1
|
Levorin L, Becker N, Uluca-Yazgi B, Gardon L, Kraus M, Sevenich M, Apostolidis A, Schmitz K, Rüter N, Apanasenko I, Willbold D, Hoyer W, Neudecker P, Gremer L, Heise H. Isoleucine Side Chains as Reporters of Conformational Freedom in Protein Folding Studied by DNP-Enhanced NMR. J Am Chem Soc 2025; 147:15867-15879. [PMID: 40285725 PMCID: PMC12063180 DOI: 10.1021/jacs.5c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Conformations of protein side chains are closely linked to protein function. DNP-enhanced solid-state NMR (ssNMR), which operates at cryogenic temperatures (<110 K), can be used to freeze-trap protein conformations, including the side chains. In the present study, we employed two-dimensional DNP-enhanced ssNMR to get detailed insights into backbone and side chain conformations of isoleucine. We used different amino acid selectively labeled model proteins for intrinsically disordered proteins (IDPs), denatured and well-folded proteins, and amyloid fibrils. 13C chemical shifts are closely correlated with secondary structure elements and χ1 and χ2 angles in isoleucine side chains. Thus, line shape analysis by integration of representative peak areas in 2D spectra provides an accurate overview of the distribution of backbone and side chain conformations. For the well-folded proteins GABARAP and bovine PI3-kinase (PI3K) SH3 domain, most Ile chemical shifts in frozen solution are well resolved and similar to those observed in solution. However, line widths of individual Ile residues are directly linked to residual mobility, and line broadening or even signal splitting appears for those Ile residues, which are not part of well-defined secondary structure elements. For unfolded PI3K SH3 and the IDP α-synuclein (α-syn), all Ile side chains have full conformational freedom, and as a consequence, inhomogeneous line broadening dominates the cryogenic spectra. Moreover, we demonstrate that conformational ensembles of proteins strongly depend on solvent and buffer conditions. This allowed different unfolded structures for chemical and acidic pH denaturation of the PI3K SH3 domain to be distinguished. In amyloid fibrils of α-syn and PI3K SH3, chemical shifts typical for β-strand like secondary structure dominate the spectra, whereas Ile residues belonging to the fuzzy coat still add the IDP-type line shapes. Hence, DNP-enhanced ssNMR is a useful tool for investigating side chain facilitated protein functions and interactions.
Collapse
Affiliation(s)
- Leonardo Levorin
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Nina Becker
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Boran Uluca-Yazgi
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Luis Gardon
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Mirko Kraus
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Marc Sevenich
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Athina Apostolidis
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Kai Schmitz
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Neomi Rüter
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Irina Apanasenko
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dieter Willbold
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang Hoyer
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Philipp Neudecker
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Lothar Gremer
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Henrike Heise
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
2
|
Chen W, Fraser OA, George C, Showalter SA. From molecular descriptions to cellular functions of intrinsically disordered protein regions. BIOPHYSICS REVIEWS 2024; 5:041306. [PMID: 39600309 PMCID: PMC11596140 DOI: 10.1063/5.0225900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Molecular descriptions of intrinsically disordered protein regions (IDRs) are fundamental to understanding their cellular functions and regulation. NMR spectroscopy has been a leading tool in characterizing IDRs at the atomic level. In this review, we highlight recent conceptual breakthroughs in the study of IDRs facilitated by NMR and discuss emerging NMR techniques that bridge molecular descriptions to cellular functions. First, we review the assemblies formed by IDRs at various scales, from one-to-one complexes to non-stoichiometric clusters and condensates, discussing how NMR characterizes their structural dynamics and molecular interactions. Next, we explore several unique interaction modes of IDRs that enable regulatory mechanisms such as selective transport and switch-like inhibition. Finally, we highlight recent progress in solid-state NMR and in-cell NMR on IDRs, discussing how these methods allow for atomic characterization of full-length IDR complexes in various phases and cellular environments. This review emphasizes recent conceptual and methodological advancements in IDR studies by NMR and offers future perspectives on bridging the gap between in vitro molecular descriptions and the cellular functions of IDRs.
Collapse
Affiliation(s)
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christy George
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
3
|
Gallo A, Mansueto S, Emendato A, Fusco G, De Simone A. α-Synuclein and Mitochondria: Probing the Dynamics of Disordered Membrane-protein Regions Using Solid-State Nuclear Magnetic Resonance. JACS AU 2024; 4:2372-2380. [PMID: 38938811 PMCID: PMC11200226 DOI: 10.1021/jacsau.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The characterization of intrinsically disordered regions (IDRs) in membrane-associated proteins is of crucial importance to elucidate key biochemical processes, including cellular signaling, drug targeting, or the role of post-translational modifications. These protein regions pose significant challenges to powerful analytical techniques of molecular structural investigations. We here applied magic angle spinning solid-state nuclear magnetic resonance to quantitatively probe the structural dynamics of IDRs of membrane-bound α-synuclein (αS), a disordered protein whose aggregation is associated with Parkinson's disease (PD). We focused on the mitochondrial binding of αS, an interaction that has functional and pathological relevance in neuronal cells and that is considered crucial for the underlying mechanisms of PD. Transverse and longitudinal 15N relaxation revealed that the dynamical properties of IDRs of αS bound to the outer mitochondrial membrane (OMM) are different from those of the cytosolic state, thus indicating that regions generally considered not to interact with the membrane are in fact affected by the spatial proximity with the lipid bilayer. Moreover, changes in the composition of OMM that are associated with lipid dyshomeostasis in PD were found to significantly perturb the topology and dynamics of IDRs in the membrane-bound state of αS. Taken together, our data underline the importance of characterizing IDRs in membrane proteins to achieve an accurate understanding of the role that these elusive protein regions play in numerous biochemical processes occurring on cellular surfaces.
