1
|
Römpp A, Treu A, Kokesch-Himmelreich J, Marwitz F, Dreisbach J, Aboutara N, Hillemann D, Garrelts M, Converse PJ, Tyagi S, Gerbach S, Gyr L, Lemm AK, Volz J, Hölscher A, Gröschel L, Stemp EM, Heinrich N, Kloss F, Nuermberger EL, Schwudke D, Hoelscher M, Hölscher C, Walter K. The clinical-stage drug BTZ-043 accumulates in murine tuberculosis lesions and efficiently acts against Mycobacterium tuberculosis. Nat Commun 2025; 16:826. [PMID: 39827265 PMCID: PMC11742723 DOI: 10.1038/s41467-025-56146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The development of granulomas with central necrosis harboring Mycobacterium tuberculosis (Mtb) is the hallmark of human tuberculosis (TB). New anti-TB therapies need to effectively penetrate the cellular and necrotic compartments of these lesions and reach sufficient concentrations to eliminate Mtb. BTZ-043 is a novel antibiotic showing good bactericidal activity in humans in a phase IIa trial. Here, we report on lesional BTZ-043 concentrations severalfold above the minimal-inhibitory-concentration and the substantial local efficacy of BTZ-043 in interleukin-13-overexpressing mice, which mimic human TB pathology of granuloma necrosis. High-resolution MALDI imaging further reveals that BTZ-043 diffuses and accumulates in the cellular compartment, and fully penetrates the necrotic center. This is the first study that visualizes an efficient penetration and accumulation of a clinical-stage TB drug in human-like centrally necrotizing granulomas and that also determines its lesional activity. Our results most likely predict a substantial bactericidal effect of BTZ-043 at these hard-to-reach sites in TB patients.
Collapse
Affiliation(s)
- Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany.
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Franziska Marwitz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Julia Dreisbach
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nadine Aboutara
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Doris Hillemann
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Moritz Garrelts
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Paul J Converse
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandeep Tyagi
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sina Gerbach
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Luzia Gyr
- Robotic-assisted Discovery of Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Ann-Kathrin Lemm
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Johanna Volz
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Alexandra Hölscher
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Leon Gröschel
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Eva-Maria Stemp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Norbert Heinrich
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP; Immunology, Infection and Pandemic Research, Munich, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Michael Hoelscher
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP; Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Christoph Hölscher
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Kerstin Walter
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
2
|
Kim J, Spears I, Erice C, Kim HYH, Porter NA, Tressler C, Tucker EW. Spatially heterogeneous lipid dysregulation in tuberculous meningitis. Neurobiol Dis 2024; 202:106721. [PMID: 39489454 DOI: 10.1016/j.nbd.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Tuberculous (TB) meningitis is the deadliest form of extrapulmonary TB which disproportionately affects children and immunocompromised individuals. Studies in pulmonary TB have shown that Mycobacterium tuberculosis can alter host lipid metabolism to evade the immune system. Cholesterol lowering drugs (i.e., statins) reduce the risk of infection, making them a promising host-directed therapy in pulmonary TB. However, the effect of M. tuberculosis infection on the young or adult brain lipidome has not been studied. The brain is the second-most lipid-rich organ, after adipose tissue, with a temporally and spatially heterogeneous lipidome that changes from infancy to adulthood. The young, developing brain in children may be uniquely vulnerable to alterations in lipid composition and homeostasis, as perturbations in cholesterol metabolism can cause developmental disorders leading to intellectual disabilities. To begin to understand the alterations to the brain lipidome in pediatric TB meningitis, we utilized our previously published young rabbit model of TB meningitis and applied mass spectrometry (MS) techniques to elucidate spatial differences. We used matrix assisted laser desorption/ionization-MS imaging (MALDI-MSI) and complemented it with region-specific liquid chromatography (LC)-MS/MS developed to identify and quantify sterols and oxysterols difficult to identify by MALDI-MSI. MALDI-MSI revealed several sphingolipids, glycerolipids and glycerophospholipids that were downregulated in brain lesions. LC-MS/MS revealed the downregulation of cholesterol, several sterol intermediates along the cholesterol biosynthesis pathway and enzymatically produced oxysterols as a direct result of M. tuberculosis infection. However, oxysterols produced by oxidative stress were increased in brain lesions. Together, these results demonstrate significant spatially regulated brain lipidome dysregulation in pediatric TB meningitis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ian Spears
