88 × 10-4 ms compared with 5.24 × 10-4 ms for nanoparticle clusters). CONCLUSION Our verification affirms longstanding in silico predictions and demonstrates aggregation-dependent behavior in agreement with previous Monte Carlo simulation studies.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Electrical and Computer Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, USA
| | - Beth Rauch
- Department of Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Electrical and Computer Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, USA
| |
Collapse
|
7
|
Chen M, Liu T, Li W, Li Y, Zhong P, Yan H, Kong J, Liang W. Empowering Cartilage Restructuring with Biodegradable Magnesium Doped-Silicon Based-Nanoplatforms: Sustained Delivery and Enhanced Differentiation Potential. Int J Nanomedicine 2024; 19:491-506. [PMID: 38250188 PMCID: PMC10800145 DOI: 10.2147/ijn.s446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Background Cartilage-related diseases, such as hypoplastic chondrodysplasia a rare genetic disorder that affects newborns, causing abnormal cartilage development and restricted skeletal growth. However, the development of effective treatment strategies for chondrodysplasia still faces significant challenges due to limitations in the controlled drug delivery, biocompatibility, and biodegradability of nanomedicines. Methods A biodegradable magnesium doped-silicon based-nanoplatforms based on silicon nanoparticles (MON) was constructed. Briefly, the MON was modified with sulfhydryl groups using MPTMS to form MOS. Further engineering of MOS was achieved by incorporating Mg2+ ions through the "dissolution-regrowth" method, resulting in MMOS. Ica was effectively loaded into the MMOS channels, and HA was anchored on the surface of MOS to obtain MMOS-Ica@HA nanoplatforms. Additionally, in vitro cell experiments and in vivo zebrafish embryo models were used to evaluate the effect of the nanoplatforms on cartilage differentiation or formation and the efficiency of treating chondrodysplasia. Results A series of characterization tests including TEM, SEM, DLS, XPS, EDX, and BET analysis validate the successful preparation of MOS-Ica@HA nanoplatforms. The prepared nanoplatforms show excellent dispersion and controllable drug release behavior. The cytotoxicity evaluation reveals the good biocompatibility of MOS-Ica@HA due to the sustained and controllable release of Ica. Importantly, the presence of Ica and Mg component in MOS-Ica@HA significantly promote chondrogenic differentiation of BMSCs via the Smad5/HIF-1α signaling pathway. In vitro and in vivo experiments confirmed that the nanoplatforms improved chondrodysplasia by promoting cartilage differentiation and formation. Conclusion The findings suggest the potential application of the developed biodegradable MMOS-Ica@HA nanoplatforms with acceptable drug loading capacity and controlled drug release in chondrodysplasia treatment, which indicates a promising approach for the treatment of chondrodysplasia.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Tao Liu
- Department of Ultrasound; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510076, People’s Republic of China
| | - Yingting Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Puxin Zhong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Jingyin Kong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Weixiang Liang
- Department of Ultrasound; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
8
|
Xu Z, Chen Y, Wang R, Chen M, Zhang J, Cheng Y, Yao B, Yao L, Xu J, Chen W. Preparation of size-tunable Fe 3O 4 magnetic nanoporous carbon composites by MOF pyrolysis regulation for magnetic resonance sensing of aflatoxin B 1 with excellent anti-matrix effect. Food Chem 2024; 430:137061. [PMID: 37562264 DOI: 10.1016/j.foodchem.2023.137061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Magnetic nanoporous materials represent a new emerging category of magnetic materials for construction of magnetic resonance sensors. In this study, we adopted the metal-organic framework materials, MIL-101(Fe), as the precursor to prepare series nanoporous-carbon-Fe3O4 (NPC-Fe3O4) composites. Results showed that Fe3O4 were uniformly distributed in MIL-101(Fe) and the size of MNP was precisely tuned at different pyrolysis temperatures, conferring the optimal NPC-Fe3O4-450 °C composite with dramatically improved T2 relaxivity. The NPC-Fe3O4-450 °C composite was modified with antibodies and antigens, respectively, for detection of aflatoxin B1 in various food samples with complicated matrix. Range from 0.010 ng mL-1 to 2.0 ng mL-1, extreme low detection limit of 5.0 pg mL-1, and satisfied recoveries were successfully achieved, indicating excellent anti-matrix effect. These findings offer a new dimension to engineer novel magnetic materials with improved relaxivity for simple and easy sensing of food hazards in complicated food matrix without any purification or separation procedures.
