1
|
Li S, Zhang L, Luo L, Chen X. A theoretical study on synergistic tuning of graphene phonons via heteroatom modifications. Phys Chem Chem Phys 2025. [PMID: 40331282 DOI: 10.1039/d5cp00791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
This study systematically investigates the effects of nitrogen doping, gold atom cluster loading, and their synergistic influence on the phonon dispersion relations and electronic structure of graphene, based on density-functional theory calculations. Gold atom loading induces significant changes in the low-frequency phonon modes of graphene, and affects the electronic density of states near the Fermi level, indicating strong interactions between gold d-orbitals and graphene's π-orbitals. Nitrogen doping increases the complexity of the phonon spectrum by introducing high-frequency phonon modes and modifying the electronic structure. The synergistic effect of nitrogen doping and gold atom loading results in even more intricate modifications, characterized by the emergence of low-energy phonon modes, reflecting a profound impact on both the electronic and vibrational properties of graphene. Additionally, we compare the experimental electron energy loss spectrum of single Au atom loading on graphene with the simulated spectrum, revealing a good match between them. These findings provide a theoretical basis for designing graphene-based materials with tailored properties for applications in electronic devices and catalysis, suggesting that precise regulation of these properties can be achieved through controlled doping and metal atom loading.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Lifeng Zhang
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Langli Luo
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xing Chen
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin, China
| |
Collapse
|
2
|
Morais WO, Felix JPC, Silva GRD, Bastos CMDO, Dias AC, Flores EM, Rêgo CRC, Sousa VDSRD, Guedes-Sobrinho D, Piotrowski MJ. Understanding stability and reactivity of transition metal single-atoms on graphene. Sci Rep 2025; 15:15496. [PMID: 40319041 PMCID: PMC12049553 DOI: 10.1038/s41598-025-00126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Recently, single-atom catalysts (SACs) based on transition metals (TMs) have been identified as highly active catalysts with excellent atomic efficiency, reduced consumption of expensive materials, well-defined active centers, and tunable activity and selectivity. Furthermore, when carbon-based supports (including graphene-derived materials) are employed in SACs, their unique structural and electronic properties, such as high electrical conductivity and mechanical strength, can be integrated. However, for this application, the primary objective is to maintain proper stability-reactivity balance, ensuring the system remains stable while preserving its high chemical activity. In this context, we explore the adsorption behavior of TM single atoms (Co, Ni, Rh, Pd, Ir, Pt) on pristine graphene (pGR), hexagonal boron nitride (hBN), and graphene with monovacancies (GRm) using DFT-PBE+D3 calculations. From the adsorption energy trends, we observe weak chemisorption on pGR and physisorption on hBN, with adsorption energies ranging from 0.5 eV (Co/hBN) to 1.80 eV (Rh/pGR). In contrast, the adsorption strength is significantly enhanced on GRm (strong chemisorption), with adsorption energies reaching up to 9.11 eV for Ir/GRm, attributed to the strong defect-induced reactivity and improved orbital overlap. Electronic structure analysis reveals that pGR retains its semimetallic nature, hBN remains an insulator, and GRm transitions to metallic behavior due to the strong interactions between TM-C. Bader charge analysis indicates significant charge transfer in GRm, consistent with its catalytic potential, while hybridization indices show substantial pd orbital mixing, favoring improved TM anchoring. Thus, our results identify GRm as the most promising substrate for SACs, pGR as a balanced platform for controlled reactivity, and hBN as a stable support for selective catalysis or dielectric applications. Finally, defect engineering is a powerful strategy for designing next-generation catalysts, ensuring the right balance between stability and reactivity.
Collapse
Affiliation(s)
| | - João Paulo Cerqueira Felix
- Institute of Physics Armando Dias Tavares, Rio de Janeiro State University, Rio de Janeiro, 20550-900, Brazil
| | | | | | - Alexandre C Dias
- Institute of Physics and International Center of Physics, University of Brasília, Brasília, 70919-970, Brazil
| | - Efracio Mamani Flores
- Department of Physics, Jorge Basadre Grohmann National University, Tacna, 23000, Peru
| | - Celso R C Rêgo
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, Karlsruhe, 76021, Germany.
| | | | | | | |
Collapse
|
3
|
Gazis T, Ruta V, Vilé G. On the Hunt for Chiral Single-Atom Catalysts. ACS Catal 2025; 15:6852-6873. [PMID: 40337368 PMCID: PMC12053953 DOI: 10.1021/acscatal.4c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Enantioselective transformations are crucial in various fields, including chemistry, biology, and materials science. Today, the selective production of enantiopure compounds is achieved through asymmetric homogeneous catalysis. Single-atom catalysts (SACs) are emerging as a transformative approach in chemistry, enabling the heterogenization of organometallic complexes and effectively bridging the gap between homogeneous and heterogeneous catalysis. Despite their potential, the integration of SACs into enantioselective processes remains an underexplored area. This perspective offers a comprehensive analysis of possible strategies for the design of heterogeneous asymmetric catalysts, examining how chiral surfaces, chiral modifiers, grafted chiral complexes, and spatial confinement techniques can be effectively employed to enhance enantioselectivity. Each of these methods presents distinct advantages and challenges; for example, chiral surfaces and chiral modifiers offer potential for tailored reactivity but can suffer from limited stability and selectivity, while grafted chiral complexes provide robust platforms but may face issues related to scalability and synthesis complexity. Spatial confinement strategies show promise in enhancing catalyst efficiency but may be constrained by accessibility and reproducibility concerns. These strategies lay the groundwork for their adaptation to SACs, by providing innovative approaches to replicate the well-defined chiral environments of homogeneous catalysts while preserving the stability, reusability, and unique advantages of single-atom heterogeneous systems.
Collapse
Affiliation(s)
- Theodore
A. Gazis
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133 Milano, Italy
| | - Vincenzo Ruta
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133 Milano, Italy
| | - Gianvito Vilé
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133 Milano, Italy
| |
Collapse
|
4
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
5
|
Armillotta F, Naderasli P, Chesnyak V, Brune H. Reverse Spillover Dominating CO Adsorption on Single Cobalt Atoms in Graphene Divacancies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:4915-4922. [PMID: 40103662 PMCID: PMC11912467 DOI: 10.1021/acs.jpcc.4c07088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
The kinetics of molecular adsorption and desorption can unveil the details of the adsorption potential that impact, for instance, the overall sticking probability. This information is of particular importance for catalysis and gas sensing. We investigate the room-temperature CO adsorption on a model single-atom catalyst consisting of single Co atoms trapped in graphene (Gr) double carbon vacancies during Gr growth by chemical vapor deposition (CVD) on Ni(111). The study is conducted by combining a thermal desorption spectroscopy (TDS) instrument that allows the study of systems with a very low surface density of active sites, of the order of 10-3 monolayers (MLs) with variable-temperature scanning tunneling microscopy (VT-STM). Our findings show that CO adsorption onto the single Co atoms occurs mainly (up to 97%) through a reverse spillover mechanism, rather than through direct impingement from the gas phase. This mechanism involves CO physisorption and diffusion on pristine Gr, followed by lateral adsorption onto Co atoms. The reverse spillover channel effectively increases the sticking probability, by up to 2 orders of magnitude, compared with direct impingement. We use kinetic models to determine the relevant energies, such as the diffusion barrier for CO on Gr (68 ± 15 meV), the energy barrier for lateral CO adsorption on Co (174 ± 2 meV), and the chemisorption energy of CO on Co (0.97 ± 0.02 eV).
