1
|
Khristenko NA, Nagornov KO, Garcia C, Gasilova N, Gant M, Druart K, Kozhinov AN, Menin L, Chamot-Rooke J, Tsybin YO. Top-Down and Middle-Down Mass Spectrometry of Antibodies. Mol Cell Proteomics 2025:100989. [PMID: 40368137 DOI: 10.1016/j.mcpro.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Therapeutic antibodies, primarily immunoglobulin G-based monoclonal antibodies, are developed to treat cancer, autoimmune disorders, and infectious diseases. Their large size, structural complexity, and heterogeneity pose significant analytical challenges, requiring the use of advanced characterization techniques. This review traces the 30-year evolution of top-down (TD) and middle-down (MD) mass spectrometry (MS) for antibody analysis, beginning with their initial applications and highlighting key advances and challenges throughout this period. TD MS allows for the analysis of intact antibodies, and MD MS performs analysis of the antibody subunits, even in complex biological samples. Both approaches preserve critical quality attributes such as sequence integrity, post-translational modifications (PTMs), disulfide bonds, and glycosylation patterns. Key milestones in TD and MD MS of antibodies include the use of structure-specific enzymes for subunit generation, the implementation of high-resolution mass spectrometers, and the adoption of non-ergodic ion activation methods such as electron transfer dissociation (ETD), electron capture dissociation (ECD), ultraviolet photodissociation (UVPD), and matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD). The combination of complementary dissociation methods and the use of consecutive ion activation approaches has further enhanced TD/MD MS performance. The current TD MS record of antibody sequencing with terminal product ions is about 60% sequence coverage obtained using the activated ion-ETD approach on a high-resolution MS platform. Current MD MS analyses with about 95% sequence coverage were achieved using combinations of ion activation and dissociation techniques. The review explores TD and MD MS analysis of novel mAb modalities, including antibody-drug conjugates, bispecific antibodies, and endogenous antibodies from biofluids as well as immunoglobulin A and M-type classes. Content.
Collapse
Affiliation(s)
| | | | - Camille Garcia
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Megan Gant
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | | | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, and CNRS UAR2024, Paris, France
| | - Yury O Tsybin
- Spectrotech, 69006 Lyon, France; Spectroswiss, 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Peris-Díaz MD, Deslignière E, Jager S, Mokiem N, Barendregt A, Bondt A, Heck AJR. Asymmetric N-Glycosylation in the Tailpiece of Recombinant IgA1. J Am Chem Soc 2024; 146:34720-34732. [PMID: 39641195 DOI: 10.1021/jacs.4c13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here, we employed a variety of mass spectrometry (MS)-based approaches, both (glyco)peptide-centric and protein-centric, to resolve the complex glycoproteoform landscape of recombinant IgA1 produced in HEK293 cells. These key immunoglobulins harbor several N- and O-glycosylation sites, making them considerably more heterogeneous than their IgG counterparts. We provide quantitative data on the occupancy and glycan composition for each IgA1 glycosylation site. Combining all data, we revealed that IgA1 molecules consist of at least three distinct populations with varying N-glycosylation site occupancies at the C-terminal tailpiece, namely, one with both glycosylation sites occupied, another with both glycosylation sites unoccupied, and a third asymmetric population with one glycosylation site occupied and the other unoccupied, challenging the prevailing acceptance that IgA1 N-glycosylation is symmetrical. This finding is significant, given that the tailpiece is involved in interactions with the J-chain and the Polymeric Immunoglobulin Receptor, and in general as antibody glycosylation is a quality attribute that needs to be carefully monitored, as the presence and nature of these modifications can affect the antibody's efficacy, lifetime, stability, and binding and/or neutralizing capacities. Optimizing strategies to produce recombinant IgA1 requires efficient and specific quality control analytical strategies, as presented here, which is essential for therapeutic IgA1-based antibody development. We expect that the integrated MS-based strategy presented here may be beneficial to comprehensively characterize the glycoproteoform profiles of IgA1-based therapeutics, thereby improving their production and optimization processes and facilitating the pathway to bring more IgA1-based therapeutics into clinical applications.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Evolène Deslignière
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Shelley Jager
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Nadia Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
3
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 PMCID: PMC11774622 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N. Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | - Linda B. Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199 Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
4
|
Townsend DR, Towers DM, Lavinder JJ, Ippolito GC. Innovations and trends in antibody repertoire analysis. Curr Opin Biotechnol 2024; 86:103082. [PMID: 38428225 DOI: 10.1016/j.copbio.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
Monoclonal antibodies have revolutionized the treatment of human diseases, which has made them the fastest-growing class of therapeutics, with global sales expected to reach $346.6 billion USD by 2028. Advances in antibody engineering and development have led to the creation of increasingly sophisticated antibody-based therapeutics (e.g. bispecific antibodies and chimeric antigen receptor T cells). However, approaches for antibody discovery have remained comparatively grounded in conventional yet reliable in vitro assays. Breakthrough developments in high-throughput single B-cell sequencing and immunoglobulin proteomic serology, however, have enabled the identification of high-affinity antibodies directly from endogenous B cells or circulating immunoglobulin produced in vivo. Moreover, advances in artificial intelligence offer vast potential for antibody discovery and design with large-scale repertoire datasets positioned as the optimal source of training data for such applications. We highlight advances and recent trends in how these technologies are being applied to antibody repertoire analysis.