Collapse
Affiliation(s)
- Angelo Gallo
- Department
of Chemistry, University of Turin, Via Giuria 7, Turin 10124, Italy
| | - Silvia Mansueto
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Alessandro Emendato
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Giuliana Fusco
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alfonso De Simone
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
5
|
Muli CS, Tarasov SG, Walters KJ. High-throughput assay exploiting disorder-to-order conformational switches: application to the proteasomal Rpn10:E6AP complex. Chem Sci 2024; 15:4041-4053. [PMID: 38487241 PMCID: PMC10935766 DOI: 10.1039/d3sc06370d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Conformational switching is pervasively driven by protein interactions, particularly for intrinsically disordered binding partners. We developed a dually orthogonal fluorescence-based assay to monitor such events, exploiting environmentally sensitive fluorophores. This assay is applied to E3 ligase E6AP, as its AZUL domain induces a disorder-to-order switch in an intrinsically disordered region of the proteasome, the so-named Rpn10 AZUL-binding domain (RAZUL). By testing various fluorophores, we developed an assay appropriate for high-throughput screening of Rpn10:E6AP-disrupting ligands. We found distinct positions in RAZUL for fluorophore labeling with either acrylodan or Atto610, which had disparate spectral responses to E6AP binding. E6AP caused a hypsochromic shift with increased fluorescence of acrylodan-RAZUL while decreasing fluorescence intensity of Atto610-RAZUL. Combining RAZUL labeled with either acrylodan or Atto610 into a common sample achieved robust and orthogonal measurement of the E6AP-induced conformational switch. This approach is generally applicable to disorder-to-order (or vice versa) transitions mediated by molecular interactions.
Collapse
Affiliation(s)
- Christine S Muli
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| | - Sergey G Tarasov
- Biophysics Resource, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| |
Collapse
|
6
|
Stief T, Vormann K, Lakomek NA. Sensitivity-enhanced NMR 15N R 1 and R 1ρ relaxation experiments for the investigation of intrinsically disordered proteins at high magnetic fields. Methods 2024; 223:1-15. [PMID: 38242384 DOI: 10.1016/j.ymeth.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
NMR relaxation experiments provide residue-specific insights into the structural dynamics of proteins. Here, we present an optimized set of sensitivity-enhanced 15N R1 and R1ρ relaxation experiments applicable to fully protonated proteins. The NMR pulse sequences are conceptually similar to the set of TROSY-based sequences and their HSQC counterpart (Lakomek et al., J. Biomol. NMR 2012). Instead of the TROSY read-out scheme, a sensitivity-enhanced HSQC read-out scheme is used, with improved and easier optimized water suppression. The presented pulse sequences are applied on the cytoplasmic domain of the SNARE protein Synpatobrevin-2 (Syb-2), which is intrinsically disordered in its monomeric pre-fusion state. A two-fold increase in the obtained signal-to-noise ratio is observed for this intrinsically disordered protein, therefore offering a four-fold reduction of measurement time compared to the TROSY-detected version. The inter-scan recovery delay can be shortened to two seconds. Pulse sequences were tested at 600 MHz and 1200 MHz 1H Larmor frequency, thus applicable over a wide magnetic field range. A comparison between protonated and deuterated protein samples reveals high agreement, indicating that reliable 15N R1 and R1ρ rate constants can be extracted for fully protonated and deuterated samples. The presented pulse sequences will benefit not only for IDPs but also for an entire range of low and medium-sized proteins.
Collapse
Affiliation(s)
- Tobias Stief
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Vormann
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Arai M, Suetaka S, Ooka K. Dynamics and interactions of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102734. [PMID: 38039868 DOI: 10.1016/j.sbi.2023.102734] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are widespread in eukaryotes and participate in a variety of important cellular processes. Numerous studies using state-of-the-art experimental and theoretical methods have advanced our understanding of IDPs and revealed that disordered regions engage in a large repertoire of intra- and intermolecular interactions through their conformational dynamics, thereby regulating many intracellular functions in concert with folded domains. The mechanisms by which IDPs interact with their partners are diverse, depending on their conformational propensities, and include induced fit, conformational selection, and their mixtures. In addition, IDPs are implicated in many diseases, and progress has been made in designing inhibitors of IDP-mediated interactions. Here we review these recent advances with a focus on the dynamics and interactions of IDPs.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Koji Ooka
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
8
|
Aebischer K, Ernst M. INEPT and CP transfer efficiencies of dynamic systems in MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107617. [PMID: 38244331 DOI: 10.1016/j.jmr.2024.107617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Hartmann-Hahn cross polarization and INEPT polarization transfer are the most popular sequences to increase the polarization of low-γ nuclei in magic-angle spinning solid-state NMR. It is well known that the two methods preferentially lead to polarization transfer in different parts of molecules. Cross polarization works best in rigid segments of the molecule while INEPT-based polarization transfer is efficient in highly mobile segments where (nearly) isotropic motion averages out the dipolar couplings. However, there have only been few attempts to define the time scales of motion that are compatible with cross polarization or INEPT transfer in a more quantitative way. We have used simple isotropic jump models in combination with simulations based on the stochastic Liouville equation to elucidate the time scales of motion that allow either cross polarization or INEPT-based polarization transfer. We investigate which motional time scales interfere with one or both polarization-transfer schemes. We have modeled isolated I-S two-spin systems, strongly-coupled I2S three-spin systems and more loosely coupled I-I-S three-spin systems as well as I3S groups. Such fragments can be used as models for typical environments in fully deuterated and back-exchanged molecules (I-S), for fully protonated molecules (I2S and I3S) or situations in between (I-I-S).