Collapse
Affiliation(s)
- Francesco Armillotta
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Pardis Naderasli
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Valeria Chesnyak
- Physics Department, University of Trieste, via A.Valerio 2, 34127 Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34129 Trieste, Italy
| | - Harald Brune
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Ye K, Han Y, Hu M, Hu P, Ahlquist MSG, Zhang G. Secondary Coordination Effects of Adjacent Metal Center in Metal-Nitrogen-Carbon Improve Scaling Relation of Oxygen Electrocatalysis. J Phys Chem Lett 2025; 16:909-916. [PMID: 39832180 DOI: 10.1021/acs.jpclett.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs). This inspired us to explore potential SCEs in metal-nitrogen-carbon (M-N-C), a promising type of oxygen evolution electrocatalyst. We introduced SCEs with a neighboring metal site that can modulate the adsorption strengths of oxygen-containing intermediates. First-principles calculations show that the second site in the heteronuclear duo four-nitrogen-coordinated metal center can induce SCEs that selectively stabilize the OOH intermediate but with minor effects on the OH intermediate and, thereby, disrupt the scaling relation between oxygen species and eventually increase the catalytic activity in oxygen evolution reactions. Additionally, the activity of oxygen reduction reaction of selected M-N-C is also enhanced by such SCE. Our computational work underscored the critical role SCEs can have in shaping activities of SACs, particularly in favorably altering scaling relationships, and demonstrated its potential to address catalytic challenges in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ke Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Yulan Han
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Min Hu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - P Hu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Future Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Hariharan S, Kinge S, Visscher L. Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective. J Chem Inf Model 2025; 65:472-511. [PMID: 39611724 PMCID: PMC11776058 DOI: 10.1021/acs.jcim.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Heterogeneous catalysis plays a critical role in many industrial processes, including the production of fuels, chemicals, and pharmaceuticals, and research to improve current catalytic processes is important to make the chemical industry more sustainable. Despite its importance, the challenge of identifying optimal catalysts with the required activity and selectivity persists, demanding a detailed understanding of the complex interactions between catalysts and reactants at various length and time scales. Density functional theory (DFT) has been the workhorse in modeling heterogeneous catalysis for more than three decades. While DFT has been instrumental, this review explores the application of quantum computing algorithms in modeling heterogeneous catalysis, which could bring a paradigm shift in our approach to understanding catalytic interfaces. Bridging academic and industrial perspectives by focusing on emerging materials, such as multicomponent alloys, single-atom catalysts, and magnetic catalysts, we delve into the limitations of DFT in capturing strong correlation effects and spin-related phenomena. The review also presents important algorithms and their applications relevant to heterogeneous catalysis modeling to showcase advancements in the field. Additionally, the review explores embedding strategies where quantum computing algorithms handle strongly correlated regions, while traditional quantum chemistry algorithms address the remainder, thereby offering a promising approach for large-scale heterogeneous catalysis modeling. Looking forward, ongoing investments by academia and industry reflect a growing enthusiasm for quantum computing's potential in heterogeneous catalysis research. The review concludes by envisioning a future where quantum computing algorithms seamlessly integrate into research workflows, propelling us into a new era of computational chemistry and thereby reshaping the landscape of modeling heterogeneous catalysis.
Collapse
Affiliation(s)
- Seenivasan Hariharan
- Institute
for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Sachin Kinge
- Toyota
Motor Europe, Materials Engineering Division, Hoge Wei 33, B-1930 Zaventum, Belgium
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Perilli D, Chesnyak V, Ugolotti A, Panighel M, Vigneri S, Armillotta F, Naderasli P, Stredansky M, Schied M, Lacovig P, Lizzit S, Cepek C, Comelli G, Brune H, Africh C, Di Valentin C. CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene. Angew Chem Int Ed Engl 2025:e202421757. [PMID: 39822130 DOI: 10.1002/anie.202421757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear.
Collapse
Affiliation(s)
- Daniele Perilli
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
| | - Valeria Chesnyak
- Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
- Present address: School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, United States and Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Aldo Ugolotti
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
| | - Mirco Panighel
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
- Present address: Scanning Probe Microscopy Laboratory, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, L-1511, Luxembourg
| | - Stefano Vigneri
- Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
| | - Francesco Armillotta
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
| | - Pardis Naderasli
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
| | - Matus Stredansky
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
- Present address: School of Chemistry, University of Birmingham Edgbaston, University Rd W, Birmingham, B15 2TT, United Kingdom
| | - Monika Schied
- Elettra - Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5, 34149, Trieste, Italy
- Present address: CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada Statale 14, km 163.5, 34149, Trieste, Italy
| | - Paolo Lacovig
- Elettra - Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5, 34149, Trieste, Italy
| | - Silvano Lizzit
- Elettra - Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5, 34149, Trieste, Italy
| | - Cinzia Cepek
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
| | - Giovanni Comelli
- Physics Department, University of Trieste, via A. Valerio 2, Trieste, 34127, Italy
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
| | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
| | - Cristina Africh
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Strada, Statale 14, km 163.5, 34149, Trieste, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy
| |
Collapse
|
10
|
Ge R, Huo J, Lu P, Dou Y, Bai Z, Li W, Liu H, Fei B, Dou S. Multifunctional Strategies of Advanced Electrocatalysts for Efficient Urea Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412031. [PMID: 39428837 DOI: 10.1002/adma.202412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
The electrochemical reduction of nitrogenous species (such as N2, NO, NO2 -, and NO3 -) for urea synthesis under ambient conditions has been extensively studied due to their potential to realize carbon/nitrogen neutrality and mitigate environmental pollution, as well as provide a means to store renewable electricity generated from intermittent sources such as wind and solar power. However, the sluggish reaction kinetics and the scarcity of active sites on electrocatalysts have significantly hindered the advancement of their practical applications. Multifunctional engineering of electrocatalysts has been rationally designed and investigated to adjust their electronic structures, increase the density of active sites, and optimize the binding energies to enhance electrocatalytic performance. Here, surface engineering, defect engineering, doping engineering, and heterostructure engineering strategies for efficient nitrogen electro-reduction are comprehensively summarized. The role of each element in engineered electrocatalysts is elucidated at the atomic level, revealing the intrinsic active site, and understanding the relationship between atomic structure and catalytic performance. This review highlights the state-of-the-art progress of electrocatalytic reactions of waste nitrogenous species into urea. Moreover, this review outlines the challenges and opportunities for urea synthesis and aims to facilitate further research into the development of advanced electrocatalysts for a sustainable future.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Key Laboratory of Adv. Energy Mater. Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Peng Lu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhongchao Bai
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Wenxian Li
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, New South Wales, 2052, Australia
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
11
|
Wang H, Yang M. Two Different Atomically Dispersed Pt Atoms Supported on Ceria. Inorg Chem 2024; 63:20592-20599. [PMID: 39413752 DOI: 10.1021/acs.inorgchem.4c03236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Atomically dispersed metals on oxide supports with different distribution positions or coordination environments can dictate the reactivity; they have therefore attracted tremendous attention recently. Nonetheless, the acknowledging and understanding of different single atoms remain challenging due to the reactivity controversy of the supported single atoms and clusters or nanoparticles, particularly on the widely used ceria supports. Herein, by modulating the loading amount of Pt single atoms carefully with strong electrostatic adsorption on conventionally synthesized ceria supports, we obtained two different atomically dispersed Pt atoms with similar Pt-O coordination environments and CO adsorption characteristics. One is anchored on the surface of ceria, and it can migrate and aggregate once activated with reduction-reoxidation treatments. The other may be trapped by the surface defects or vacancies in ceria and would be fixed on the ceria support firmly in isolated states during activation. Despite the similar CO adsorption during the reaction, the former can catalyze CO oxidation in both the status of single atoms and aggregated PtOx clusters. However, the latter is inactive for the reaction and would not be affected by the activation treatment. It cannot involve the CO oxidation, resulting in the waste of supported Pt atoms.