Collapse
Affiliation(s)
- Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanqiu Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rong Wang
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, 230051, China
| | - Li Yao
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Fan Q, Xiong W, Zhou H, Yang J, Feng J, Li Z, Wu L, Hu F, Duan X, Li B, Fan J, Xu Y, Chen X, Shen Z. An AND Logic Gate for Magnetic-Resonance-Imaging-Guided Ferroptosis Therapy of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305932. [PMID: 37717205 DOI: 10.1002/adma.202305932] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Indexed: 09/18/2023]
Abstract
To improve the magnetic resonance imaging (MRI) efficiency and ferroptosis therapy efficacy of exceedingly small magnetic iron oxide nanoparticles (IO, <5 nm) for tumors via enhancing the sensitivity of tumor microenvironment (TME) responsiveness, inspired by molecular logic gates, a self-assembled IO with an AND logic gate function is designed and constructed. Typically, cystamine (CA) is conjugated onto the end of poly(2-methylthio-ethanol methacrylate) (PMEMA) to generate PMEMA-CA. The PMEMA-CA is grafted onto the surface of brequinar (BQR)-loaded IO to form IO-BQR@PMEMA. The self-assembled IO-BQR@PMEMA (SA-IO-BQR@PMEMA) is obtained due to the hydrophobicity of PMEMA. The carbon-sulfur single bond of PMEMA-CA can be oxidized by reactive oxygen species (ROS) in the TME to a thio-oxygen double bond, resulting in the conversion from being hydrophobic to hydrophilic. The disulfide bond of PMEMA-CA can be broken by the glutathione (GSH) in the TME, leading to the shedding of PMEMA from the IO surface. Under the dual actions of ROS and GSH in TME (i.e., AND logic gate), SA-IO-BQR@PMEMA can be disassembled to release IO, Fe2+/3+ , and BQR. In vitro and in vivo results demonstrate the AND logic gate function and mechanism, the high T1 MRI performance and exceptional ferroptosis therapy efficacy for tumors, and the excellent biosafety of SA-IO-BQR@PMEMA.
Collapse
Affiliation(s)
- Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Huimin Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Fang Hu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Bo Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Junbing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119228, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
10
|
Wang H, Feng R, Wang Y, Ma Q, Wei J, Xu S, Wang L. Single Doping for Triple Functions: Integrated Theranostic Nanoplatforms for Multimodal Image-Guided Tumor Therapy. Adv Healthc Mater 2023; 12:e2301435. [PMID: 37611193 DOI: 10.1002/adhm.202301435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Indexed: 08/25/2023]
Abstract
Accurate location and efficient treatment of diseases by multifunctional nanoplatforms are appealing but face great challenges. Theranostic agents through the physical combination of different functional nanoparticles are demonstrated to be effective. Yet, the complicated biological environment often leads to ambiguous fates of each agent, which fails to keep the behaviors of imaging and therapeutic components in a simultaneous manner. Herein, "integrated" theranostic NPs, Gd-doped CuWO4 (CWG) with strong near-infrared (808 nm) absorption, the longest absorption peak of reported CuWO4 , located in the biological transparent window, are constructed. The single doping of trace amount of Gd not only endows them with a distinguished magnetic resonance imaging capability (r1 = 12.01 mM-1 s-1 ), but also concurrently imposes great effect on the valence states of matrix ion (Cu), as evidenced by theoretical calculation results. The charge distribution shift of Cu would facilitate ·OH generation, beneficial for chemodynamic therapy (CDT). Moreover, CWG NPs display remarkable photoacoustic (PA) and computed tomography (CT) imaging capabilities (S = 10.33 HU mM-1 ). Such integrated theranostics afford a paradigm for multimodal imaging-guided synergistic therapy with all-in-one single nanoparticle.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruxin Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Bok I, Vareberg A, Gokhale Y, Bhatt S, Masterson E, Phillips J, Zhu T, Ren X, Hai A. Wireless agents for brain recording and stimulation modalities. Bioelectron Med 2023; 9:20. [PMID: 37726851 PMCID: PMC10510192 DOI: 10.1186/s42234-023-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Adam Vareberg
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Suyash Bhatt
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Emily Masterson
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
| | - Tianxiang Zhu
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Xiaoxuan Ren
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA.
