1
|
He XC, Liu YL, Gao J, Li KR, Chen K, Xiang HY, Yang H. MeOH-Triggered Halogen-Atom Transfer of Unactivated Alkyl Bromides Enabling the Photoredox Giese Addition. Org Lett 2025; 27:3089-3094. [PMID: 40099945 DOI: 10.1021/acs.orglett.5c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Herein, a nickel-catalyzed, photoredox Giese addition reaction with readily accessible alkyl bromides, driven by readily available feedstock MeOH as the halogen-atom transfer (XAT) reagent, was successfully achieved under mild conditions. The versatility of this protocol was demonstrated through a range of structurally varied alkyl bromides and Giese-type acceptors with moderate to good yields. Mechanistic investigation highlights that the formation of alkyl radicals through the XAT of alkyl bromides was tentatively prompted by •CH2OH, which was derived from the sequential photo-oxidation/1,2-hydrogen-atom transfer of MeOH.
Collapse
Affiliation(s)
- Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Tao S, Yang Y, Chen L, Xu J, Fu H, Chen H, Jiang W, Li R, Xue W, Zheng X. Electrochemical Synergistic Ni/Co-Catalyzed Carbonylative Cross-Electrophile Coupling of Aryl and Alkyl Halides with CO. JACS AU 2025; 5:1413-1420. [PMID: 40151257 PMCID: PMC11937974 DOI: 10.1021/jacsau.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Accessing unsymmetric ketones and achieving their carbon isotope labeling are crucial yet challenging tasks in both synthetic and medicinal chemistry. We report here an efficient electrochemical nickel-/cobalt-catalyzed carbonylative cross-electrophile coupling reaction. This method allows for the modular synthesis of a library of unsymmetric ketones from simple building blocks, including aryl halides, alkyl halides, and gaseous CO. The simultaneous use of nickel and cobalt salts as concerted catalysts ensures the high efficiency of this three-component carbonylative coupling. Furthermore, electrochemical reduction avoids the use of stoichiometric reductants, making this protocol more sustainable and attractive. The broad substrate scope and late-stage 13C isotope labeling of complex molecules derived from biologically active compounds highlight the practicality of this method.
Collapse
Affiliation(s)
- Shaokun Tao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yun Yang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Li Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jiaqi Xu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weidong Jiang
- School
of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Ruixiang Li
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weichao Xue
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
3
|
Yan SS, Jackstell R, Beller M. Copper-Catalyzed Selective Amino-alkoxycarbonylation of Unactivated Alkenes with CO. J Am Chem Soc 2025; 147:6464-6471. [PMID: 39961097 PMCID: PMC11869293 DOI: 10.1021/jacs.4c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
1,2-Amino-difunctionalization reactions of alkenes allow the efficient introduction of different functional groups and the rapid construction of valuable functionalized amines. In this respect, we report a copper-catalyzed 1,2-amino-alkoxycarbonylation of unactivated alkenes with CO and alkylamine precursors in the presence of a Lewis acid additive. The novel protocol allows direct access to valuable β-amino acid derivatives from easily available starting materials. The presented methods feature high chemo- and regioselectivities, good functional group tolerance, and substrate scope including diverse bioactive compounds and drug-like molecules. Mechanistic studies indicate that the Lewis acid additive is the key to realizing the efficient umpolung addition of nucleophilic aminyl radicals to electron-rich alkenes, which represents an elegant activation strategy for aminyl radicals.