Collapse
Affiliation(s)
- Hui Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming Yang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
12
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
13
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
14
|
He M, Zhou Y, Luo Q, Yang J. Platinum monolayer dispersed on MXenes for electrocatalyzed hydrogen evolution: a first-principles study. NANOSCALE 2024; 16:15670-15676. [PMID: 39072435 DOI: 10.1039/d4nr01864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Maximizing platinum's atomic utilization and understanding the anchoring mechanism between platinum moieties and their supports are crucial for the hydrogen evolution reaction (HER). Using density functional theory, we investigate the catalyst of a Pt monolayer on the two-dimensional Mo2TiC2 substrate (PtML/Mo2TiC2) for the reaction. This Pt monolayer shows a Pt(111)-like pattern, with its Pt-Pt bond elongated by about 0.1 Å compared to Pt(111); charge transfer from Mo2TiC2 to the Pt monolayer leads to significant charge accumulation on Pt. This substantial monolayer metal-support interaction optimizes hydrogen adsorption toward optimal HER activity under both constant charge and potential conditions, making PtML/Mo2TiC2 a promising HER catalyst. Detailed studies reveal that the dominant Volmer-Tafel mechanism in the HER occurs on the 1 monolayer hydrogen-covered PtML/Mo2TiC2 surface. The surface Pourbaix diagram identifies this as the stable surface termination under the electrochemical reaction conditions. These findings provide insights into designing stable, efficient, and low platinum-loaded HER catalysts.
Collapse
Affiliation(s)
- Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Fenghua Road 818, Ningbo 315211, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
15
|
Duan Y, Xia Y, Ling Y, Zhou S, Liu X, Lan Y, Yin X, Yang Y, Yan X, Liang M, Hong S, Zhang L, Wang L. Regulating Second-Shell Coordination in Cobalt Single-Atom Catalysts toward Highly Selective Hydrogenation. ACS NANO 2024. [PMID: 39083439 DOI: 10.1021/acsnano.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Manipulating the local coordination environment of central metal atoms in single-atom catalysts (SACs) is a powerful strategy to exploit efficient SACs with optimal electronic structures for various applications. Herein, Co-SACs featured by Co single atoms with coordinating S atoms in the second shell dispersed in a nitrogen-doped carbon matrix have been developed toward the selective hydrogenation of halo-nitrobenzene. The location of the S atom in the model Co-SAC is verified through synchrotron-based X-ray absorption spectroscopy and theoretical calculations. The resultant Co-SACs containing second-coordination shell S atoms demonstrate excellent activity and outstanding durability for selective hydrogenation, superior to most precious metal-based catalysts. In situ characterizations and theoretical results verify that high activity and selectivity are attributed to the advantageous formation of the Co-O bond between p-chloronitrobenzene and Co atom at Co1N4-S moieties and the lower free energy and energy barriers of the reaction. Our findings unveil the correlation between the performance and second-shell coordination atom of SACs.
Collapse
|
16
|
Choi JS, Fortunato GV, Jung DC, Lourenço JC, Lanza MRV, Ledendecker M. Catalyst durability in electrocatalytic H 2O 2 production: key factors and challenges. NANOSCALE HORIZONS 2024; 9:1250-1261. [PMID: 38847073 DOI: 10.1039/d4nh00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
On-demand electrocatalytic hydrogen peroxide (H2O2) production is a significant technological advancement that offers a promising alternative to the traditional anthraquinone process. This approach leverages electrocatalysts for the selective reduction of oxygen through a two-electron transfer mechanism (ORR-2e-), holding great promise for delivering a sustainable and economically efficient means of H2O2 production. However, the harsh operating conditions during the electrochemical H2O2 production lead to the degradation of both structural integrity and catalytic efficacy in these materials. Here, we systematically examine the design strategies and materials typically utilized in the electroproduction of H2O2 in acidic environments. We delve into the prevalent reactor conditions and scrutinize the factors contributing to catalyst deactivation. Additionally, we propose standardised benchmarking protocols aimed at evaluating catalyst stability under such rigorous conditions. To this end, we advocate for the adoption of three distinct accelerated stress tests to comprehensively assess catalyst performance and durability.
Collapse
Affiliation(s)
- Ji Sik Choi
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
| | - Guilherme V Fortunato
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Daniele C Jung
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
| | - Julio C Lourenço
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marc Ledendecker
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Li H, Li R, Liu G, Zhai M, Yu J. Noble-Metal-Free Single- and Dual-Atom Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301307. [PMID: 37178457 DOI: 10.1002/adma.202301307] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Artificial photosynthesis enables direct solar-to-chemical energy conversion aimed at mitigating environmental pollution and producing solar fuels and chemicals in a green and sustainable approach, and efficient, robust, and low-cost photocatalysts are the heart of artificial photosynthesis systems. As an emerging new class of cocatalytic materials, single-atom catalysts (SACs) and dual-atom catalysts (DACs) have received a great deal of current attention due to their maximal atom utilization and unique photocatalytic properties, whereas noble-metal-free ones impart abundance, availability, and cost-effectiveness allowing for scalable implementation. This review outlines the fundamental principles and synthetic methods of SACs and DACs and summarizes the most recent advances in SACs (Co, Fe, Cu, Ni, Bi, Al, Sn, Er, La, Ba, etc.) and DACs (CuNi, FeCo, InCu, KNa, CoCo, CuCu, etc.) based on non-noble metals, confined on an arsenal of organic or inorganic substrates (polymeric carbon nitride, metal oxides, metal sulfides, metal-organic frameworks, carbon, etc.) acting as versatile scaffolds in solar-light-driven photocatalytic reactions, including hydrogen evolution, carbon dioxide reduction, methane conversion, organic synthesis, nitrogen fixation, hydrogen peroxide production, and environmental remediation. The review concludes with the challenges, opportunities, and future prospects of noble-metal-free SACs and DACs for artificial photosynthesis.
Collapse
Affiliation(s)
- Huaxing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongjie Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Barzegar G, Dehghanifard E, Esrafili A, Kermani M, Sanaei D, Kalantary RR. Enhancing oxygen reduction reaction performance through eco-friendly chitosan gel-assisted molten salt strategy: Small NiCo alloy nanoparticles decorated with high-loading single Fe-N X. Int J Biol Macromol 2024; 267:131481. [PMID: 38599431 DOI: 10.1016/j.ijbiomac.2024.131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
We developed an effective and eco-friendly strategy using chitosan gel-molten salt to achieve high loading (2.23 At. %) of single Fe-NX as assistive active sites. These sites were combined with small NiCo alloy NPs distributed on porous carbon aerogels to boost the ORR performance. The FeSAs-NiCo alloy@N-C sphere exhibits exceptional mass activity and specific activity of 3.705 A.mg-1 and 8.79 mA.cm-2(ECSA), respectively, at 0.85 V versus RHE. It has a superior onset potential of 1.08 V versus RHE, surpassing that of its nanoparticle Fe counterpart and NiCo alloy@N-C sphere. The significant improvement in ORR performance of the FeSAs-NiCo alloy@N-C sphere could be attributed to the positive effects of increased lattice strain due to the single atoms of Fe-NX hybridized with small NiCo alloy NPs. The chitosan gel-assisted molten salt strategy and assistive active sites of Fe-NX hybridized with NiCo alloy NPs regulate the electronic properties of the FeSAs-NiCo alloy@N-C sphere, both geometrically via lattice strain mismatch and electronically through shifting of the d-band center. This could influence the binding energies for oxygen and/or oxygen reduction intermediate adsorption/desorption. The additional improvement in the ORR performance of the FeSAs-NiCo alloy@N-C sphere also benefits from having a lower electrochemical activation energy.