Collapse
Affiliation(s)
- Kathrin Aebischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland
| | - Matthias Ernst
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland.
| |
Collapse
|
9
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Sekiyama N, Kobayashi R, Kodama TS. Toward a high-resolution mechanism of intrinsically disordered protein self-assembly. J Biochem 2023; 174:391-398. [PMID: 37488093 DOI: 10.1093/jb/mvad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Membraneless organelles formed via the self-assembly of intrinsically disordered proteins (IDPs) play a crucial role in regulating various physiological functions. Elucidating the mechanisms behind IDP self-assembly is of great interest not only from a biological perspective but also for understanding how amino acid mutations in IDPs contribute to the development of neurodegenerative diseases and other disorders. Currently, two proposed mechanisms explain IDP self-assembly: (1) the sticker-and-spacer framework, which considers amino acid residues as beads to simulate the intermolecular interactions, and (2) the cross-β hypothesis, which focuses on the β-sheet interactions between the molecular surfaces constructed by multiple residues. This review explores the advancement of new models that provide higher resolution insights into the IDP self-assembly mechanism based on new findings obtained from structural studies of IDPs.
Collapse
Affiliation(s)
- Naotaka Sekiyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryoga Kobayashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi S Kodama
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
12
|
Kabir MWU, Alawad DM, Mishra A, Hoque MT. TAFPred: Torsion Angle Fluctuations Prediction from Protein Sequences. BIOLOGY 2023; 12:1020. [PMID: 37508449 PMCID: PMC10376102 DOI: 10.3390/biology12071020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Protein molecules show varying degrees of flexibility throughout their three-dimensional structures. The flexibility is determined by the fluctuations in torsion angles, specifically phi (φ) and psi (ψ), which define the protein backbone. These angle fluctuations are derived from variations in backbone torsion angles observed in different models. By analyzing the fluctuations in Cartesian coordinate space, we can understand the structural flexibility of proteins. Predicting torsion angle fluctuations is valuable for determining protein function and structure when these angles act as constraints. In this study, a machine learning method called TAFPred is developed to predict torsion angle fluctuations using protein sequences directly. The method incorporates various features, such as disorder probability, position-specific scoring matrix profiles, secondary structure probabilities, and more. TAFPred, employing an optimized Light Gradient Boosting Machine Regressor (LightGBM), achieved high accuracy with correlation coefficients of 0.746 and 0.737 and mean absolute errors of 0.114 and 0.123 for the φ and ψ angles, respectively. Compared to the state-of-the-art method, TAFPred demonstrated significant improvements of 10.08% in MAE and 24.83% in PCC for the phi angle and 9.93% in MAE, and 22.37% in PCC for the psi angle.
Collapse
Affiliation(s)
- Md Wasi Ul Kabir
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| | - Duaa Mohammad Alawad
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Md Tamjidul Hoque
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
13
|
Guseva S, Schnapka V, Adamski W, Maurin D, Ruigrok RWH, Salvi N, Blackledge M. Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins. J Am Chem Soc 2023; 145:10548-10563. [PMID: 37146977 DOI: 10.1021/jacs.2c13647] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation of flexible biomolecules has been identified as a ubiquitous phenomenon underlying the formation of membraneless organelles that harbor a multitude of essential cellular processes. We use nuclear magnetic resonance (NMR) spectroscopy to compare the dynamic properties of an intrinsically disordered protein (measles virus NTAIL) in the dilute and dense phases at atomic resolution. By measuring 15N NMR relaxation at different magnetic field strengths, we are able to characterize the dynamics of the protein in dilute and crowded conditions and to compare the amplitude and timescale of the different motional modes to those present in the membraneless organelle. Although the local backbone conformational sampling appears to be largely retained, dynamics occurring on all detectable timescales, including librational, backbone dihedral angle dynamics and segmental, chainlike motions, are considerably slowed down. Their relative amplitudes are also drastically modified, with slower, chain-like motions dominating the dynamic profile. In order to provide additional mechanistic insight, we performed extensive molecular dynamics simulations of the protein under self-crowding conditions at concentrations comparable to those found in the dense liquid phase. Simulation broadly reproduces the impact of formation of the condensed phase on both the free energy landscape and the kinetic interconversion between states. In particular, the experimentally observed reduction in the amplitude of the fastest component of backbone dynamics correlates with higher levels of intermolecular contacts or entanglement observed in simulations, reducing the conformational space available to this mode under strongly self-crowding conditions.
Collapse
Affiliation(s)
- Serafima Guseva
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Vincent Schnapka
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Wiktor Adamski
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Damien Maurin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Rob W H Ruigrok
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
14
|
Abyzov A, Mandelkow E, Zweckstetter M, Rezaei-Ghaleh N. Fast Motions Dominate Dynamics of Intrinsically Disordered Tau Protein at High Temperatures. Chemistry 2023; 29:e202203493. [PMID: 36579699 DOI: 10.1002/chem.202203493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, D-53127, Bonn, Germany
- Research Center CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| |
Collapse
|
15
|
Krishnamohan A, Hamilton GL, Goutam R, Sanabria H, Morcos F. Coevolution and smFRET Enhances Conformation Sampling and FRET Experimental Design in Tandem PDZ1-2 Proteins. J Phys Chem B 2023; 127:884-898. [PMID: 36693159 PMCID: PMC9900596 DOI: 10.1021/acs.jpcb.2c06720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.
Collapse
Affiliation(s)
- Aishwarya Krishnamohan
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States
| | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Rajen Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Faruck Morcos
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States.,Center for Systems Biology, University of Texas at Dallas, Richardson, Texas75080, United States
| |
Collapse
|
16
|
Structural ensembles of disordered proteins from hierarchical chain growth and simulation. Curr Opin Struct Biol 2023; 78:102501. [PMID: 36463772 DOI: 10.1016/j.sbi.2022.102501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Disordered proteins and nucleic acids play key roles in cellular function and disease. Here, we review recent advances in the computational exploration of the conformational dynamics of flexible biomolecules. While atomistic molecular dynamics (MD) simulation has seen a lot of improvement in recent years, large-scale computing resources and careful validation are required to simulate full-length disordered biopolymers in solution. As a computationally efficient alternative, hierarchical chain growth (HCG) combines pre-sampled chain fragments in a statistically reproducible manner into ensembles of full-length atomically detailed biomolecular structures. Experimental data can be integrated during and after chain assembly. Applications to the neurodegeneration-linked proteins α-synuclein, tau, and TDP-43, including as condensate, illustrate the use of HCG. We conclude by highlighting the emerging connections to AI-based structural modeling including AlphaFold2.