Collapse
Affiliation(s)
- Si-Shun Yan
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
4
|
Voloshkin VA, Zorba LP, Nolan SP. The influential IPr: 25 years after its discovery. Chem Sci 2025; 16:2062-2082. [PMID: 39811009 PMCID: PMC11726322 DOI: 10.1039/d4sc07009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as a privileged ligand family in organometallic chemistry, widely recognized for their unique steric and electronic properties. Among them, the 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene (IPr) ligand has become a cornerstone of NHC chemistry for its remarkable versatility, stability, and broad use. Since its discovery by the Nolan group in 1999, IPr has played a pivotal role in advancing catalytic transformations and facilitating the utilization of NHC ligands in various domains. This article highlights major contributions where IPr has helped shape modern organometallic chemistry, with a focus on its influence in transition metal catalysis and ligand design. Twenty five years after its discovery, the IPr ligand continues to be a benchmark ligand, inspiring and driving innovation.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Leandros P Zorba
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
5
|
Chandrasekaran R, Selvam K, Rajeshkumar T, Chinnusamy T, Maron L, Rasappan R. Anti-Selective Carbosilylation: Nickel-Catalyzed Multicomponent Reaction of Solid Me 3SiZnI. Angew Chem Int Ed Engl 2024; 63:e202318689. [PMID: 38547324 DOI: 10.1002/anie.202318689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/25/2024]
Abstract
The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.
Collapse
Affiliation(s)
- Revathi Chandrasekaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Tung P, Mankad NP. Photochemical Synthesis of Acyl Fluorides Using Copper-Catalyzed Fluorocarbonylation of Alkyl Iodides. Org Lett 2024; 26:3299-3303. [PMID: 38546413 DOI: 10.1021/acs.orglett.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Acyl fluorides are important reagents due to their unique balance between reactivity and stability. Here, we report a copper-catalyzed carbonylative coupling strategy for synthesizing acyl fluorides under photoirradiation. Alkyl iodides were transformed in high yields into acyl fluorides by using a commercially available copper precatalyst (CuBr·SMe2) and a readily available fluoride salt (KF) at ambient temperature and mild CO pressure (6 atm) under blue light irradiation.
Collapse
Affiliation(s)
- Pinku Tung
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Zhang T, Zhang C, Lu X, Peng C, Zhang Y, Zhu X, Zhong G, Zhang J. Synthesis of silyl indenes by ruthenium-catalyzed aldehyde- and acylsilane-enabled C-H alkylation/cyclization. Org Biomol Chem 2024; 22:466-471. [PMID: 38099332 DOI: 10.1039/d3ob01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A ruthenium-catalyzed C-H alkylation/cyclization sequence is presented to prepare silyl indenes with atom and step-economy. This domino reaction is triggered by acyl silane-directed C-H activation, and an aldehyde controlled the following enol cyclization/condensation other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyl indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Tao Zhang
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Cheng Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiunan Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Chengxing Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Yawei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China.
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
8
|
Beig N, Goyal V, Bansal RK. Application of N-heterocyclic carbene-Cu(I) complexes as catalysts in organic synthesis: a review. Beilstein J Org Chem 2023; 19:1408-1442. [PMID: 37767335 PMCID: PMC10520485 DOI: 10.3762/bjoc.19.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
N-Heterocyclic carbenes (NHCs) are a special type of carbenes in which the carbene carbon atom is part of the nitrogen heterocyclic ring. Due to the simplicity of their synthesis and the modularity of their stereoelectronic properties, NHCs have unquestionably emerged as one of the most fascinating and well-known species in chemical science. The remarkable stability of NHCs can be attributed to both kinetic as well as thermodynamic effects caused by its structural features. NHCs constitute a well-established class of new ligands in organometallic chemistry. Although initially NHCs were regarded as pure σ-donor ligands, later experimental and theoretical studies established the presence of a significant back donation from the d-orbital of the metal to the π* orbital of the NHC. Over the last two decades, NHC-metal complexes have been extensively used as efficient catalysts in different types of organic reactions. Of these, NHC-Cu(I) complexes found prominence for various reasons, such as ease of preparation, possibility of structural diversity, low cost, and versatile applications. This article overviews applications of NHC-Cu(I) complexes as catalysts in organic synthesis over the last 12 years, which include hydrosilylation reactions, conjugate addition, [3 + 2] cycloaddition, A3 reaction, boration and hydroboration, N-H and C(sp2)-H carboxylation, C(sp2)-H alkenylation and allylation, C(sp2)-H arylation, C(sp2)-H amidation, and C(sp2)-H thiolation. Preceding the section of applications, a brief description of the structure of NHCs, nature of NHC-metal bond, and methods of preparation of NHC-Cu complexes is provided.