Collapse
Affiliation(s)
- Gelavizh Barzegar
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Daryoush Sanaei
- Center for Climate Change and Health Research (CCCHR), Dezful University of Medical Sciences, Dezful, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Tian G, Li Z, Zhang C, Liu X, Fan X, Shen K, Meng H, Wang N, Xiong H, Zhao M, Liang X, Luo L, Zhang L, Yan B, Chen X, Peng HJ, Wei F. Upgrading CO 2 to sustainable aromatics via perovskite-mediated tandem catalysis. Nat Commun 2024; 15:3037. [PMID: 38589472 PMCID: PMC11002022 DOI: 10.1038/s41467-024-47270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The directional transformation of carbon dioxide (CO2) with renewable hydrogen into specific carbon-heavy products (C6+) of high value presents a sustainable route for net-zero chemical manufacture. However, it is still challenging to simultaneously achieve high activity and selectivity due to the unbalanced CO2 hydrogenation and C-C coupling rates on complementary active sites in a bifunctional catalyst, thus causing unexpected secondary reaction. Here we report LaFeO3 perovskite-mediated directional tandem conversion of CO2 towards heavy aromatics with high CO2 conversion (> 60%), exceptional aromatics selectivity among hydrocarbons (> 85%), and no obvious deactivation for 1000 hours. This is enabled by disentangling the CO2 hydrogenation domain from the C-C coupling domain in the tandem system for Iron-based catalyst. Unlike other active Fe oxides showing wide hydrocarbon product distribution due to carbide formation, LaFeO3 by design is endowed with superior resistance to carburization, therefore inhibiting uncontrolled C-C coupling on oxide and isolating aromatics formation in the zeolite. In-situ spectroscopic evidence and theoretical calculations reveal an oxygenate-rich surface chemistry of LaFeO3, that easily escape from the oxide surface for further precise C-C coupling inside zeolites, thus steering CO2-HCOOH/H2CO-Aromatics reaction pathway to enable a high yield of aromatics.
Collapse
Affiliation(s)
- Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengwen Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Ordos Laboratory, Ordos, Inner Mongolia, 017010, China.
- Institute for Carbon Neutrality, Tsinghua University, 100084, Beijing, China.
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xiaoyu Fan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Haibin Meng
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Mingyu Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaoyu Liang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Liqiang Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Lan Zhang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Binhang Yan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Ordos Laboratory, Ordos, Inner Mongolia, 017010, China.
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Ordos Laboratory, Ordos, Inner Mongolia, 017010, China.
| |
Collapse
|
20
|
Yang R, Wang Y, Li H, Zhou J, Gao Z, Liu C, Zhang B. Descriptor-Based Volcano Relations Predict Single Atoms for Hydroxylamine Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202317167. [PMID: 38323917 DOI: 10.1002/anie.202317167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
Hydroxylamine (NH2OH) is an important feedstock in fuels, pharmaceuticals, and agrochemicals. Nanostructured electrocatalysts drive green electrosynthesis of hydroxylamine from nitrogen oxide species in water. However, current electrocatalysts still suffer from low selectivity and manpower-consuming trial-and-error modes, leaving unclear selectivity/activity origins and a lack of catalyst design principles. Herein, we theoretically analyze key determinants of selectivity/activity and propose the adsorption energy of NHO (Gad(*NHO)) as a performance descriptor. A weak *NH2OH binding affinity and a favorable reaction pathway (*NHO pathway) jointly enable single-atom catalysts (SACs) with superior NH2OH selectivity. Then, an activity volcano plot of Gad(*NHO) is established to predict a series of SACs and discover Mn SACs as optimal electrocatalysts that exhibit pH-dependent activity. These theoretical prediction results are also confirmed by experimental results, rationalizing our Gad(*NHO) descriptor. Furthermore, Mn-Co geminal-atom catalysts (GACs) are predicted to optimize Gad(*NHO) and are experimentally proved to enhance NH2OH formation.
Collapse
Affiliation(s)
- Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zeyuan Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin, 300192, China
| |
Collapse
|
21
|
Wang G, Liu Y, Zhang X, Zong X, Zhang X, Zheng K, Qu D, An L, Qi X, Sun Z. Mechanistic Investigation into Single-Electron Oxidative Addition of Single-Atom Cu(I)-N 4 Site: Revealing the Cu(I)-Cu(II)-Cu(I) Catalytic Cycle in Photochemical Hydrophosphinylation. J Am Chem Soc 2024; 146:8668-8676. [PMID: 38498937 DOI: 10.1021/jacs.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Understanding the valency and structural variations of metal centers during reactions is important for mechanistic studies of single-atom catalysis, which could be beneficial for optimizing reactions and designing new protocols. Herein, we precisely developed a single-atom Cu(I)-N4 site catalyst via a photoinduced ligand exchange (PILE) strategy. The low-valent and electron-rich copper species could catalyze hydrophosphinylation via a novel single-electron oxidative addition (OA) pathway under light irradiation, which could considerably decrease the energy barrier compared with the well-known hydrogen atom transfer (HAT) and single electron transfer (SET) processes. The Cu(I)-Cu(II)-Cu(I) catalytic cycle, via single-electron oxidative addition and photoreduction, has been proven by multiple in situ or operando techniques. This catalytic system demonstrates high efficiency and requires room temperature conditions and no additives, which improves the turnover frequency (TOF) to 1507 h-1. In particular, this unique mechanism has broken through the substrate limitation and shows a broad scope for different electronic effects of alkenes and alkynes.
Collapse
Affiliation(s)
- Guanglin Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- Beijing Key Laboratory of Microstructure and Property of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yichang Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xupeng Zong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xu Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Property of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dan Qu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Li An
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Zhu X, He M, Chen X, Zhou Y, Xu C, Li X, Luo Q, Yang J. First-Principles Insights into Tungsten Semicarbide-Based Single-Atom Catalysts: Single-Atom Migration and Mechanisms in Oxygen Reduction. J Phys Chem Lett 2024:2815-2824. [PMID: 38441004 DOI: 10.1021/acs.jpclett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xing Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Xingxing Li
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
24
|
Fang Z, Liang Y, Li Y, Ni B, Zhu J, Li Y, Huang S, Lin W, Zhang Y. Theoretical Insight into the Special Synergy of Bimetallic Site in Co/MoC Catalyst to Promote N 2 -to-NH 3 Conversion. Chemistry 2023:e202302900. [PMID: 38105290 DOI: 10.1002/chem.202302900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The catalytic mechanisms of nitrogen reduction reaction (NRR) on the pristine and Co/α-MoC(001) surfaces were explored by density functional theory calculations. The results show that the preferred pathway is that a direct N≡N cleavage occurs first, followed by continuous hydrogenations. The production of second NH3 molecule is identified as the rate-limiting step on both systems with kinetic barriers of 1.5 and 2.0 eV, respectively, indicating that N2 -to-NH3 transformation on bimetallic surface is more likely to occur. The two components of the bimetallic center play different roles during NRR process, in which Co atom does not directly participate in the binding of intermediates, but primarily serves as a reservoir of H atoms. This special synergy makes Co/α-MoC(001) have superior activity for ammonia synthesis. The introduction of Co not only facilitates N2 dissociation, but also accelerates the migration of H atom due to the antibonding characteristic of Co-H bond. This study offers a facile strategy for the rational design and development of efficient catalysts for ammonia synthesis and other reactions involving the hydrogenation processes.
Collapse
Affiliation(s)
- Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yingsi Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanli Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Bilian Ni
- Department of Basic Chemistry, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| | - Shuping Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| |
Collapse
|
25
|
Kruczała K, Neubert S, Dhaka K, Mitoraj D, Jánošíková P, Adler C, Krivtsov I, Patzsch J, Bloh J, Biskupek J, Kaiser U, Hocking RK, Caspary Toroker M, Beranek R. Enhancing Photocatalysis: Understanding the Mechanistic Diversity in Photocatalysts Modified with Single-Atom Catalytic Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303571. [PMID: 37888857 PMCID: PMC10724417 DOI: 10.1002/advs.202303571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/16/2023] [Indexed: 10/28/2023]
Abstract
Surface modification of heterogeneous photocatalysts with single-atom catalysts (SACs) is an attractive approach for achieving enhanced photocatalytic performance. However, there is limited knowledge of the mechanism of photocatalytic enhancement in SAC-modified photocatalysts, which makes the rational design of high-performance SAC-based photocatalysts challenging. Herein, a series of photocatalysts for the aerobic degradation of pollutants based on anatase TiO2 modified with various low-cost, non-noble SACs (vanadate, Cu, and Fe ions) is reported. The most active SAC-modified photocatalysts outperform TiO2 modified with the corresponding metal oxide nanoparticles and state-of-the-art benchmark photocatalysts such as platinized TiO2 and commercial P25 powders. A combination of in situ electron paramagnetic resonance spectroscopy and theoretical calculations reveal that the best-performing photocatalysts modified with Cu(II) and vanadate SACs exhibit significant differences in the mechanism of activity enhancement, particularly with respect to the rate of oxygen reduction. The superior performance of vanadate SAC-modified TiO2 is found to be related to the shallow character of the SAC-induced intragap states, which allows for both the effective extraction of photogenerated electrons and fast catalytic turnover in the reduction of dioxygen, which translates directly into diminished recombination. These results provide essential guidelines for developing efficient SAC-based photocatalysts.