Collapse
|
17
|
Balu R, Wanasingha N, Mata JP, Rekas A, Barrett S, Dumsday G, Thornton AW, Hill AJ, Roy Choudhury N, Dutta NK. Crowder-directed interactions and conformational dynamics in multistimuli-responsive intrinsically disordered protein. SCIENCE ADVANCES 2022; 8:eabq2202. [PMID: 36542701 PMCID: PMC9770960 DOI: 10.1126/sciadv.abq2202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The consequences of crowding on the dynamic conformational ensembles of intrinsically disordered proteins (IDPs) remain unresolved because of their ultrafast motion. Here, we report crowder-induced interactions and conformational dynamics of a prototypical multistimuli-responsive IDP, Rec1-resilin. The effects of a range of crowders of varying sizes, forms, topologies, and concentrations were examined using spectroscopic, spectrofluorimetric, and contrast-matching small- and ultrasmall-angle neutron scattering investigation. To achieve sufficient neutron contrast against the crowders, deuterium-labeled Rec1-resilin was biosynthesized successfully. Moreover, the ab initio "shape reconstruction" approach was used to obtain three-dimensional models of the conformational assemblies. The IDP revealed crowder-specific systematic extension and compaction with the level of macromolecular crowding. Last, a robust extension-contraction model has been postulated to capture the fundamental phenomena governing the observed behavior of IDPs. The study provides insights and fresh perspectives for understanding the interactions and structural dynamics of IDPs in crowded states.
Collapse
Affiliation(s)
- Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra P. Mata
- Australian Center for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Agata Rekas
- National Deuteration Facility, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Susan Barrett
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Geoff Dumsday
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | | | - Anita J. Hill
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
19
|
Salvi N, Zapletal V, Jaseňáková Z, Zachrdla M, Padrta P, Narasimhan S, Marquardsen T, Tyburn JM, Žídek L, Blackledge M, Ferrage F, Kadeřávek P. Convergent views on disordered protein dynamics from NMR and computational approaches. Biophys J 2022; 121:3785-3794. [PMID: 36131545 PMCID: PMC9674986 DOI: 10.1016/j.bpj.2022.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) is a class of biologically important proteins exhibiting specific biophysical characteristics. They lack a hydrophobic core, and their conformational behavior is strongly influenced by electrostatic interactions. IDPs and IDRs are highly dynamic, and a characterization of the motions of IDPs and IDRs is essential for their physically correct description. NMR together with molecular dynamics simulations are the methods best suited to such a task because they provide information about dynamics of proteins with atomistic resolution. Here, we present a study of motions of a disordered C-terminal domain of the delta subunit of RNA polymerase from Bacillus subtilis. Positively and negatively charged residues in the studied domain form transient electrostatic contacts critical for the biological function. Our study is focused on investigation of ps-ns dynamics of backbone of the delta subunit based on analysis of amide 15N NMR relaxation data and molecular dynamics simulations. In order to extend an informational content of NMR data to lower frequencies, which are more sensitive to slower motions, we combined standard (high-field) NMR relaxation experiments with high-resolution relaxometry. Altogether, we collected data reporting the relaxation at 12 different magnetic fields, resulting in an unprecedented data set. Our results document that the analysis of such data provides a consistent description of dynamics and confirms the validity of so far used protocols of the analysis of dynamics of IDPs also for a partially folded protein. In addition, the potential to access detailed description of motions at the timescale of tens of ns with the help of relaxometry data is discussed. Interestingly, in our case, it appears to be mostly relevant for a region involved in the formation of temporary contacts within the disordered region, which was previously proven to be biologically important.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - Vojtěch Zapletal
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Jaseňáková
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Petr Padrta
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Subhash Narasimhan
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| | - Pavel Kadeřávek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
20
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Yu L, Brüschweiler R. Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins. PLoS Comput Biol 2022; 18:e1010036. [PMID: 36084124 PMCID: PMC9491582 DOI: 10.1371/journal.pcbi.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/21/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in cell signaling processes and their misfunction often causes human disease. Proper understanding of IDP function not only requires the realistic characterization of their three-dimensional conformational ensembles at atomic-level resolution but also of the time scales of interconversion between their conformational substates. Large sets of experimental data are often used in combination with molecular modeling to restrain or bias models to improve agreement with experiment. It is shown here for the N-terminal transactivation domain of p53 (p53TAD) and Pup, which are two IDPs that fold upon binding to their targets, how the latest advancements in molecular dynamics (MD) simulations methodology produces native conformational ensembles by combining replica exchange with series of microsecond MD simulations. They closely reproduce experimental data at the global conformational ensemble level, in terms of the distribution properties of the radius of gyration tensor, and at the local level, in terms of NMR properties including 15N spin relaxation, without the need for reweighting. Further inspection revealed that 10-20% of the individual MD trajectories display the formation of secondary structures not observed in the experimental NMR data. The IDP ensembles were analyzed by graph theory to identify dominant inter-residue contact clusters and characteristic amino-acid contact propensities. These findings indicate that modern MD force fields with residue-specific backbone potentials can produce highly realistic IDP ensembles sampling a hierarchy of nano- and picosecond time scales providing new insights into their biological function.