Collapse
Affiliation(s)
- Nosheen Beig
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| | - Varsha Goyal
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| | - Raj Kumar Bansal
- Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India
| |
Collapse
|
9
|
Tian J, Li W, Deng X, Lakshminarayanan R, Srinivasan R. Chemoselective N-Acylation of Amines with Acylsilanes under Aqueous Acidic Conditions. Org Lett 2023; 25:5740-5744. [PMID: 37515781 DOI: 10.1021/acs.orglett.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We report a facile method for forming amide bonds between acylsilanes and a wide range of amines in the presence of a mild chlorinating agent under aqueous acidic conditions. The reaction is highly chemoselective, as exemplified by the late-stage modification of a panel of approved drugs and natural products containing reactive functionalities.
Collapse
Affiliation(s)
- Jing Tian
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007, P. R. China
| | - Wei Li
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | - Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | | | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
10
|
Tung P, Mankad NP. Light-Mediated Synthesis of Aliphatic Anhydrides by Cu-Catalyzed Carbonylation of Alkyl Halides. J Am Chem Soc 2023; 145:9423-9427. [PMID: 37075476 DOI: 10.1021/jacs.3c01224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Acid anhydrides are valuable in the chemical industry for their role in synthesizing polymers, pharmaceuticals, and other commodities, but their syntheses often involve multiple steps with precious metal catalysts. The simplest anhydride, acetic anhydride, is currently produced by two Rh-catalyzed carbonylation reactions on a bulk scale for its use in synthesizing products ranging from aspirin to cellulose acetate. Here, we report a light-mediated, Cu-catalyzed process for producing aliphatic, symmetric acid anhydrides directly by carbonylation of alkyl (pseudo)halides in a single step without any precious metal additives. The transformation requires only simple Cu salts and abundant bases to generate a heterogeneous Cu0 photocatalyst in situ, maintains high efficiency and selectivity upon scale-up, and operates by a radical mechanism with several beneficial features. This discovery will enable the engineering of bulk processes for producing commodity anhydrides efficiently and sustainably.
Collapse
Affiliation(s)
- Pinku Tung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Li Y, Cui C. Synthesis of Phosphine-Functionalized Silicon Cubane and Its Oxidative Addition, Giving a Bis(silyl)copper Complex. Inorg Chem 2023; 62:2503-2507. [PMID: 36709431 DOI: 10.1021/acs.inorgchem.2c03937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new strategy for the introduction of a second type of Si atom to silicon cubanes has been developed starting from the tricyclic hexasilane dianion [Ar6Si6]2- (Ar = 2,4,6-Me3C6H2). Treatment of the dianion with Ar'SiCl3, followed by KC8, gave new types of octasilacubanes Ar6Ar'2Si8 [Ar' = 2,4,6-iPr2C6H2 (3a), 2-Ph2PC6H4 (3b)] in high yields. Remarkably, treatment of cubane 3b bearing with two phosphine groups with 2 equiv of CuCl in CH2Cl2 yielded the bis(silyl)copper complex via the selective oxidative addition of the newly formed Si-Si bond to Cu ion. Single-crystal X-ray analysis indicated the unique square-planar, four-coordinate Cu cation paired with the [CuCl2]- counteranion.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
12
|
Photoredox/Nickel Cooperatively Catalyzed Radical Allylic Silylation of Allyl Acetates – Scope and Mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Cu-Catalyzed C–C Bond Formation with CO. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Wang P, Wang Y, Neumann H, Beller M. Rh-catalyzed alkoxycarbonylation of unactivated alkyl chlorides. Chem Sci 2022; 13:13459-13465. [PMID: 36507181 PMCID: PMC9682885 DOI: 10.1039/d2sc04103k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
A general rhodium-catalyzed selective carbonylative coupling of unactivated alkyl chlorides with aliphatic alcohols or phenols to the corresponding esters is presented for the first time. Crucial for this transformation is the addition of sodium iodide, which provides in situ more active alkyl iodides. In the presence of a Rh(i)-DPPP catalyst system diverse esters (81 examples) including industrially relevant acetates from chloro- and dichloromethane can be prepared in a straightforward manner in up to 95% isolated yield. The used ligand not only affects the selectivity of the carbonylation reaction but also controls the selectivity of the preceding halide exchange step.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Yaxin Wang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a Rostock 18059 Germany