Collapse
Affiliation(s)
- Krzysztof Kruczała
- Faculty of ChemistryJagiellonian University in KrakówGronostajowa 2/C1‐21Krakow30–387Poland
| | - Susann Neubert
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Kapil Dhaka
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Dariusz Mitoraj
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Petra Jánošíková
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Christiane Adler
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Igor Krivtsov
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
- Department of Chemical and Environmental EngineeringUniversity of OviedoOviedo33006Spain
| | - Julia Patzsch
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Jonathan Bloh
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Johannes Biskupek
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Rosalie K. Hocking
- Department of Chemistry and BiotechnologyARC Training Centre for Surface Engineering for Advanced Material SEAMSwinburne University of TechnologyHawthornVIC3122Australia
| | - Maytal Caspary Toroker
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
- The Nancy and Stephen Grand Technion Energy ProgramTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Radim Beranek
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| |
Collapse
|
26
|
Jeskey J, Ding Y, Chen Y, Hood ZD, Sterbinsky GE, Jaroniec M, Xia Y. Single-Atom Catalysts for Selective Oxygen Reduction: Transition Metals in Uniform Carbon Nanospheres with High Loadings. JACS AU 2023; 3:3227-3236. [PMID: 38034958 PMCID: PMC10685421 DOI: 10.1021/jacsau.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications. Specifically, we use a chemical confinement strategy to suppress the formation of metal nanoparticles by introducing ethylenediaminetetraacetic acid (EDTA) as a molecular barrier to spatially isolate the metal atoms and thus generate SACs. To demonstrate the versatility of this synthetic method, we produced SACs from multiple transition metals, including Fe, Co, Cu, and Ni, with loadings as high as 3.87 wt %. Among these catalytic materials, the Fe-based SACs showed remarkable catalytic activity toward the oxygen reduction reaction (ORR), achieving an onset and half-wave potential of 1.00 and 0.831 VRHE, respectively, comparable to that of commercial 20 wt % Pt/C. Significantly, we were able to steer the ORR selectivity toward either energy generation or hydrogen peroxide production by simply changing the transition metal in the EDTA-based precursor.
Collapse
Affiliation(s)
- Jacob Jeskey
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yidan Chen
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D. Hood
- Applied
Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - George E. Sterbinsky
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mietek Jaroniec
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Li B, Ju CW, Wang W, Gu Y, Chen S, Luo Y, Zhang H, Yang J, Liang HW, Bonn M, Müllen K, Goddard WA, Zhou Y. Heck Migratory Insertion Catalyzed by a Single Pt Atom Site. J Am Chem Soc 2023; 145:24126-24135. [PMID: 37867298 DOI: 10.1021/jacs.3c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Single-atom catalysts (SACs) have generated excitement for their potential to downsize metal particles to the atomic limit with engineerable local environments and improved catalytic reactivities and selectivities. However, successes have been limited to small-molecule transformations with little progress toward targeting complex-building reactions, such as metal-catalyzed cross-coupling. Using a supercritical carbon-dioxide-assisted protocol, we report a heterogeneous single-atom Pt-catalyzed Heck reaction, which provides the first C-C bond-forming migratory insertion on SACs. Our quantum mechanical computations establish the reaction mechanism to involve a novel C-rich coordination site (i.e., PtC4) that demonstrates an unexpected base effect. Notably, the base was found to transiently modulate the coordination environment to allow migratory insertion into an M-C species, a process with a high steric impediment with no previous example on SACs. The studies showcase how SACs can introduce coordination structures that have remained underexplored in catalyst design. These findings offer immense potential for transferring the vast and highly versatile reaction manifold of migratory-insertion-based bond-forming protocols to heterogeneous SACs.
Collapse
Affiliation(s)
- Bo Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Cheng-Wei Ju
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenlong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanwei Gu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Haozhe Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William A Goddard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yazhou Zhou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
28
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
29
|
Bai Z, Wang J, Peng X, Liu Y, Zhang W. Molecular nitrogen induced structural evolution of single transition metal atoms supported by B/N co-doped graphene for enhanced nitrogen electroreduction performance. Phys Chem Chem Phys 2023; 25:27075-27082. [PMID: 37801005 DOI: 10.1039/d3cp03451h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural evolution of local coordination environments of single-atom catalysts (SACs) under reaction conditions plays an important role in the catalytic performance of SACs. Using density functional theory calculations, the possible structural evolution of transition metal single atoms supported by B/N codoped-graphene (TM-B2N2/G) under nitrogen reduction reaction (NRR) conditions is explored and the catalytic performance based on reconstructed SACs is theoretically evaluated. A novel nitrogen adsorption mode on TM-B2N2/G is discovered and the protonation of one of the N atoms results in the TM atoms binding with three N atoms, among which one associates with two B atoms (TM-N3B2/G). It is suggested that the N3B2/G supported tungsten single atom (W-N3B2/G) exhibits excellent N2 activity with a limiting potential of -0.27 V and high ammonia selectivity. Electronic structure analysis indicates that the coordination of N3B2/G redistributes the charge density of central W, shifts its d band center upward and strengthens the interaction of W and the adsorbed nitrogen molecule, thereby endowing it with better NRR performance, compared with that supported by pyridine-3N-doped graphene and pyrrolic-3N-doped graphene.
Collapse
Affiliation(s)
- Zhiqiang Bai
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
- School of Cable Engineering, Henan Institute of Technology, Xinxiang, Henan, 453000, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China.
| | - Xiaomeng Peng
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China.
| | - Yufang Liu
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, Henan, 450000, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Laboratory for Chemical Technology, Ghent University, Technologiepark-Zwijnaarde 125, B-9052 Ghent, Belgium
| |
Collapse
|
30
|
Lin W, Yin WJ, Wen B. Proximity effects in graphene-supported single-atom catalysts for hydrogen evolution reaction. J Chem Phys 2023; 159:094703. [PMID: 37655775 DOI: 10.1063/5.0165695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The interaction between adjacent active sites is crucial to balance the efficiency and utilization of functional atoms in single-atom catalysts. Herein, the catalytic activity of hydrogen evolution reaction at different site (nitrogen coordinated transition metal centers embedded in graphene) distances was comprehensively investigated by density functional theory calculations. The results show that a proximity effect of reactivity and site spacing can be identified in the Co-series single-atom catalysts. Although the proximity effect is more linearly responded with the site spacing along x direction, an optimal distance of ∼0.8 and ∼2.8 nm are found for Co and Rh, Ir atoms, respectively. An in-depth analysis of the electronic property reveals that the proximity effect is caused by the distinct net charge of the active site, which is affected by the dz2 position relative to EF. Subsequently, an excess electron nodal channel in x direction was found to serve as a communication pathway between the active sites. Through the finding in this work, an optimal Fe-N2C2 structure was deliberately designed and has shown prominent proximity effect as Co-series do. The results reported in this work provide a simple and effective tuning method for the reactivity of a single-atom catalyst.