Collapse
Affiliation(s)
- Lei Yu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bolik-Coulon N, Ferrage F. Explicit models of motions to analyze NMR relaxation data in proteins. J Chem Phys 2022; 157:125102. [DOI: 10.1063/5.0095910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a tool of choice to characterize molecular motions. In biological macromolecules, pico- to nano-second motions, in particular, can be probed by nuclear spin relaxation rates which depend on the time fluctuations of the orientations of spin interaction frames. For the past 40 years, relaxation rates have been successfully analyzed using the Model Free (MF) approach which makes no assumption on the nature of motions and reports on the effective amplitude and time-scale of the motions. However, obtaining a mechanistic picture of motions from this type of analysis is difficult at best, unless complemented with molecular dynamics (MD) simulations. In spite of their limited accuracy, such simulations can be used to obtain the information necessary to build explicit models of motions designed to analyze NMR relaxation data. Here, we present how to build such models, suited in particular to describe motions of methyl-bearing protein side-chains and compare them with the MF approach. We show on synthetic data that explicit models of motions are more robust in the presence of rotamer jumps which dominate the relaxation in methyl groups of protein side-chains. We expect this work to motivate the use of explicit models of motion to analyze MD and NMR data.
Collapse
Affiliation(s)
| | - Fabien Ferrage
- Departement de chimie, Ecole Normale Superieure Departement de Chimie, France
| |
Collapse
|
23
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W, Milles S, Jensen MR, Zidek L, Salvi N, Blackledge M. NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins. Chem Rev 2022; 122:9331-9356. [PMID: 35446534 PMCID: PMC9136928 DOI: 10.1021/acs.chemrev.1c01023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Intrinsically disordered
proteins are ubiquitous throughout all
known proteomes, playing essential roles in all aspects of cellular
and extracellular biochemistry. To understand their function, it is
necessary to determine their structural and dynamic behavior and to
describe the physical chemistry of their interaction trajectories.
Nuclear magnetic resonance is perfectly adapted to this task, providing
ensemble averaged structural and dynamic parameters that report on
each assigned resonance in the molecule, unveiling otherwise inaccessible
insight into the reaction kinetics and thermodynamics that are essential
for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the
nature and time scales of local and long-range dynamics and how they
depend on the environment, even in the cell. Finally, we illustrate
the ability of NMR to uncover the mechanistic basis of functional
disordered molecular assemblies that are important for human health.
Collapse
Affiliation(s)
| | - Vincent Schnapka
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Serafima Guseva
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Anton Abyzov
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Wiktor Adamski
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Lukas Zidek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic
| | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
25
|
Paukovich N, Henen MA, Hussain A, Issaian A, Sikela JM, Hansen KC, Vögeli B. Solution NMR backbone assignments of disordered Olduvai protein domain CON1 employing Hα-detected experiments. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:113-119. [PMID: 35098449 PMCID: PMC9202364 DOI: 10.1007/s12104-022-10068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Olduvai protein domains, encoded by the NBPF gene family, are responsible for the largest increase in copy number of any protein-coding region in the human genome. This has spawned various genetics studies which have linked these domains to human brain development and divergence from our primate ancestors, as well as currently relevant cognitive diseases such as schizophrenia and autism spectrum disorder (ASD). There are six separate Olduvai domains which together form the majority of the various protein products of the NBPF genes. The six domains include three conserved domains (CON1-3), and three human-lineage-specific domains (HLS1-3) which occur in triplet. Here, we present the solution nuclear magnetic resonance backbone assignments for the CON1 domain, which has been linked to the severity of ASD. The data confirm that CON1 is an intrinsically disordered protein (IDP). Additionally, we use innovative Hα-detected experiments which allow us to not only assign the Hα atoms and N atoms of proline residues, but also to assign residues where HN-experiments suffered from peak overlap or broadening.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Morkos A Henen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Alya Hussain
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Aaron Issaian
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - James M Sikela
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Beat Vögeli
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
27
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
29
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
30
|
Malki A, Teulon J, Camacho‐Zarco AR, Chen SW, Adamski W, Maurin D, Salvi N, Pellequer J, Blackledge M. Intrinsically Disordered Tardigrade Proteins Self‐Assemble into Fibrous Gels in Response to Environmental Stress. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anas Malki
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | - Jean‐Marie Teulon
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | | | - Shu‐wen W. Chen
- niChe Lab for Stem Cell and Regenerative Medicine Department of Biochemical Science and Technology National (Taiwan) University Taipei 10617 Taiwan
| | - Wiktor Adamski
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | - Damien Maurin
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | - Nicola Salvi
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | - Jean‐Luc Pellequer
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| | - Martin Blackledge
- Univ. Grenoble Alpes CNRS, CEA Institut de Biologie Structurale Grenoble France
| |
Collapse
|
31
|
Malki A, Teulon J, Camacho‐Zarco AR, Chen SW, Adamski W, Maurin D, Salvi N, Pellequer J, Blackledge M. Intrinsically Disordered Tardigrade Proteins Self-Assemble into Fibrous Gels in Response to Environmental Stress. Angew Chem Int Ed Engl 2022; 61:e202109961. [PMID: 34750927 PMCID: PMC9299615 DOI: 10.1002/anie.202109961] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Indexed: 11/08/2022]
Abstract
Tardigrades are remarkable for their ability to survive harsh stress conditions as diverse as extreme temperature and desiccation. The molecular mechanisms that confer this unusual resistance to physical stress remain unknown. Recently, tardigrade-unique intrinsically disordered proteins have been shown to play an essential role in tardigrade anhydrobiosis. Here, we characterize the conformational and physical behaviour of CAHS-8 from Hypsibius exemplaris. NMR spectroscopy reveals that the protein comprises an extended central helical domain flanked by disordered termini. Upon concentration, the protein is shown to successively form oligomers, long fibres, and finally gels constituted of fibres in a strongly temperature-dependent manner. The helical domain forms the core of the fibrillar structure, with the disordered termini remaining highly dynamic within the gel. Soluble proteins can be encapsulated within cavities in the gel, maintaining their functional form. The ability to reversibly form fibrous gels may be associated with the enhanced protective properties of these proteins.