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
12
|
Zwitterionic neurotransmitter-sensitive gadolinium complex as a potential MRI contrast agent for Alzheimer’s disease diagnosis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Li X, Liu X, Liu Y, Gao R, Wu X, Gao X. Highly sensitive detection of dopamine based on gold nanoflowers enhanced-Tb(III) fluorescence. Talanta 2022; 249:123700. [PMID: 35751922 DOI: 10.1016/j.talanta.2022.123700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
We developed a trace level detection method for dopamine (DA) based on the metal-enhanced fluorescence (MEF) effect of gold nanoflowers (AuNFs). AuNFs prepared were excellent enhancement fluorescence substrates due to their unique morphology with rich edges and sharp quoins. DA was the target analyte and also as a bridge reagent that could regulate the distance between AuNFs and Tb3+. The characteristic fluorescence of Tb3+ was enhanced significantly through the synergistic effect between the luminescence sensitized by DA and the MEF caused by AuNFs. Under the optimum experimental conditions, the fluorescence intensity of Tb3+ at 545 nm demonstrated very significant sensing ability against DA concentration and showed a good linear relationship in the range of 0.80-300 nM and the limit of detection was 0.21 nM (S/N = 3). The proposed method was also validated in serum samples and the dopamine hydrochloride injection samples with satisfactory results.
Collapse
Affiliation(s)
- XueQin Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xingcen Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yujie Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Ran Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, 250012, PR China
| |
Collapse
|
16
|
Zhang C, Deng K, Xu D, Wang H, Liu Y, Chen X, Ze L, Zong X, Wu B, Xu H. Fe-Based Theranostic Agents Respond to the Tumor Microenvironment for MRI-Guided Ferroptosis-/Apoptosis-Inducing Anticancer Therapy. ACS Biomater Sci Eng 2022; 8:2610-2623. [PMID: 35652940 DOI: 10.1021/acsbiomaterials.1c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor microenvironment-specific magnetic resonance imaging (MRI) contrast agents are conducive to accurate diagnoses by visualization of biochemical and pathological changes for suitable treatment. Herein, we reported a pH-responsive contrast agent DFeZd NP with MRI diagnosis and tumor treatment capabilities. DFeZd NPs can map the pH change by modulating the MR signal in different acid-base environments. Moreover, T1 signals are stronger in the tumor site, which proves efficient in distinguishing malignant tumors from normal tissues, as well as demarcating the tumor boundary. Subsequently, sustained supply of Fe through the Fe-based contrast agent leads to Fe redox cycling and lipid peroxides, inducing ferroptosis in tumor cells. Furthermore, under an acidic tumor microenvironment, in the presence of ascorbic acid, increased Fe2+ is generated, which serves as a stronger inducer of ferroptosis. Moreover, due to the different relaxivity of Fe3+ and Fe2+, redox cycling and ferroptosis in tumors can be monitored by MRI. Therefore, we propose DFeZd NPs as accessible and promising Fe-based dopamine-derived contrast agents for specific MRI imaging and ferroptosis induction for anticancer therapy.