Collapse
Affiliation(s)
- Weijie Lin
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bo Wen
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
He M, Chen X, Zhou Y, Xu C, Li X, Luo Q, Yang J. A First-Principles Study of Regulating Spin States of MoSi 2N 4 Supported Single-Atom Catalysts Via Doping Strategy for Enhancing Electrochemical Nitrogen Fixation Activity. J Phys Chem Lett 2023; 14:7100-7107. [PMID: 37530607 DOI: 10.1021/acs.jpclett.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Regulating the spin states of catalysts to enhance activity is fascinating but challenging. Herein, by using first-principles calculations, single transition-metal (TM) atoms Mo, Re, and Os embedded in nitrogen vacancy of the MoSi2N4 monolayer (TM1/VN-MoSi2N4) were screened out as potential catalysts for electrochemical nitrogen reduction reaction to ammonia. Our findings suggest that the spin states of these active centers can be precisely and gradually tuned through a simple doping strategy. Additionally, doping one O atom into the Mo1/VN-MoSi2N4 system as an example significantly improves catalytic activity. The spin state of Mo1 transitions from high to intermediate while simultaneously breaking the C3v symmetry of the supported atom. These factors synergistically lead to better orbital overlap between the catalyst and intermediates, facilitating subsequent protonation processes and overall catalytic activity. This work provides novel insight into designing, precisely controlling, and revisiting the spin-related catalytic performance in heterogeneous catalysis.
Collapse
Affiliation(s)
- Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xing Chen
- Institutes of Physical Science and Information Technology, Department of Chemistry, Anhui University, Hefei 230601, Anhui, China
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chang Xu
- Institutes of Physical Science and Information Technology, Department of Chemistry, Anhui University, Hefei 230601, Anhui, China
| | - Xingxing Li
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Department of Chemistry, Anhui University, Hefei 230601, Anhui, China
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
32
|
Endo K, Saruyama M, Teranishi T. Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry. Nat Commun 2023; 14:4241. [PMID: 37454144 DOI: 10.1038/s41467-023-40003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Single-atom catalysts dispersed on support materials show excellent heterogeneous catalytic properties that can be tuned using the interactions between the single atoms and the support. Such interactions depend on whether the single atoms are located on the surface or within the interior of the support. However, little is known about immobilising single atoms on the surface or within the interior of supports deliberately and selectively. Herein, such location-selective placement of single atoms is achieved through the choice of metal complex precursor, solvent, and workup procedure. Using CdSe nanoplatelets as a support, a cis-[PtCl2(SO(CH3)2)2] precursor in an aprotic solvent exclusively attaches single Pt atoms on the surface of the support. In contrast, a [PtCl4]2- precursor in a protic solvent followed by amine treatment places 60% of the single Pt atoms inside the support by cation substitution. The surface-adsorbed single Pt atoms show higher stability in photocatalytic hydrogen evolution than the substituted ones, and the preclusion of substitution as internal Pt maximises the activity. Thus, this study provides a viable strategy for the structurally precise synthesis and design of single-atom catalysts.
Collapse
Affiliation(s)
- Kenichi Endo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
33
|
Chen Z, Liu Z, Xu X. Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO 2 single-atom catalyst. Nat Commun 2023; 14:2512. [PMID: 37130833 PMCID: PMC10154346 DOI: 10.1038/s41467-023-38307-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Hemilability is an important concept in homogeneous catalysis where both the reactant activation and the product formation can occur simultaneously through a reversible opening and closing of the metal-ligand coordination sphere. However, this effect has rarely been discussed in heterogeneous catalysis. Here, by employing a theoretical study on CO oxidation over substituted Cu1/CeO2 single atom catalysts, we show that dynamic evolution of metal-support coordination can significantly change the electronic structure of the active center. The evolution of the active center is shown to either strengthen or weaken the metal-adsorbate bonding as the reaction proceeds from reactants, through intermediates, to products. As a result, the activity of the catalyst can be increased. We explain our observations by extending hemilability effects to single atom heterogenous catalysts and anticipate that introducing this concept can offer a new insight into the important role active site dynamics have in catalysis toward the rational design of more sophisticated single atom catalyst materials.
Collapse
Affiliation(s)
- Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
- Hefei National Laboratory, Hefei, 230088, P. R. China.
| |
Collapse
|
34
|
Wang C, Wang T, Liu Q, Jia W, Han X, Wu D. Starch-based porous carbon microsphere composited NiCo 2O 4 nanoflower as bifunctional electrocatalyst for zinc-air battery. Int J Biol Macromol 2023; 241:124604. [PMID: 37116841 DOI: 10.1016/j.ijbiomac.2023.124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is significant to explore and design outstanding bifunctional oxygen electrocatalysts to promote the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in zinc-air batteries. Herein, a novel porous carbon microspheres (CMS2) modified by NiCo2O4 nanoflower (CMS2-NiCo2O4) has been prepared as an ORR and OER catalyst. The hierarchical porous structure of CMS provides high conductivity and abundant active sites for ORR, whereas the synergistic effect of NiCo2O4 nanosheets and a small amount of FeZn oxides act as the positive phase for OER. The efficient oxygen catalytic activity is gained by creating a coupling interface between NiCo2O4 and CMS. The optimized CMS2-NiCo2O4 shows a half-wave potential of 0.82 V toward ORR and an overpotential of 392 mV toward OER. Particularly, CMS2-NiCo2O4 also exhibits an excellent peak power density (175.5 mW cm-2) as a catalyst for zinc-air batteries, which is superior to the commercial Pt/C + RuO2 catalyst (120.5 mW cm-2), and it also demonstrates a remarkable stability even after the charge-discharge cycles of 167 h. The prepared CMS2-NiCo2O4 is promising for the application of the bimetallic oxide catalyst for zinc-air battery.
Collapse
Affiliation(s)
- Caige Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Physics and Chemistry Analysis Center, Xinjiang University, Urumqi 830046, China
| | - Qian Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| | - Xiaofeng Han
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
35
|
Galushko AS, Boiko DA, Pentsak EO, Eremin DB, Ananikov VP. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. J Am Chem Soc 2023; 145:9092-9103. [PMID: 37052882 DOI: 10.1021/jacs.3c00645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An approach to the spatially localized characterization of supported catalysts over a reaction course is proposed. It consists of a combination of scanning, transmission, and high-resolution scanning transmission electron microscopy to determine metal particles from arrays of surface nanoparticles to individual nanoparticles and individual atoms. The study of the evolution of specific metal catalyst particles at different scale levels over time, particularly before and after the cross-coupling catalytic reaction, made it possible to approach the concept of 4D catalysis-tracking the positions of catalytic centers in space (3D) over time (+1D). The dynamic behavior of individual palladium atoms and nanoparticles in cross-coupling reactions was recorded with nanometer accuracy via the precise localization of catalytic centers. Single atoms of palladium leach out into solution from the support under the action of the catalytic system, where they exhibit extremely high catalytic activity compared to surface metal nanoparticles. Monoatomic centers, which make up only approximately 1% of palladium in the Pd/C system, provide more than 99% of the catalytic activity. The remaining palladium nanoparticles changed their shape and could move over the surface of the support, which was recorded by processing images of the array of nanoparticles with a neural network and aligning them using automatically detected keypoints. The study reveals a novel opportunity for single-atom catalysis─easier detachment (capture) from (on) the carbon support surface is the origin of superior catalytic activity, rather than the operation of single atomic catalytic centers on the surface of the support, as is typically assumed.