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer, Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
3
|
Ngai YT, Briggs MT, Mittal P, Young C, Parkinson-Lawrence E, Klingler-Hoffmann M, Orgeig S, Hoffmann P. Mass spectrometry imaging protocol for spatial mapping of lipids, N-glycans and peptides in murine lung tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9721. [PMID: 38525810 DOI: 10.1002/rcm.9721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
RATIONALE The application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to murine lungs is challenging due to the spongy nature of the tissue. Lungs consist of interconnected air sacs (alveoli) lined by a single layer of flattened epithelial cells, which requires inflation to maintain its natural structure. Therefore, a protocol that is compatible with both lung instillation and high spatial resolution is essential to enable multi-omic studies on murine lung disease models using MALDI-MSI. METHODS AND RESULTS To maintain the structural integrity of the tissue, murine lungs were inflated with 8% (w/v) gelatin for lipid MSI of fresh frozen tissues or 4% (v/v) paraformaldehyde neutral buffer for N-glycan and peptide MSI of FFPE tissues. Tissues were sectioned and prepared for enzymatic digestion and/or matrix deposition. Glycerol-free PNGase F was applied for N-glycan MSI, while Trypsin Gold was applied for peptide MSI using the iMatrixSpray and ImagePrep Station, respectively. For lipid, N-glycan and peptide MSI, α-cyano-4-hydroxycinnamic acid matrix was deposited using the iMatrixSpray. MS data were acquired with 20 μm spatial resolution using a timsTOF fleX MS instrument followed by MS fragmentation of lipids, N-glycans and peptides. For lipid MSI, trapped ion mobility spectrometry was used to separate isomeric/isobaric lipid species. SCiLS™ Lab was used to visualize all MSI data. For analyte identification, MetaboScape®, GlycoMod and Mascot were used to annotate MS fragmentation spectra of lipids, N-glycans and tryptic peptides, respectively. CONCLUSIONS Our protocol provides instructions on sample preparation for high spatial resolution MALDI-MSI, MS/MS data acquisition and lipid, N-glycan and peptide annotation and identification from murine lungs. This protocol will allow non-biased analyses of diseased lungs from preclinical murine models and provide further insight into disease models.
Collapse
Affiliation(s)
- Yuen T Ngai
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Matthew T Briggs
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Parul Mittal
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Clifford Young
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | | - Sandra Orgeig
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Peter Hoffmann
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
4
|
Wang Y, Hummon AB. Quantification of Irinotecan in Single Spheroids Using Internal Standards by MALDI Mass Spectrometry Imaging. Anal Chem 2023; 95:9227-9236. [PMID: 37285205 PMCID: PMC10350333 DOI: 10.1021/acs.analchem.3c00699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used to visualize molecular distributions in various biological samples. While it has succeeded in localizing molecules ranging from metabolites to peptides, quantitative MSI (qMSI) has remained challenging, especially in small biological samples like spheroids. Spheroids are a three-dimensional cellular model system that replicate the chemical microenvironments of tumors. This cellular model has played an important role in evaluating the penetration of drugs to better understand the efficacy of clinical chemotherapy. Therefore, we aim to optimize a method to quantify the distribution of therapeutics in a single spheroid using MALDI-MSI. Studies were performed with the therapeutic irinotecan (IR). The calibration curve showed a linear relationship with a limit of detection (LOD) of 0.058 ng/mm2 and R2 value at 0.9643. Spheroids treated with IR for different lengths of time were imaged using the optimized method to quantify the drug concentration during the penetration process. With a dosing concentration of 20.6 μM, the concentration of IR at 48 h of treatment was 16.90 μM within a single spheroid. Furthermore, spheroids were divided into different layers by spatial segmentation to be quantified separately. This MALDI-qMSI method is amenable to a wide range of drugs as well as their metabolites. The quantification results show great potential to extend this method to other small biological samples such as organoids for patient derived therapies.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