| |
Collapse
|
15
|
Zhu F, Yin P, Wu XF. Regioselective catalytic carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones. Chem Sci 2022; 13:12122-12126. [PMID: 36349108 PMCID: PMC9600224 DOI: 10.1039/d2sc04867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
A new Pd/Cu-catalyzed carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones with complete regioselectivity has been developed. This transformation shows broad substrate scope and excellent functional-group tolerance. Moreover, the obtained 1,2-carbonylboration products provide substantial opportunities for further transformations which cannot be obtained by known carbonylation procedures. Preliminary mechanistic studies indicate that the three hydrogen atoms of the products originated from ethyl acetate.
Collapse
Affiliation(s)
- Fengxiang Zhu
- Department School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Pengpeng Yin
- Department School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Leibniz-Institut für Katalyse e.V. Rostock 18059 Germany
| |
Collapse
|
16
|
Noji M, Ishimaru S, Obata H, Kumaki A, Seki T, Hayashi S, Takanami T. Facile electrochemical synthesis of silyl acetals: An air-stable precursor to formylsilane. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Zhao F, Ai HJ, Wu XF. Copper-Catalyzed Substrate-Controlled Carbonylative Synthesis of α-Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022; 61:e202200062. [PMID: 35175679 DOI: 10.1002/anie.202200062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Controllable production of α-keto amides and amides from the same substrates is an attractive goal in the field of transition-metal-catalyzed (double-)carbonylation. Herein, a novel copper-catalyzed highly selective double carbonylation of alkyl bromides has been developed. Moderate to good yields of α-keto amides were obtained as the only products. In the case of alkyl iodides, double- and mono-carbonylation can be achieved controllably under different conditions.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
18
|
Yamagishi H, Hitoshio K, Shimokawa J, Yorimitsu H. Sodium silylsilanolate as a precursor of silylcopper species. Chem Sci 2022; 13:4334-4340. [PMID: 35509465 PMCID: PMC9006920 DOI: 10.1039/d2sc00227b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2022] [Indexed: 12/18/2022] Open
Abstract
Silylcoppers function as convenient and effective sources of silicon functional groups. Commonly used precursors for those species have been limited to certain symmetric disilanes and silylboranes. This fact renders the development of silylcopper precursors desirable so that more diverse silyl groups could be efficiently delivered. Here we extend the utility of sodium silylsilanolates as competent precursors of silylcoppers. A silanolate unit operates as an auxiliary to transfer a variety of silyl groups to the copper centre, which was demonstrated in the copper-catalysed hydrosilylation of internal alkynes, α,β-unsaturated ketones, and allenes. Our mechanistic studies through DFT calculation suggested that a copper silylsilanolate undergoes intramolecular oxidative addition of the Si–Si bond to the copper centre to generate a silylcopper, in contrast to the typical formal σ-bond metathesis mechanism for conventional disilanes or silylboranes and copper alkoxides. Accordingly, sodium silylsilanolate has been established as an expeditious precursor of a variety of silylcopper species. Sodium silylsilanolates are demonstrated as useful silylating reagents for copper-catalysed hydrosilylation of unsaturated bonds via the formation of reactive silylcopper species that can deliver a series of silyl groups.![]()
Collapse
Affiliation(s)
- Hiroki Yamagishi
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Kenshiro Hitoshio
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Jun Shimokawa
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
19
|
Zhao F, Ai H, Wu X. Copper‐Catalyzed Substrate‐Controlled Carbonylative Synthesis of α‐Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
20
|
Yan X, Fan L, Zhang X, Liu G. Recent advances in Cu-catalyzed carbonylation with CO. Org Chem Front 2022. [DOI: 10.1039/d2qo01419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transition metal-catalyzed carbonylation has emerged as a powerful and versatile strategy for the efficient construction of complicated carbonyl-containing molecules from simple chemical feedstocks in the past decades.