Collapse
Affiliation(s)
- Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Bridge Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
36
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
37
|
Posada-Pérez S, Vidal-López A, Solà M, Poater A. 2D carbon nitride as a support with single Cu, Ag, and Au atoms for carbon dioxide reduction reaction. Phys Chem Chem Phys 2023; 25:8574-8582. [PMID: 36883855 PMCID: PMC10277901 DOI: 10.1039/d3cp00392b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The electrochemical conversion of CO2 into value-added chemicals is an important approach to recycling CO2. In this work, we have combined the most efficient metal catalysts for this reaction, namely Cu, Ag, and Au, as single-atom particles dispersed on a two-dimensional carbon nitride support, with the aim of exploring their performance in the CO2 reduction reaction. Here, we report density functional theory computations showing the effect of single metal-atom particles on the support. We found that bare carbon nitride needed a high overpotential to overcome the energy barrier for the first proton-electron transfer, while the second transfer was exergonic. The deposition of single metal atoms enhances the catalytic activity of the system as the first proton-electron transfer is favored in terms of energy, although strong binding energies were found for CO adsorption on Cu and Au single atoms. Our theoretical interpretations are consistent with the experimental evidence that the competitive H2 generation is favored due to the strong CO binding energies. Our computational study paves the road to finding suitable metals that catalyze the first proton-electron transfer in the carbon dioxide reduction reaction and produce reaction intermediates with moderate binding energies, promoting a spillover to the carbon nitride support and thereby serving as bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Anna Vidal-López
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
38
|
Zhou Y, Lu R, Tao X, Qiu Z, Chen G, Yang J, Zhao Y, Feng X, Müllen K. Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation. J Am Chem Soc 2023; 145:3647-3655. [PMID: 36744313 PMCID: PMC9936543 DOI: 10.1021/jacs.2c12933] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitrogen-doped graphitic carbon materials hosting single-atom iron (Fe-N-C) are major non-precious metal catalysts for the oxygen reduction reaction (ORR). The nitrogen-coordinated Fe sites are described as the first coordination sphere. As opposed to the good performance in ORR, that in the oxygen evolution reaction (OER) is extremely poor due to the sluggish O-O coupling process, thus hampering the practical applications of rechargeable zinc (Zn)-air batteries. Herein, we succeed in boosting the OER activity of Fe-N-C by additionally incorporating phosphorus atoms into the second coordination sphere, here denoted as P/Fe-N-C. The resulting material exhibits excellent OER activity in 0.1 M KOH with an overpotential as low as 304 mV at a current density of 10 mA cm-2. Even more importantly, they exhibit a remarkably small ORR/OER potential gap of 0.63 V. Theoretical calculations using first-principles density functional theory suggest that the phosphorus enhances the electrocatalytic activity by balancing the *OOH/*O adsorption at the FeN4 sites. When used as an air cathode in a rechargeable Zn-air battery, P/Fe-N-C delivers a charge-discharge performance with a high peak power density of 269 mW cm-2, highlighting its role as the state-of-the-art bifunctional oxygen electrocatalyst.
Collapse
Affiliation(s)
- Yazhou Zhou
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany,School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Ruihu Lu
- State
Key Laboratory of Silicate Materials for Architectures, International
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiafang Tao
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany,School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany,School of
Science and Engineering, Shenzhen Institute of Aggregate Science and
Technology, The Chinese University of Hong
Kong, Shenzhen 518172, Guangdong, China
| | - Guangbo Chen
- Center
for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, Dresden 01062, Germany,
| | - Juan Yang
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Yan Zhao
- State
Key Laboratory of Silicate Materials for Architectures, International
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, Dresden 01062, Germany,Max
Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) D-06120, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany,
| |
Collapse
|
39
|
Zhang C, Bai L, Chen M, Sun X, Zhu M, Wu Q, Gao X, Zhang Q, Zheng X, Yu ZQ, Wu Y. Modulating the Site Density of Mo Single Atoms to Catch Adventitious O Atoms for Efficient H 2 O 2 Oxidation with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208704. [PMID: 36411951 DOI: 10.1002/adma.202208704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Coordination environment and site density have great impacts on the catalytic performance for single atoms (SAs). Herein, the site density of Mo-SAs on red polymeric carbon nitrides (RPCN) is modulated via a local carbonization strategy to controllably catch adventitious O atoms from open environment. The addition of melamine derivants with hydrocarbyl chains induces local carbonization during RPCN pyrolysis. These local carbonization regions bring abundant graphitic N3C to anchor Mo-SAs, and most of Mo-SAs catch the O atoms in air, forming the O2 -covered Mo-N3 coordination. The dopants of carbon source with different structures and amounts can modulate the site density of Mo-SAs, therefore controlling the amounts of coordinated O atoms. Furthermore, coordinated O atoms around Mo-SAs construct the catalytic environment with Lewis base and gather photo-generated electrons under light. Such O-covered Mo-SAs endow RPCN materials (Mo-RPCN) with a strong ability for hydrogen abstraction, leading to the 99.51% ratio (28.8 mmol min-1 g-1 ) rate for thioanisole conversion with H2 O2 assisted advance oxidation technology. This work brings a new sight on the coordinated atoms dominant oxidation process.
Collapse
Affiliation(s)
- Congmin Zhang
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lichen Bai
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Min Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuejiao Sun
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengzhao Zhu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinglong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yuen Wu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
40
|
Lan X, Zhao W, Fan M, Wang B, Zhang R. Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zhang L, Luo Q, Hu S, Hu Z, Zhang W, Yang J. Enhanced Electron-Hole Separation in Phosphorus-Coordinated Co Atom on g-C 3N 4 toward Photocatalytic Overall Water Splitting. J Phys Chem Lett 2022; 13:11961-11967. [PMID: 36534693 DOI: 10.1021/acs.jpclett.2c02663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Revealing the decoration mode of g-C3N4 and understanding the physical mechanism of overall water splitting is important for the further improvement of the photocatalytic activity of g-C3N4-based materials. With core level shift and molecular dynamics simulations based on first-principles calculations, Co1(PHx)3 anchored on the triazine of g-C3N4 is determined as a stable single-atom catalyst with high efficiency for photocatalytic overall water splitting. The separated spin-polarized charge density distribution of valence-band maximum and conduction-band minimum states is beneficial for the long lifetime of photoexcited electrons and holes. An anchored Co single atom site is the active site for oxygen evolution reaction, and nitrogen atoms act as active sites for hydrogen evolution reaction. This new decoration mode of g-C3N4 opens a possible way to functionalize g-C3N4 on both triazine and void sites to realize the separation of OER and hydrogenation reaction by water splitting.
Collapse
Affiliation(s)
- Lifu Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, Anhui, China
- School of Physics, Nankai University, Tianjin300071, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei230607, Anhui, China
| | - Shuanglin Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang621900, Sichuan, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin300071, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, Anhui, China
- Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, Anhui, China
- Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
42
|
Tian Y, Li M, Wu Z, Sun Q, Yuan D, Johannessen B, Xu L, Wang Y, Dou Y, Zhao H, Zhang S. Edge-hosted Atomic Co-N 4 Sites on Hierarchical Porous Carbon for Highly Selective Two-electron Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202213296. [PMID: 36280592 PMCID: PMC10098864 DOI: 10.1002/anie.202213296] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Not only high efficiency but also high selectivity of the electrocatalysts is crucial for high-performance, low-cost, and sustainable energy storage applications. Herein, we systematically investigate the edge effect of carbon-supported single-atom catalysts (SACs) on oxygen reduction reaction (ORR) pathways (two-electron (2 e- ) or four-electron (4 e- )) and conclude that the 2 e- -ORR proceeding over the edge-hosted atomic Co-N4 sites is more favorable than the basal-plane-hosted ones. As such, we have successfully synthesized and tuned Co-SACs with different edge-to-bulk ratios. The as-prepared edge-rich Co-N/HPC catalyst exhibits excellent 2 e- -ORR performance with a remarkable selectivity of ≈95 % in a wide potential range. Furthermore, we also find that oxygen functional groups could saturate the graphitic carbon edges under the ORR operation and further promote electrocatalytic performance. These findings on the structure-property relationship in SACs offer a promising direction for large-scale and low-cost electrochemical H2 O2 production via the 2 e- -ORR.