Collapse
Affiliation(s)
- Anas Malki
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | - Jean‐Marie Teulon
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | | | - Shu‐wen W. Chen
- niChe Lab for Stem Cell and Regenerative MedicineDepartment of Biochemical Science and TechnologyNational (Taiwan) UniversityTaipei10617Taiwan
| | - Wiktor Adamski
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | - Damien Maurin
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | - Nicola Salvi
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | - Jean‐Luc Pellequer
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| | - Martin Blackledge
- Univ. Grenoble AlpesCNRS, CEAInstitut de Biologie StructuraleGrenobleFrance
| |
Collapse
|
32
|
Zhao L, Zhang J, Zhang Y, Ye S, Zhang G, Chen X, Jiang B, Jiang J. Accurate Machine Learning Prediction of Protein Circular Dichroism Spectra with Embedded Density Descriptors. JACS AU 2021; 1:2377-2384. [PMID: 34977905 PMCID: PMC8715543 DOI: 10.1021/jacsau.1c00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 05/08/2023]
Abstract
A data-driven approach to simulate circular dichroism (CD) spectra is appealing for fast protein secondary structure determination, yet the challenge of predicting electric and magnetic transition dipole moments poses a substantial barrier for the goal. To address this problem, we designed a new machine learning (ML) protocol in which ordinary pure geometry-based descriptors are replaced with alternative embedded density descriptors and electric and magnetic transition dipole moments are successfully predicted with an accuracy comparable to first-principle calculation. The ML model is able to not only simulate protein CD spectra nearly 4 orders of magnitude faster than conventional first-principle simulation but also obtain CD spectra in good agreement with experiments. Finally, we predicted a series of CD spectra of the Trp-cage protein associated with continuous changes of protein configuration along its folding path, showing the potential of our ML model for supporting real-time CD spectroscopy study of protein dynamics.
Collapse
Affiliation(s)
- Luyuan Zhao
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinxiao Zhang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China
| | - Yaolong Zhang
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sheng Ye
- School
of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Guozhen Zhang
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xin Chen
- Gusu
Laboratory of Materials, Suzhou, Jiangsu 215123, P. R. China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
33
|
Gruber T, Lewitzky M, Machner L, Weininger U, Feller SM, Balbach J. Macromolecular crowding induces a binding competent transient structure in intrinsically disordered Gab1. J Mol Biol 2021; 434:167407. [PMID: 34929201 DOI: 10.1016/j.jmb.2021.167407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613-694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613-694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Tobias Gruber
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Marc Lewitzky
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lisa Machner
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany.
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Technical Biochemistry e.V. and Center for Structure and Dynamics of Proteins, Martin-Luther-University of Halle-Wittenberg, Germany.
| |
Collapse
|
34
|
Kawale AA, Burmann BM. Characterization of backbone dynamics using solution NMR spectroscopy to discern the functional plasticity of structurally analogous proteins. STAR Protoc 2021; 2:100919. [PMID: 34761231 PMCID: PMC8567434 DOI: 10.1016/j.xpro.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The comprehensive delineation of inherent dynamic motions embedded in proteins, which can be crucial for their functional repertoire, is often essential yet remains poorly understood in the majority of cases. In this protocol, we outline detailed descriptions of the necessary steps for employing solution NMR spectroscopy for the in-depth amino acid level understanding of backbone dynamics of proteins. We describe the application of the protocol on the structurally analogous Tudor domains with disparate functionalities as a model system. For complete details on the use and execution of this protocol, please refer to Kawale and Burmann (2021).
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
35
|
Saikia N, Yanez-Orozco IS, Qiu R, Hao P, Milikisiyants S, Ou E, Hamilton GL, Weninger KR, Smirnova TI, Sanabria H, Ding F. Integrative structural dynamics probing of the conformational heterogeneity in synaptosomal-associated protein 25. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100616. [PMID: 34888535 PMCID: PMC8654206 DOI: 10.1016/j.xcrp.2021.100616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.
Collapse
Affiliation(s)
- Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Navajo Technical University, Chinle, AZ 86503, USA
| | | | - Ruoyi Qiu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Pengyu Hao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Erkang Ou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - George L. Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Keith R. Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Lead contact
| |
Collapse
|
36
|
Guseva S, Perez LM, Camacho-Zarco A, Bessa LM, Salvi N, Malki A, Maurin D, Blackledge M. 1H, 13C and 15N Backbone chemical shift assignments of the n-terminal and central intrinsically disordered domains of SARS-CoV-2 nucleoprotein. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:255-260. [PMID: 33730325 PMCID: PMC7967780 DOI: 10.1007/s12104-021-10014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/07/2021] [Indexed: 05/10/2023]
Abstract
The nucleoprotein (N) from SARS-CoV-2 is an essential cofactor of the viral replication transcription complex and as such represents an important target for viral inhibition. It has also been shown to colocalize to the transcriptase-replicase complex, where many copies of N decorate the viral genome, thereby protecting it from the host immune system. N has also been shown to phase separate upon interaction with viral RNA. N is a 419 amino acid multidomain protein, comprising two folded, RNA-binding and dimerization domains spanning residues 45-175 and 264-365 respectively. The remaining 164 amino acids are predicted to be intrinsically disordered, but there is currently no atomic resolution information describing their behaviour. Here we assign the backbone resonances of the first two intrinsically disordered domains (N1, spanning residues 1-44 and N3, spanning residues 176-263). Our assignment provides the basis for the identification of inhibitors and functional and interaction studies of this essential protein.