Collapse
Affiliation(s)
- Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yue Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Xiao Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Li Ze
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Xinyan Zong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
17
|
Yang Y, Li S, Bu H, Xia X, Chen L, Xu Y, Chen Z. Metal Graphitic Nanocapsules for Theranostics in Harsh Conditions. Front Chem 2022; 10:909110. [PMID: 35646811 PMCID: PMC9136136 DOI: 10.3389/fchem.2022.909110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Metal nanoparticles (NPs) with superior physicochemical properties and biocompatibility have shown great potential in theranostics. However, metal NPs show poor stability in some harsh conditions such as strong acid, oxidation, corrosion and high-temperature conditions, which limits their extensive bioapplications. To address such issue, a variety of superstable metal graphitic nanocapsules with the metal cores confined in the nanospace of few-layer graphitic shell have been developed for biodetection and therapy in harsh conditions. In this mini-review, we summarize the recent advances in metal graphitic nanocapsules for bioapplications in harsh conditions. Firstly, their theranostic performance in non-intrinsic physiological harsh environment, including oxidation, corrosion and high-temperature conditions, is systematically discussed. Then, we highlight their theranostic performance in the harsh stomach condition that is strong acidic and pepsin-rich. It is expected that this review will offer inspiration to facilitate the exploitation of novel theranostic agents that are stable in harsh conditions.
Collapse
Affiliation(s)
- Yanxia Yang
- Aptamer Engineering Center of Hunan Province, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio–Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shengkai Li
- Aptamer Engineering Center of Hunan Province, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio–Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Hongxiu Bu
- Aptamer Engineering Center of Hunan Province, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio–Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xin Xia
- Aptamer Engineering Center of Hunan Province, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio–Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Yiting Xu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zhuo Chen
- Aptamer Engineering Center of Hunan Province, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio–Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
18
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Wei H, Frey AM, Jasanoff A. Molecular fMRI of neurochemical signaling. J Neurosci Methods 2021; 364:109372. [PMID: 34597714 DOI: 10.1016/j.jneumeth.2021.109372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) is the most widely applied technique for brain-wide measurement of neural function in humans and animals. In conventional functional MRI (fMRI), brain signaling is detected indirectly, via localized activity-dependent changes in regional blood flow, oxygenation, and volume, to which MRI contrast can be readily sensitized. Although such hemodynamic fMRI methods are powerful tools for analysis of brain activity, they lack specificity for the many molecules and cell types that play functionally distinct roles in neural processing. A suite of techniques collectively known to as "molecular fMRI," addresses this limitation by permitting MRI-based detection of specific molecular processes in deep brain tissue. This review discusses how molecular fMRI is coming to be used in the study of neurochemical dynamics that mediate intercellular communication in the brain. Neurochemical molecular fMRI is a potentially powerful approach for mechanistic analysis of brain-wide function, but the techniques are still in early stages of development. Here we provide an overview of the major advances and results that have been achieved to date, as well as directions for further development.
Collapse
Affiliation(s)
- He Wei
- Department of Biological Engineering, Massachusetts Institute of Technology, United States
| | - Abigail M Frey
- Department of Chemical Engineering, Massachusetts Institute of Technology, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, United States.
| |
Collapse
|
20
|
Ozbakir HF, Miller ADC, Fishman KB, Martins AF, Kippin TE, Mukherjee A. A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging. ACS Sens 2021; 6:3163-3169. [PMID: 34420291 DOI: 10.1021/acssensors.1c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.
Collapse
|
21
|
Kim B, Kim H, Kim S, Hwang YR. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl Microsc 2021; 51:9. [PMID: 34170436 PMCID: PMC8227874 DOI: 10.1186/s42649-021-00058-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.