Collapse
Affiliation(s)
- Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Dalton M Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
6
|
Kline JT, Melani RD, Fornelli L. Mass spectrometry characterization of antibodies at the intact and subunit levels: from targeted to large-scale analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 492:117117. [PMID: 38855125 PMCID: PMC11160972 DOI: 10.1016/j.ijms.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibodies are one of the most formidable molecular weapons available to our immune system. Their high specificity against a target (antigen) and capability of triggering different immune responses (e.g., complement system activation and antibody-dependent cell-mediated cytotoxicity) make them ideal drugs to fight many different human diseases. Currently, both monoclonal antibodies and more complex molecules based on the antibody scaffold are used as biologics. Naturally, such highly heterogeneous molecules require dedicated analytical methodologies for their accurate characterization. Mass spectrometry (MS) can define the presence and relative abundance of multiple features of antibodies, including critical quality attributes. The combination of small and large variations within a single molecule can only be determined by analyzing intact antibodies or their large (25 to 100 kDa) subunits. Hence, top-down (TD) and middle-down (MD) MS approaches have gained popularity over the last decade. In this Young Scientist Feature we discuss the evolution of TD and MD MS analysis of antibodies, including the new frontiers that go beyond biopharma applications. We will show how this field is now moving from the "quality control" analysis of a known, single antibody to the high-throughput investigation of complex antibody repertoires isolated from clinical samples, where the ultimate goal is represented by the complete gas-phase sequencing of antibody molecules without the need of any a priori knowledge.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rafael D. Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Chau TH, Chernykh A, Kawahara R, Thaysen-Andersen M. Critical considerations in N-glycoproteomics. Curr Opin Chem Biol 2023; 73:102272. [PMID: 36758418 DOI: 10.1016/j.cbpa.2023.102272] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
N-Glycoproteomics, the system-wide study of glycans asparagine-linked to protein carriers, holds a unique and still largely untapped potential to provide deep insights into the complexity and dynamics of the heterogeneous N-glycoproteome. Despite the advent of innovative analytical and informatics tools aiding the analysis, N-glycoproteomics remains challenging and consequently largely restricted to specialised laboratories. Aiming to stimulate discussions of method harmonisation, data standardisation and reporting guidelines to make N-glycoproteomics more reproducible and accessible to the community, we here discuss critical considerations related to the design and execution of N-glycoproteomics experiments and highlight good practices in N-glycopeptide data collection, analysis, interpretation and sharing. Giving the rapid maturation and, expectedly, a wide-spread implementation of N-glycoproteomics capabilities across the community in future years, this piece aims to point out common pitfalls, to encourage good data sharing and documentation practices, and to highlight practical solutions and strategies to enhance the insight into the N-glycoproteome.
Collapse
Affiliation(s)
- The Huong Chau
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anastasia Chernykh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Dhenin J, Dupré M, Druart K, Krick A, Mauriac C, Chamot-Rooke J. A multiparameter optimization in middle-down analysis of monoclonal antibodies by LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4909. [PMID: 36822210 DOI: 10.1002/jms.4909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In antibody-based drug research, a complete characterization of antibody proteoforms covering both the amino acid sequence and all posttranslational modifications remains a major concern. The usual mass spectrometry-based approach to achieve this goal is bottom-up proteomics, which relies on the digestion of antibodies but does not allow the diversity of proteoforms to be assessed. Middle-down and top-down approaches have recently emerged as attractive alternatives but are not yet mastered and thus used in routine by many analytical chemistry laboratories. The work described here aims at providing guidelines to achieve the best sequence coverage for the fragmentation of intact light and heavy chains generated from a simple reduction of intact antibodies using Orbitrap mass spectrometry. Three parameters were found crucial to this aim: the use of an electron-based activation technique, the multiplex selection of precursor ions of different charge states, and the combination of replicates.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi, Chilly-Mazarin, 91385, France
| | - Mathieu Dupré
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| |
Collapse
|
9
|
Watts E, Thyer R, Ellington AD, Brodbelt JS. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal Chem 2022; 94:11175-11184. [PMID: 35930618 DOI: 10.1021/acs.analchem.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Macias LA, Wang X, Davies BW, Brodbelt JS. Mapping paratopes of nanobodies using native mass spectrometry and ultraviolet photodissociation. Chem Sci 2022; 13:6610-6618. [PMID: 35756525 PMCID: PMC9172568 DOI: 10.1039/d2sc01536f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Following immense growth and maturity of the field in the past decade, native mass spectrometry has garnered widespread adoption for the structural characterization of macromolecular complexes. Routine analysis of biotherapeutics by this technique has become commonplace to assist in the development and quality control of immunoglobulin antibodies. Concurrently, 193 nm ultraviolet photodissociation (UVPD) has been developed as a structurally sensitive ion activation technique capable of interrogating protein conformational changes. Here, UVPD was applied to probe the paratopes of nanobodies, a class of single-domain antibodies with an expansive set of applications spanning affinity reagents, molecular imaging, and biotherapeutics. Comparing UVPD sequence fragments for the free nanobodies versus nanobody·antigen complexes empowered assignment of nanobody paratopes and intermolecular salt-bridges, elevating the capabilities of UVPD as a new strategy for characterization of nanobodies. Ultraviolet photodissociation mass spectrometry is used to probe the paratopes of nanobodies, a class of single-domain antibodies, and to determine intersubunit salt-bridges and explore the nanobody·antigen interfaces.![]()
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Xun Wang
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
12
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
13
|
Yang W, Ivanov DG, Kaltashov IA. Extending the capabilities of intact-mass analyses to monoclonal immunoglobulins of the E-isotype (IgE). MAbs 2022; 14:2103906. [PMID: 35895856 PMCID: PMC9336480 DOI: 10.1080/19420862.2022.2103906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.