Collapse
Affiliation(s)
- Serafima Guseva
- University Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | | | | | | | - Nicola Salvi
- University Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Anas Malki
- University Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Damien Maurin
- University Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | | |
Collapse
|
37
|
Cho B, Choi J, Kim R, Yun JN, Choi Y, Lee HH, Koh J. Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners. J Am Chem Soc 2021; 143:12509-12523. [PMID: 34362249 DOI: 10.1021/jacs.1c00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prevalent in diverse protein interactomes, intrinsically disordered proteins or regions (IDPs or IDRs) often drive assembly of higher-order macromolecular complexes, using multiple target-binding motifs. Such IDP hubs are suggested to process various cellular signals and coordinate relevant biological processes. However, the mechanism of assembly and functional regulation of IDP hubs remains elusive due to the challenges in dissecting their intricate protein-protein interaction networks. Here we present basic thermodynamic models for the assembly of simple IDP hubs with multiple target proteins, constructing partition functions from fundamental binding parameters. We combined these basic functions to develop advanced thermodynamic models to analyze the assembly of the Nup153 hubs interacting with multiple karyopherin β1 (Kap) molecules, critical components of nucleocytoplasmic transport. The thermodynamic analysis revealed a complex organization of the Kap binding sites within the C-terminal IDR of Nup153 including a high-affinity 1:1 interaction site and a series of low-affinity sites for binding of multiple Kaps with negative cooperativity. The negative cooperativity arises from the overlapping nature of the low-affinity sites where Kap occupies multiple dipeptide motifs. The quantitative dissection culminated in construction of the Nup153 hub ensemble, elucidating how distribution among various Kap-bound states is modulated by Kap concentration and competing nuclear proteins. In particular, the Kap occupancy of the IDR can be fine-tuned by varying the location of competition within the overlapping sites, suggesting coupling of specific nuclear processes to distinct transport activities. In general, our results demonstrate the feasibility and a potential mechanism for manifold regulation of IDP functions by diverse cellular signals.
Collapse
Affiliation(s)
- ByeongJin Cho
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaejun Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - RyeongHyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jean Nyoung Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Melillo JH, Gabriel JP, Pabst F, Blochowicz T, Cerveny S. Dynamics of aqueous peptide solutions in folded and disordered states examined by dynamic light scattering and dielectric spectroscopy. Phys Chem Chem Phys 2021; 23:15020-15029. [PMID: 34190269 DOI: 10.1039/d1cp01893k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual β-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.
Collapse
Affiliation(s)
- Jorge H Melillo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain.
| | - Jan Philipp Gabriel
- School for Molecular Sciences, Arizona State University, Tempe, 85287, USA and Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Florian Pabst
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4 (20018), San Sebastián, Spain
| |
Collapse
|
39
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
40
|
Launay H, Shao H, Bornet O, Cantrelle FX, Lebrun R, Receveur-Brechot V, Gontero B. Flexibility of Oxidized and Reduced States of the Chloroplast Regulatory Protein CP12 in Isolation and in Cell Extracts. Biomolecules 2021; 11:biom11050701. [PMID: 34066751 PMCID: PMC8151241 DOI: 10.3390/biom11050701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
In the chloroplast, Calvin–Benson–Bassham enzymes are active in the reducing environment created in the light by electrons from the photosystems. In the dark, these enzymes are inhibited, mainly caused by oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent, measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges is simultaneous. In oxidized CP12, the C23–C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66–C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment: a cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66–C75 pair than for the C23–C31 pair. The redox mid-potentials for the two cysteine pairs differ and are similar to those found for glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase, consistent with the regulatory role of CP12.
Collapse
Affiliation(s)
- Helene Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
- Correspondence: (H.L.); (B.G.)
| | - Hui Shao
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
| | - Olivier Bornet
- NMR Platform, Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, F-13009 Marseille, France;
| | - Francois-Xavier Cantrelle
- CNRS, ERL9002, Integrative Structural Biology, Univ. Lille, F-59658 Lille, France;
- U1167, INSERM, CHU Lille, Institut Pasteur de Lille, F-59019 Lille, France
| | - Regine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, F-13009 Marseille, France;
| | | | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
- Correspondence: (H.L.); (B.G.)
| |
Collapse
|
41
|
Dyson HJ, Wright PE. NMR illuminates intrinsic disorder. Curr Opin Struct Biol 2021; 70:44-52. [PMID: 33951592 DOI: 10.1016/j.sbi.2021.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nuclear magnetic resonance (NMR) has long been instrumental in the characterization of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). This method continues to offer rich insights into the nature of IDPs in solution, especially in combination with other biophysical methods such as small-angle scattering, single-molecule fluorescence, electron paramagnetic resonance (EPR), and mass spectrometry. Substantial advances have been made in recent years in studies of proteins containing both ordered and disordered domains and in the characterization of problematic sequences containing repeated tracts of a single or a few amino acids. These sequences are relevant to disease states such as Alzheimer's, Parkinson's, and Huntington's diseases, where disordered proteins misfold into harmful amyloid. Innovative applications of NMR are providing novel insights into mechanisms of protein aggregation and the complexity of IDP interactions with their targets. As a basis for understanding the solution structural ensembles, dynamic behavior, and functional mechanisms of IDPs and IDRs, NMR continues to prove invaluable.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA.
| |
Collapse
|
42
|
Chong B, Yang Y, Wang ZL, Xing H, Liu Z. Reinforcement learning to boost molecular docking upon protein conformational ensemble. Phys Chem Chem Phys 2021; 23:6800-6806. [PMID: 33724276 DOI: 10.1039/d0cp06378a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are widely involved in human diseases and thus are attractive therapeutic targets. In practice, however, it is computationally prohibitive to dock large ligand libraries to thousands and tens of thousands of conformations. Here, we propose a reversible upper confidence bound (UCB) algorithm for the virtual screening of IDPs to address the influence of the conformation ensemble. The docking process is dynamically arranged so that attempts are focused near the boundary to separate top ligands from the bulk accurately. It is demonstrated in the example of transcription factor c-Myc that the average docking number per ligand can be greatly reduced while the performance is merely slightly affected. This study suggests that reinforcement learning is highly efficient in solving the bottleneck of virtual screening due to the conformation ensemble in the rational drug design of IDPs.