Collapse
Affiliation(s)
- Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hongmin Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Songhui Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Young-Ran Hwang
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| |
Collapse
|
22
|
Imaging of the dopamine system with focus on pharmacological MRI and neuromelanin imaging. Eur J Radiol 2021; 140:109752. [PMID: 34004428 DOI: 10.1016/j.ejrad.2021.109752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The dopamine system in the brain is involved in a variety of neurologic and psychiatric disorders, such as Parkinson's disease, attention-deficit/hyperactivity disorder and psychosis. Different aspects of the dopamine system can be visualized and measured with positron emission tomography (PET) and single photon emission computed tomography (SPECT), including dopamine receptors, dopamine transporters, and dopamine release. New developments in MR imaging also provide proxy measures of the dopamine system in the brain, offering alternatives with the advantages MR imaging, i.e. no radiation, lower costs, usually less invasive and time consuming. This review will give an overview of these developments with a focus on the most developed techniques: pharmacological MRI (phMRI) and neuromelanin sensitive MRI (NM-MRI). PhMRI is a collective term for functional MRI techniques that administer a pharmacological challenge to assess its effects on brain hemodynamics. By doing so, it indirectly assesses brain neurotransmitter function such as dopamine function. NM-MRI is an upcoming MRI technique that enables in vivo visualization and semi-quantification of neuromelanin in the substantia nigra. Neuromelanin is located in the cell bodies of dopaminergic neurons of the nigrostriatal pathway and can be used as a proxy measure for long term dopamine function or degeneration of dopaminergic neurons. Both techniques are still primarily used in clinical research, but there is promise for clinical application, in particular for NM-MRI in dopaminergic neurodegenerative diseases like Parkinson's disease.
Collapse
|
23
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
24
|
Xu Z, Wang R, Chen Y, Chen M, Zhang J, Cheng Y, Xu J, Chen W. Three-dimensional assembly and disassembly of Fe 3O 4-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A. Mikrochim Acta 2021; 188:90. [PMID: 33598733 DOI: 10.1007/s00604-021-04718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
The design and construction of a novel magnetic resonance sensor (MRS) is presented for bisphenol A (BPA) detection. The MRS has been built based on the core component of magnetic Fe3O4 nanoparticles (~ 40 nm), which were uniformly distributed in nanoporous carbon (abbreviated as Fe3O4@NPC). The synthesis was derived from the calcination of the metal organic framework (MOF) precursor of Fe-MIL-101 at high temperature. Fe3O4@NPC was confirmed with enhanced transversal relaxation with r2 value of 118.2 mM-1 s-1, which was around 1.7 times higher than that of the naked Fe3O4 nanoparticle. This enhancement is attributed to the excellent proton transverse relaxation rate of Fe3O4@NPC caused by the reduced self-diffusion coefficient of water molecules in the vicinity of Fe3O4 nanoparticles in the nanoporous carbon. BPA antibody (Ab) and antigen (Ag)-ovalbumin (OVA) were immobilized onto the Fe3O4@NPC to form Ab-Fe3O4@NPC and Ag-Fe3O4@NPC, respectively. These two composites can cause the three-dimensional assembly of Fe3O4@NPC via immunological recognition. The presence of BPA can compete with antigen-OVA to combine with Ab-Fe3O4@NPC, thereby breaking the assembly process (disassembly). The difference in the change of the T2 value before and after adding BPA can thus be used to monitor BPA. The proposed MRS not only revealed a wide linear range of BPA concentration from 0.05 to 50 ng mL-1 with an extremely low detection limit of 0.012 ng mL-1 (S/N = 3), but also displayed high selectivity towards matrix interferences. The recoveries of BPA ranged from 95.6 to 108.4% for spiked tea π, and 93.4 to 104.7% for spiked canned oranges samples, respectively, and the RSD (n = 3) was less than 4.4% for 3 successive assays. The versatility of Fe3O4@NPC with customized relaxation responses provides the possibility for the adaptation of magnetic resonance platforms for food safety development. The magnetic Fe3O4 nanoparticles are uniformly dispersed in the nanoporous carbon (Fe3O4@NPC), which derived from the calcinating of the metal organic framework (MOF) precursor of Fe-MIL-101. And the magnetic Fe3O4@NPCs are adopted for the construction of magnetic resonance sensor (MRS) for bisphenol A (BPA) detection.