Collapse
Affiliation(s)
- Xinlong Yan
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Lin Fan
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Xiangdong Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China
| |
Collapse
|
21
|
Wu F, Wu X. Copper‐Catalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
22
|
Wu FP, Wu XF. Copper-Catalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angew Chem Int Ed Engl 2021; 60:11730-11734. [PMID: 33694252 DOI: 10.1002/anie.202102197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Indexed: 12/15/2022]
Abstract
CuH and CuBpin are versatile catalysts and intermediates in organic chemistry. However, studies that involve both CuH and CuBpin in the same reaction is still rarely reported due to their high reactivity. Now, a study on CuH- and CuBpin-catalyzed borylative methylation of alkyl iodides with CO as the C1 source is reported. Various one carbon prolongated alkyl boranes (RCH2 Bpin and RCH(Bpin)2 ) were produced in moderate to good yields from the corresponding alkyl iodides (RI). In this cooperative system, CuH reacts with alkyl iodide faster than CuBpin.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
23
|
Nan J, Chen P, Gong X, Hu Y, Ma Q, Wang B, Ma Y. Metal-Free C-H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents. Org Lett 2021; 23:3761-3766. [PMID: 33856227 DOI: 10.1021/acs.orglett.1c01147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel metal-free C-H [5 + 1] carbonylative annulation of 2-alkenyl/pyrrolylanilines with dioxazolones has been established for the assembly of the privileged quinolinones and pyrrolyl-fused quinoxalinones. Entirely differing from the existing reports, the dioxazolones herein behave with an innovative chemistry and first emerge as carbonylating reagents to participate in annulation reactions. Moreover, this process features exceedingly simple operation (only solvent) and tolerates both vinyl and aryl substrates. Comprehensive mechanistic studies indicate that the formed isocyanate intermediate plays a crucial role in enabling the carbonylation annulation.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Gong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiong Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
24
|
Abstract
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
25
|
|
26
|
Ai HJ, Rabeah J, Brückner A, Wu XF. Rhodium-catalyzed carbonylative coupling of alkyl halides with thiols: a radical process faster than easier nucleophilic substitution. Chem Commun (Camb) 2021; 57:1466-1469. [PMID: 33439168 DOI: 10.1039/d0cc07578g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How to make a carbonylative coupling faster than the easier nucleophilic substitution? In this communication, a rhodium-catalyzed radical-based carbonylative coupling of alkyl halides with thiolphenols has been realized. Thioesters were isolated in good yields in general.
Collapse
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany.
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany.
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany.