Collapse
Affiliation(s)
- Wenhua Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Bondt A, Dingess KA, Hoek M, van Rijswijck DMH, Heck AJR. A Direct MS-Based Approach to Profile Human Milk Secretory Immunoglobulin A (IgA1) Reveals Donor-Specific Clonal Repertoires With High Longitudinal Stability. Front Immunol 2021; 12:789748. [PMID: 34938298 PMCID: PMC8685336 DOI: 10.3389/fimmu.2021.789748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, a mass spectrometry-based approach was introduced to directly assess the IgG1 immunoglobulin clonal repertoires in plasma. Here we expanded upon this approach by describing a mass spectrometry-based technique to assess specifically the clonal repertoire of another important class of immunoglobulin molecules, IgA1, and show it is efficiently and robustly applicable to either milk or plasma samples. Focusing on two individual healthy donors, whose milk was sampled longitudinally during the first 16 weeks of lactation, we demonstrate that the total repertoire of milk sIgA1 is dominated by only 50-500 clones, even though the human body theoretically can generate several orders of magnitude more clones. We show that in each donor the sIgA1 repertoire only changes marginally and quite gradually over the monitored 16-week period of lactation. Furthermore, the observed overlap in clonal repertoires between the two individual donors is close to non-existent. Mothers provide protection to their newborn infants directly by the transfer of antibodies via breastfeeding. The approach introduced here, can be used to visualize the clonal repertoire transferred from mother to infant and to detect changes in-time in that repertoire adapting to changes in maternal physiology.
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
15
|
Greisch JF, den Boer MA, Lai SH, Gallagher K, Bondt A, Commandeur J, Heck AJR. Extending Native Top-Down Electron Capture Dissociation to MDa Immunoglobulin Complexes Provides Useful Sequence Tags Covering Their Critical Variable Complementarity-Determining Regions. Anal Chem 2021; 93:16068-16075. [PMID: 34813704 PMCID: PMC8655740 DOI: 10.1021/acs.analchem.1c03740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Native top-down mass
spectrometry (MS) is gaining traction for
the analysis and sequencing of intact proteins and protein assemblies,
giving access to their mass and composition, as well as sequence information
useful for identification. Herein, we extend and apply native top-down
MS, using electron capture dissociation, to two submillion Da IgM-
and IgG-based oligomeric immunoglobulins. Despite structural similarities,
these two systems are quite different. The ∼895 kDa noncovalent
IgG hexamer consists of six IgG subunits hexamerizing in solution
due to three specifically engineered mutations in the Fc region, whereas
the ∼935 kDa IgM oligomer results from the covalent assembly
of one joining (J) chain and 5 IgM subunits into an asymmetric “pentamer”
stabilized by interchain disulfide bridges. Notwithstanding their
size, structural differences, and complexity, we observe that their
top-down electron capture dissociation spectra are quite similar and
straightforward to interpret, specifically providing informative sequence
tags covering the highly variable CDR3s and FR4s of the Ig subunits
they contain. Moreover, we show that the electron capture dissociation
fragmentation spectra of immunoglobulin oligomers are essentially
identical to those obtained for their respective monomers. Demonstrated
for recombinantly produced systems, the approach described here opens
up new prospects for the characterization and identification of IgMs
circulating in plasma, which is important since IgMs play a critical
role in the early immune response to pathogens such as viruses and
bacteria.
Collapse
Affiliation(s)
- Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly Gallagher
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan Commandeur
- MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|