Collapse
Affiliation(s)
- Yuhui Tian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Meng Li
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ding Yuan
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bernt Johannessen
- Australia Synchrotron, Australia's Nuclear Science and Technology Organization, Victoria, 3168, Australia
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shandong Institute of Advanced Technology, Jinan, 250103, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
43
|
Yuan S, Meng G, Liu D, Zhao W, Zhu H, Chi Y, Ren H, Guo W. Synergy of Substrate Chemical Environments and Single-Atom Catalysts Promotes Catalytic Performance: Nitrogen Reduction on Chiral and Defected Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52544-52552. [PMID: 36367754 DOI: 10.1021/acsami.2c17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The catalytic activities of single-atom catalysts (SACs) are strongly influenced by the local chemical environments of their substrates, by which the electronic structures of the SACs can be effectively tuned. Together with the freedom of available reactive metallic centers, it would be feasible to maximize the catalytic performance by means of a synergetic optimization in the chemical space spanned by the features of both the substrate and the catalytic center. In this work, using first-principles calculations, we systematically assessed the synergetic effect between the substrate geometric/electronic structures and the catalytic centers on the electrocatalytic nitrogen reduction reaction (NRR). Carbon nanotubes with different chirality, defects, and chemical functionalization were used to support 15 transition metal atoms. Three SACs, TiN4CNT(3,3), TiN4CNT(5,5), and VN4CNT(3,3), simultaneously possess high NRR selectivities (w.r.t hydrogen evolution) and low overpotentials of 0.35, 0.35, and 0.37 V, respectively. Electronic structure analysis elucidated that larger metal atoms anchored on CNTs with higher curvature and doped by N atoms facilitate the rupture of the N-N bond in *NH2NH2 to lower the overpotentials. The synergy of substrate chemical environments and single atomic catalysis is a promising strategy to optimize the catalytic performance.
Collapse
Affiliation(s)
- Saifei Yuan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Guodong Meng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Yuhua Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| |
Collapse
|
44
|
Prieto MJ, Mullan T, Wan W, Tănase LC, de Souza Caldas L, Shaikhutdinov S, Sauer J, Usvyat D, Schmidt T, Cuenya BR. Plasma Functionalization of Silica Bilayer Polymorphs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48609-48618. [PMID: 36255411 PMCID: PMC9634693 DOI: 10.1021/acsami.2c11491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Ultrathin silica films are considered suitable two-dimensional model systems for the study of fundamental chemical and physical properties of all-silica zeolites and their derivatives, as well as novel supports for the stabilization of single atoms. In the present work, we report the creation of a new model catalytic support based on the surface functionalization of different silica bilayer (BL) polymorphs with well-defined atomic structures. The functionalization is carried out by means of in situ H-plasma treatments at room temperature. Low energy electron diffraction and microscopy data indicate that the atomic structure of the films remains unchanged upon treatment. Comparing the experimental results (photoemission and infrared absorption spectra) with density functional theory simulations shows that H2 is added via the heterolytic dissociation of an interlayer Si-O-Si siloxane bond and the subsequent formation of a hydroxyl and a hydride group in the top and bottom layers of the silica film, respectively. Functionalization of the silica films constitutes the first step into the development of a new type of model system of single-atom catalysts where metal atoms with different affinities for the functional groups can be anchored in the SiO2 matrix in well-established positions. In this way, synergistic and confinement effects between the active centers can be studied in a controlled manner.
Collapse
Affiliation(s)
- Mauricio J. Prieto
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Thomas Mullan
- Institut
für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099Berlin, Germany
| | - Weiming Wan
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Liviu C. Tănase
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Lucas de Souza Caldas
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Shamil Shaikhutdinov
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Joachim Sauer
- Institut
für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099Berlin, Germany
| | - Denis Usvyat
- Institut
für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099Berlin, Germany
| | - Thomas Schmidt
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195Berlin, Germany
| |
Collapse
|
45
|
Fan T, Chen H, Ji Y. Graphdiyne supported single-atom cobalt catalyst for oxygen reduction reaction: The role of the co-adsorbates. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Schulze Lammers B, López-Salas N, Stein Siena J, Mirhosseini H, Yesilpinar D, Heske J, Kühne TD, Fuchs H, Antonietti M, Mönig H. Real-Space Identification of Non-Noble Single Atomic Catalytic Sites within Metal-Coordinated Supramolecular Networks. ACS NANO 2022; 16:14284-14296. [PMID: 36053675 DOI: 10.1021/acsnano.2c04439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation. After full dehydrogenation of the amino groups, the molecular units lie flat and are strongly chemisorbed on the copper substrate. We observe a particularly extreme interaction of the dehydrogenated nitrogen atoms with single copper atoms located at intermolecular sites. In agreement with the nc-AFM measurements performed with an O-terminated copper tip on these triazine- and heptazine-based copper nitride structures, our ab initio simulations confirm a pronounced interaction of oxygen species at these N-Cu-N sites. To investigate the related functional properties of our samples regarding the oxygen reduction reaction (ORR), we developed an electrochemical setup for cyclic voltammetry experiments performed at ambient pressure within a drop of electrolyte in a controlled O2 or N2 environment. Both copper nitride structures show a robust activity in irreversibly catalyzing the reduction of oxygen. The activity is assigned to the intermolecular N-Cu-N sites of the triazine- and heptazine-based copper nitrides or corresponding oxygenated versions (N-CuO-N, N-CuO2-N). By combining nc-AFM characterization on the atomic scale with a direct electrochemical proof of performance, our work provides fundamental insights about active sites in a technologically highly relevant reaction.
Collapse
Affiliation(s)
- Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nieves López-Salas
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Julya Stein Siena
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hossein Mirhosseini
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Julian Heske
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| |
Collapse
|
47
|
Bai X, Zhao X, Zhang Y, Ling C, Zhou Y, Wang J, Liu Y. Dynamic Stability of Copper Single-Atom Catalysts under Working Conditions. J Am Chem Soc 2022; 144:17140-17148. [DOI: 10.1021/jacs.2c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Macao Institute of Materials Science and Engineering (MIMSE) and Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yipeng Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
48
|
Single Atom Catalysts in Liquid Phase Selective Hydrogenations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
|
50
|
Wan M, Yue H, Notarangelo J, Liu H, Che F. Deep Learning-Assisted Investigation of Electric Field-Dipole Effects on Catalytic Ammonia Synthesis. JACS AU 2022; 2:1338-1349. [PMID: 35783174 PMCID: PMC9241008 DOI: 10.1021/jacsau.2c00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/21/2023]
Abstract
External electric fields can modify binding energies of reactive surface species and enhance catalytic performance of heterogeneously catalyzed reactions. In this work, we used density functional theory (DFT) calculations-assisted and accelerated by a deep learning algorithm-to investigate the extent to which ruthenium-catalyzed ammonia synthesis would benefit from application of such external electric fields. This strategy allows us to determine which electronic properties control a molecule's degree of interaction with external electric fields. Our results show that (1) field-dependent adsorption/reaction energies are closely correlated to the dipole moments of intermediates over the surface, (2) a positive field promotes ammonia synthesis by lowering the overall energetics and decreasing the activation barriers of the potential rate-limiting steps (e.g., NH2 hydrogenation) over Ru, (3) a positive field (>0.6 V/Å) favors the reaction mechanism by avoiding kinetically unfavorable N≡N bond dissociation over Ru(1013), and (4) local adsorption environments (i.e., dipole moments of the intermediates in the gas phase, surface defects, and surface coverage of intermediates) influence the resulting surface adsorbates' dipole moments and further modify field-dependent reaction energetics. The deep learning algorithm developed here accelerates field-dependent energy predictions with acceptable accuracies by five orders of magnitudes compared to DFT alone and has the capacity of transferability, which can predict field-dependent energetics of other catalytic surfaces with high-quality performance using little training data.
Collapse
Affiliation(s)
- Mingyu Wan
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| | - Han Yue
- Michtom
School of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jaime Notarangelo
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| | - Hongfu Liu
- Michtom
School of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Fanglin Che
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell 01854, United States
| |
Collapse
|