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany. and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
27
|
Föhrenbacher SA, Krahfuss MJ, Zapf L, Friedrich A, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane: A Versatile Fluoride Acceptor for Transition Metal Chemistry. Chemistry 2021; 27:3504-3516. [PMID: 33241855 PMCID: PMC7898530 DOI: 10.1002/chem.202004885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Fluoride abstraction from different types of transition metal fluoride complexes [Ln MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C2 F5 )3 PF2 to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2 F5 )3 PF3 ]- ) is reported. (C2 F5 )3 PF2 reacted with trans-[Ni(iPr2 Im)2 (ArF )F] (iPr2 Im=1,3-diisopropylimidazolin-2-ylidene; ArF =C6 F5 , 1 a; 4-CF3 -C6 F4 , 1 b; 4-C6 F5 -C6 F4 , 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr2 Im)2 (solv)(ArF )]FAP (2 a-c[solv]; solv=Et2 O, CH2 Cl2 , THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh3 , solvent coordination was suppressed and the complexes trans-[Ni(iPr2 Im)2 (PPh3 )(C6 F5 )]FAP (trans-2 a[PPh3 ]) and cis-[Ni(iPr2 Im)2 (Dipp2 Im)(C6 F5 )]FAP (cis-2 a[Dipp2 Im]) (Dipp2 Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp2 Im)CuF] (3) in CH2 Cl2 or 1,2-difluorobenzene led to the isolation of [{(Dipp2 Im)Cu}2 ]2+ 2 FAP- (4). Subsequent reaction of 4 with PPh3 and different carbenes resulted in the complexes [(Dipp2 Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6 Me6 , fluoride transfer afforded [(Dipp2 Im)Cu(C6 Me6 )]FAP (5 f), which serves as a source of [(Dipp2 Im)Cu)]+ . Fluoride abstraction of [Cp2 TiF2 ] (7) resulted in the formation of dinuclear [FCp2 Ti(μ-F)TiCp2 F]FAP (8) (Cp=η5 -C5 H5 ) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.
Collapse
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mirjam J. Krahfuss
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ludwig Zapf
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- ConsultantMerck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Maik Finze
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
28
|
Cheng LJ, Zhao S, Mankad NP. One-Step Synthesis of Acylboron Compounds via Copper-Catalyzed Carbonylative Borylation of Alkyl Halides*. Angew Chem Int Ed Engl 2021; 60:2094-2098. [PMID: 33090619 DOI: 10.1002/anie.202012373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/11/2023]
Abstract
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
29
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
30
|
Cheng L, Zhao S, Mankad NP. One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Jie Cheng
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Siling Zhao
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
31
|
Palladium-catalyzed reaction of γ-silylated allyl acetates proceeding through 1,2-shift of a substituent on silicon. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Wang X, Liu F, Li Y, Yan Z, Qiang Q, Rong Z. Recent Advances in the Synthesis of Acylsilanes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
- Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Yongjie Li
- College of Chemistry Liaoning University Shenyang 110036 P.R. China
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Qing Qiang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Zi‐Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| |
Collapse
|
33
|
Lu X, Zhang J, Xu L, Shen W, Yu F, Ding L, Zhong G. Ruthenium-Catalyzed Brook Rearrangement Involved Domino Sequence Enabled by Acylsilane-Aldehyde Corporation. Org Lett 2020; 22:5610-5616. [PMID: 32633529 DOI: 10.1021/acs.orglett.0c01983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ruthenium-catalyzed [1,2]-Brook rearrangement involved domino sequence is presented to prepare highly functionalized silyloxy indenes with atomic- and step-economy. This domino reaction is triggered by acylsilane-directed C-H activation, and the aldehyde controlled the subsequent enol cyclization/Brook Rearrangement other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyloxy indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Xiunan Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liangyao Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhou Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feifei Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
34
|
Wu F, Yuan Y, Schünemann C, Kamer PCJ, Wu X. Copper‐Catalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of β‐Boryl Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Claas Schünemann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry Zhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| |
Collapse
|
35
|
Wu F, Yuan Y, Schünemann C, Kamer PCJ, Wu X. Copper‐Catalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of β‐Boryl Ketones. Angew Chem Int Ed Engl 2020; 59:10451-10455. [DOI: 10.1002/anie.202002714] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Claas Schünemann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry Zhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| |
Collapse
|
36
|
Ai HJ, Wang H, Li CL, Wu XF. Rhodium-Catalyzed Carbonylative Coupling of Alkyl Halides with Phenols under Low CO Pressure. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Hai Wang
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Chong-Liang Li
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
37
|
Cheng LJ, Mankad NP. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem Soc Rev 2020; 49:8036-8064. [DOI: 10.1039/d0cs00316f] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper catalysts enable cross-coupling reactions of unactivated alkyl electrophiles to generate C–C and C–X bonds.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Neal P. Mankad
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|