Collapse
Affiliation(s)
- Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Rong Wang
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yanqiu Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Maolong Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
25
|
Geng W, Zheng Z, Guo D. Supramolecular design based activatable magnetic resonance imaging. VIEW 2020. [DOI: 10.1002/viw.20200059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Wen‐Chao Geng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Zhe Zheng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Dong‐Sheng Guo
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| |
Collapse
|
26
|
Wang P, Sun W, Guo J, Zhang K, Liu Y, Jiang Q, Su D, Sun X. One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide nanoparticles for SPECT/T1-weighted MR dual-modality tumor imaging. Colloids Surf B Biointerfaces 2020; 197:111403. [PMID: 33099146 DOI: 10.1016/j.colsurfb.2020.111403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
In this study, we have synthesized 99mTc intrinsically labeled ultrasmall magnetic iron oxide nanoparticles with zwitterionic surface coating (99mTc-ZW-USIONPs) via one pot synthesis using sulfobetains functionalized poly (acrylic acid) as stabilizer and Na99mTcO4 and SnCl2 as additives. The commercialization of single photon emission computed tomography (SPECT)/magnetic resonance imaging (MRI) scanner made the combination use of 99mTc and iron oxide nanoparticles attracting much attention. Direct doping radioisotope into nanoparticles has the advantages of excellent radiochemical stability and no restriction on the surface functionalization. The complex Technetium chemistry made it challenging to direct dope 99mTc into IONPs, especially those ultrasmall ones without precipitation. We proved that it is possible to prepare 99mTc doped USIONPs with excellent water solubility and favorable T1 signal by controlling the radioactivity and reducing agent amount. With no need of chelator, the zwitterionic surface resists the protein corona formation, resulting in a reduced RES uptake and higher tumor contrast. The 99mTc-ZW-USIONPs demonstrated excellent performance of tumor SPECT and T1-weighted MR imaging capability in 4T1 tumor bearing mice. Together with their ease of preparation and superior biocompatibility, we believe these 99mTc-ZW-USIONPs represent a type of promising dual contrast agent for SPECT/T1 MRI.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 261005, China
| | - Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Kaijia Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, 211198, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
| | - Dan Su
- Oncology Department, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Ohlendorf R, Wiśniowska A, Desai M, Barandov A, Slusarczyk AL, Li N, Jasanoff A. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nat Commun 2020; 11:2399. [PMID: 32404879 PMCID: PMC7220906 DOI: 10.1038/s41467-020-16118-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Agata Wiśniowska
- Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Ellis CM, Pellico J, Davis JJ. Magnetic Nanoparticles Supporting Bio-responsive T1/ T2 Magnetic Resonance Imaging. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4096. [PMID: 31817929 PMCID: PMC6947368 DOI: 10.3390/ma12244096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
: The use of nanoparticulate systems as contrast agents for magnetic resonance imaging (MRI) is well-established and known to facilitate an enhanced image sensitivity within scans of a particular pathological region of interest. Such a capability can enable both a non-invasive diagnosis and the monitoring of disease progression/response to treatment. In this review, magnetic nanoparticles that exhibit a bio-responsive MR relaxivity are discussed, with pH-, enzyme-, biomolecular-, and protein-responsive systems considered. The ability of a contrast agent to respond to a biological stimulus provides not only enriched diagnostic capabilities over corresponding non-responsive analogues, but also an improved longitudinal monitoring of specific physiological conditions.
Collapse
Affiliation(s)
| | | | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK; (C.M.E.); (J.P.)
| |
Collapse
|