6
|
Kokesch-Himmelreich J, Wittek O, Race AM, Rakete S, Schlicht C, Busch U, Römpp A. MALDI mass spectrometry imaging: From constituents in fresh food to ingredients, contaminants and additives in processed food. Food Chem 2022; 385:132529. [PMID: 35279497 DOI: 10.1016/j.foodchem.2022.132529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
Mass Spectrometry imaging (MS imaging) provides spatial information for a wide range of compound classes in different sample matrices. We used MS imaging to investigate the distribution of components in fresh and processed food, including meat, dairy and bakery products. The MS imaging workflow was optimized to cater to the specific properties and challenges of the individual samples. We successfully detected highly nonpolar and polar constituents such as beta-carotene and anthocyanins, respectively. For the first time, the distributions of a contaminant and a food additive were visualized in processed food. We detected acrylamide in German gingerbread and investigated the penetration of the preservative natamycin into cheese. For this purpose, a new data analysis tool was developed to study the penetration of analytes from uneven surfaces. Our results show that MS imaging has great potential in food analysis to provide relevant information about components' distributions, particularly those underlying official regulations.
Collapse
Affiliation(s)
| | - Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Sophie Rakete
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Claus Schlicht
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
7
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
8
|
Kokesch-Himmelreich J, Treu A, Race AM, Walter K, Hölscher C, Römpp A. Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal Chem 2022; 94:5483-5492. [PMID: 35344339 DOI: 10.1021/acs.analchem.1c03462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
9
|
Interleukin-13 overexpressing mice represent an advanced pre-clinical model for detecting the distribution of anti-mycobacterial drugs within centrally necrotizing granulomas. Antimicrob Agents Chemother 2021; 66:e0158821. [PMID: 34871095 PMCID: PMC9211424 DOI: 10.1128/aac.01588-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates. M. tuberculosis-infected interleukin-13-overexpressing (IL-13tg) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of M. tuberculosis by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI-MS imaging analysis of clofazimine, pyrazinamide, and rifampicin revealed a drug-specific distribution within different lesion types, including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas in BALB/c IL-13tg animals, emphasizing the necessity of preclinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the preclinical stage.
Collapse
|
10
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
11
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
12
|
Treu A, Römpp A. Matrix ions as internal standard for high mass accuracy matrix-assisted laser desorption/ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9110. [PMID: 33880828 DOI: 10.1002/rcm.9110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE High mass accuracy is indispensable for reliable identification in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging. Ubiquitous matrix ions can serve as reference masses for mass calibration if their sum formula is known. Here we report an overview of ions generated on tissue by 11 common MALDI matrices for use in internal or external mass calibration. METHODS Matrices covered in this study were applied onto coronal mouse brain sections using a pneumatic sprayer setup. MALDI imaging was performed on a Q Exactive HF orbital trapping mass spectrometer coupled to an AP-SMALDI 10 source. Measurements were conducted with high mass resolution (240 k full width at half maximum at m/z 200) and high mass accuracy with a root mean square mass error of better than 1.5 ppm achieved via internal mass calibration using matrix ions. RESULTS MALDI MS imaging was used to investigate ions generated on tissue by 11 common MALDI matrices. An example of using matrix ions for internal mass calibration in MALDI imaging of drug substances and lipids in murine lung sections is presented. Tables containing the cluster composition, sum formulae, and the measured and theoretical m/z ratios of the identified ions were compiled for each matrix. CONCLUSION Using matrix ions as reference masses for internal and external mass calibration in MALDI MS imaging is an effective and elegant way to achieve sub-ppm mass accuracy as it makes use of ubiquitous signals present in every MALDI MS spectrum without the need for an additional calibration standard.