Collapse
Affiliation(s)
- Bin Chong
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
43
|
Busi B, Yarava JR, Bertarello A, Freymond F, Adamski W, Maurin D, Hiller M, Oschkinat H, Blackledge M, Emsley L. Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation. J Phys Chem B 2021; 125:2212-2221. [PMID: 33635078 DOI: 10.1021/acs.jpcb.0c10188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding and describing the dynamics of proteins is one of the major challenges in biology. Here, we use multifield variable-temperature NMR longitudinal relaxation (R1) measurements to determine the hierarchical activation energies of motions of four different proteins: two small globular proteins (GB1 and the SH3 domain of α-spectrin), an intrinsically disordered protein (the C-terminus of the nucleoprotein of the Sendai virus, Sendai Ntail), and an outer membrane protein (OmpG). The activation energies map the motions occurring in the side chains, in the backbone, and in the hydration shells of the proteins. We were able to identify similarities and differences in the average motions of the proteins. We find that the NMR relaxation properties of the four proteins do share similar features. The data characterizing average backbone motions are found to be very similar, the same for methyl group rotations, and similar activation energies are measured. The main observed difference occurs for the intrinsically disordered Sendai Ntail, where we observe much lower energy of activation for motions of protons associated with the protein-solvent interface as compared to the others. We also observe variability between the proteins regarding side chain 15N relaxation of lysine residues, with a higher activation energy observed in OmpG. This hints at strong interactions with negatively charged lipids in the bilayer and provides a possible mechanistic clue for the "positive-inside" rule for helical membrane proteins. Overall, these observations refine the understanding of the similarities and differences between hierarchical dynamics in proteins.
Collapse
Affiliation(s)
- Baptiste Busi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - François Freymond
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wiktor Adamski
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Matthias Hiller
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Medina E, R Latham D, Sanabria H. Unraveling protein's structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr Opin Struct Biol 2021; 66:129-138. [PMID: 33246199 PMCID: PMC7965259 DOI: 10.1016/j.sbi.2020.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Evidence regarding protein structure and function manifest the imperative role that dynamics play in proteins, underlining reconsideration of the unanimated sequence-to-structure-to-function paradigm. Structural dynamics portray a heterogeneous energy landscape described by conformational ensembles where each structural representation can be responsible for unique functions or enable macromolecular assemblies. Using the human p27/Cdk2/Cyclin A ternary complex as an example, we highlight the vital role of intramolecular and intermolecular dynamics for target recognition, binding, and inhibition as a critical modulator of cell division. Rapidly sampling configurations is critical for the population of different conformational ensembles encoding functional roles. To garner this knowledge, we present how the integration of (sub)ensemble and single-molecule fluorescence spectroscopy with molecular dynamic simulations can characterize structural dynamics linking the heterogeneous ensembles to function. The incorporation of dynamics into the sequence-to-structure-to-function paradigm promises to assist in tackling various challenges, including understanding the formation and regulation of mesoscale assemblies inside cells.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Danielle R Latham
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States.
| |
Collapse
|
45
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
46
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
47
|
Malagrinò F, Visconti L, Pagano L, Toto A, Troilo F, Gianni S. Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls. Int J Mol Sci 2020; 21:ijms21103484. [PMID: 32429036 PMCID: PMC7279032 DOI: 10.3390/ijms21103484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.
Collapse
|
48
|
Zheng W, Dignon G, Brown M, Kim YC, Mittal J. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins. J Phys Chem Lett 2020; 11:3408-3415. [PMID: 32227994 PMCID: PMC7450210 DOI: 10.1021/acs.jpclett.0c00288] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the conformational ensemble of an intrinsically disordered protein (IDP) is of great interest due to its relevance to critical intracellular functions and diseases. It is now well established that the polymer scaling behavior can provide a great deal of information about the conformational properties as well as liquid-liquid phase separation of an IDP. It is, therefore, extremely desirable to be able to predict an IDP's scaling behavior from the protein sequence itself. The work in this direction so far has focused on highly charged proteins and how charge patterning can perturb their structural properties. As naturally occurring IDPs are composed of a significant fraction of uncharged amino acids, the rules based on charge content and patterning are only partially helpful in solving the problem. Here, we propose a new order parameter, sequence hydropathy decoration, which can provide a near-quantitative understanding of scaling and structural properties of IDPs devoid of charged residues. We combine this with a charge patterning parameter, sequence charge decoration, to obtain a general equation, parametrized from extensive coarse-grained simulation data, for predicting protein dimensions from the sequence. We finally test this equation against available experimental data and find a semiquantitative match in predicting the scaling behavior. We also provide guidance on how to extend this approach to experimental data, which should be feasible in the near future.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
| | - Gregory Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Matthew Brown
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
49
|
Toto A, Malagrinò F, Visconti L, Troilo F, Pagano L, Brunori M, Jemth P, Gianni S. Templated folding of intrinsically disordered proteins. J Biol Chem 2020; 295:6586-6593. [PMID: 32253236 DOI: 10.1074/jbc.rev120.012413] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed "templated folding," whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
50
|
Guseva S, Milles S, Jensen MR, Salvi N, Kleman JP, Maurin D, Ruigrok RWH, Blackledge M. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. SCIENCE ADVANCES 2020; 6:eaaz7095. [PMID: 32270045 PMCID: PMC7112944 DOI: 10.1126/sciadv.aaz7095] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 05/14/2023]
Abstract
Many viruses are known to form cellular compartments, also called viral factories. Paramyxoviruses, including measles virus, colocalize their proteomic and genomic material in puncta in infected cells. We demonstrate that purified nucleoproteins (N) and phosphoproteins (P) of measles virus form liquid-like membraneless organelles upon mixing in vitro. We identify weak interactions involving intrinsically disordered domains of N and P that are implicated in this process, one of which is essential for phase separation. Fluorescence allows us to follow the modulation of the dynamics of N and P upon droplet formation, while NMR is used to investigate the thermodynamics of this process. RNA colocalizes to droplets, where it triggers assembly of N protomers into nucleocapsid-like particles that encapsidate the RNA. The rate of encapsidation within droplets is enhanced compared to the dilute phase, revealing one of the roles of liquid-liquid phase separation in measles virus replication.
Collapse
|