Collapse
Affiliation(s)
- Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
13
|
Zemaitis KJ, Izydorczak AM, Thompson AC, Wood TD. Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer. Metabolites 2021; 11:metabo11040253. [PMID: 33923908 PMCID: PMC8073082 DOI: 10.3390/metabo11040253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The study of biological specimens by mass spectrometry imaging (MSI) has had a profound influence in the various forms of spatial-omics over the past two decades including applications for the identification of clinical biomarker analysis; the metabolic fingerprinting of disease states; treatment with therapeutics; and the profiling of lipids, peptides and proteins. No singular approach is able to globally map all biomolecular classes simultaneously. This led to the development of many complementary multimodal imaging approaches to solve analytical problems: fusing multiple ionization techniques, imaging microscopy or spectroscopy, or local extractions into robust multimodal imaging methods. However, each fusion typically requires the melding of analytical information from multiple commercial platforms, and the tandem utilization of multiple commercial or third-party software platforms—even in some cases requiring computer coding. Herein, we report the use of matrix-assisted laser desorption/ionization (MALDI) in tandem with desorption electrospray ionization (DESI) imaging in the positive ion mode on a singular commercial orthogonal dual-source Fourier transform ion cyclotron resonance (FT-ICR) instrument for the complementary detection of multiple analyte classes by MSI from tissue. The DESI source was 3D printed and the commercial Bruker Daltonics software suite was used to generate mass spectrometry images in tandem with the commercial MALDI source. This approach allows for the generation of multiple modes of mass spectrometry images without the need for third-party software and a customizable platform for ambient ionization imaging. Highlighted is the streamlined workflow needed to obtain phospholipid profiles, as well as increased depth of coverage of both annotated phospholipid, cardiolipin, and ganglioside species from rat brain with both high spatial and mass resolution.
Collapse
Affiliation(s)
- Kevin J. Zemaitis
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
| | - Alexandra M. Izydorczak
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
| | - Alexis C. Thompson
- Department of Psychology, Park Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Troy D. Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
- Correspondence:
| |
Collapse
|
14
|
Ma Z, Sun T, Bai X, Ji X, Zhang Q, Wu J, Wang Z, Chen C. Drug-sensitivity test and analysis of drug-resistant mutations in Mycobacterium tuberculosis isolates from Kashgar, China. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211041437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction In recent years, drug-resistant Mycobacterium tuberculosis strains have gradually become widespread. Most drug resistance is related to specific mutations. We investigated M. tuberculosis drug resistance in the Kashgar area, China. Methods The drug-susceptibility test was conducted to clinical isolates of M. tuberculosis. Genomic-sequencing technology was used for the drug-resistant strains and the significance of DNA sequencing as a rapid aid for drug-resistance detection and the diagnosis method was evaluated. Results The resistance rates of clinical isolates to rifampicin (RFP), isoniazid (INH), streptomycin (SM), ethambutol (EMB), and ofloxacin (OFX) were, respectively, 4.4%, 12.3%, 8.8%, 2.6%, and 3.5%. The single- and multi-drug resistance rates were, respectively, 80.0% and 20.0%. The resistance genes RopB, katG, InhA, RpsL, rrs, gyrA, and embB displayed codon mutations, while InhA was mutated in its promoter region. Kappa scores, evaluating the consistency between DNA sequencing and the resistance ratio methods for the detection of isolates’ resistance to RFP, INH, SM, OFX, and EMB, were 1, 0.955, 0.721, 0.796, and 1, respectively. Conclusion The resistance rate of INH and SM is relatively high in the Kashgar area. Detection of mutations in RopB, katG, InhA, RpsL, rrs, gyrA, and embB by DNA sequencing can predict drug resistance of M. tuberculosis strains with high sensitivity and specificity, and can be used for diagnosis.
Collapse
Affiliation(s)
- Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianhao Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xinyu Bai
- Kashgar Tuberculosis Prevention and Treatment Center, Kashgar, China
| | - Xiang Ji
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Qian Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jiangdong Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|